
Implementing Private K-Means Clustering Using a LWE-based Cryptosystem

Anastasia Theodouli
Dept. of Informatics

Aristotle Univ. of Thessaloniki
Thessaloniki, Greece

Email: anastath@csd.auth.gr

Konstantinos A. Draziotis
Dept. of Informatics

Aristotle Univ. of Thessaloniki
Thessaloniki, Greece

Email: drazioti@csd.auth.gr

Anastasios Gounaris
Dept. of Informatics

Aristotle Univ. of Thessaloniki
Thessaloniki, Greece

Email: gounaria@csd.auth.gr

Abstract—Combining data analytics with homomorphic en-
cryption is an interesting topic, which finds several applications
in the healthcare domain because it enables clients with low
computational and/or storage capacity to outsource the analysis
of potentially large datasets to the cloud while protecting
sensitive data from unwanted access. In this work, we pro-
pose a framework for evaluating k-means clustering using
a cryptosystem based on the Learning With Errors (LWE)
problem. We implemented three variants of this framework
in the computer algebra system Sagemath and executed many
experiments to test the performance for various values of k-
means and LWE parameters.

1. Introduction

The volume of data that is nowadays produced exceeds
our capacity to store and analyze them by orders of magni-
tude; e.g., the LHC experiment at CERN keeps only a tiny
fraction (at the order of 10−6) of the produced data to allow
for economical storage and analysis [1]. Similar problems
are faced by most top organizations and enterprises in the
world. In both scientific and enterprise settings, the main
direction followed is to employ shared computing infras-
tructures, which has led to the establishment of public cloud
computing solutions. According to a report(1), “at year-end
2016, more than 50% of Global 1000 companies will have
stored customer-sensitive data in the public cloud.” Albeit,
resorting to cloud infrastructures raises concerns regarding
the loss of control over data and the consequent compromise
of security and privacy. One technique widely used to secure
the data transferred to and analyzed on the cloud is called
homomorphic encryption (HE). As we argue in this paper,
HE is of interest in the healthcare domain, e.g., for storing
and analyzing data from (medical) IoT devices, given that,
typically, medical institutions do not possess large-scale
computational infrastructure for in-site storage and analysis
of patient data.

In 2009, Gentry in his landmark paper [2] provided a
specific construction of a fully homomorphic scheme (FHS).
The idea of FHS first appeared in 1978 by Rivest, Shamir

(1). https://www.gartner.com/doc/1991317/
information-innovation-innovation-key-initiative

and Dertouzos [3]. Taking as an example RSA-cryptosystem
which is multiplicative homomorphic, they posed a more
general question, if we could really compute (any) function
over encrypted data in a homomorphic way.

This work is based on the client-server setting. Data
belongs exclusively to the client, who does not want to share
them. On the other hand, the client has limited computa-
tional and/or storage resources and thus needs to outsource
the computation of a specific analysis, namely k−means
clustering, to the cloud. For instance, consider an IoT medi-
cal device that collects data from a patient, but cannot keep
it due to its limited memory. In such a case, the device
should offload the data and the computation load to a cloud-
hosted trusted server that needs also to perform some type
of analysis in order physicians to take informed decisions.
Similarly, a hospital may not have the capacity to store
and analyze the ever-growing patient data in proprietary
computing infrastructures. Note that data sizes need not be
big but larger than the storage capacities of the IoT device
and the local storage capacity, respectively, something that
is quite common. Therefore, combining data mining with
HE is an interesting topic with several applications in the
healthcare domain, since it enables clients with low com-
putational and/or storage capacity to outsource the analysis
of potentially large datasets to the cloud while protecting
sensitive data from unwanted access, and has started been
explored recently [4], [5].

In this paper, we consider the k-means clustering algo-
rithm as the operation to be done securely on the data on the
server side. We use the system in [6], which base its security
on the learning with errors problem (LWE) of Regev [7].
This system belongs to the class of somewhat homomorphic
schemes (SHS) rather than to FHSs. SHSs allow us to make
as many additions as we want over the encrypted data,
but multiplications only of specific depth. For instance, we
can not make a multiplication of 20 integers, since, in that
case, the noise we add to the system does not allow us
to correctly decrypt the data. In FHS, Gentry suggested
the bootstrapping step to refresh the encrypted data and
decrease the noise over the data. The strong point of SHS
is that it is more efficient than FHS in practical applications
(e.g. see [5]), given that several real-world data science and
data mining algorithms require only a limited number of



multiplications on each data record rather than the full the
power that a FHS provides.

For k-means, the choice of a SHS comes at the expense
of allocating some workload to the client. More specifically,
the main contribution of this work is that we present three
collaboration protocols between the client and the server
that make different trade-offs between security, client load
and minimum client resources required. The reason that
we do not fully implement k-means on the server’s side
is twofold. First, the algorithm requires operations that
compare numbers and find the minimum from a list. The
circuit that we need to implement in order to compute the
minimum of some data has very large depth, (see [5]) and
so it cannot be efficiently implemented in a SHS. Second,
say we have a relation of the form Enc(a) > Enc(b) (i.e.
an order over the encrypted data), then this will reveal some
information to the server, which may destroy the semantic
security of the system, i.e. it may reveal some information
for the unencrypted messages a or/and b.

In summary, our work aims to make another step towards
implementing advanced data analytics according to a HE
scheme. Our current results highlight bottlenecks and pro-
vide strong insights into the issues that need to be resolved
in order such techniques to scale to large datasets.

Structure of the remainder of this paper. In the
next section, we provide the exact definition of FHS, our
security model, a description of the SHS BV-11 (short for
Brakerski-Vaikuntanathan, 2011) cryptosystem[6] and the
underlying Learning with errors (LWE) problem. In section
3, we discuss the related work. In section 4, we present our
framework for implementing k-means in a homomorphic
way. In Section 5, we provide experimental results con-
cerning the performance of our framework as implemented
in Sagemath [8]. Finally, in the last section we provide
concluding remarks and possible extensions.

2. Homomorphic Encryption and LWE Basics

We start with the definition of a FHS.
Definition 1. (FHS) A quadruple consisting of four algo-

rithms H = {KeyGen,Enc, Dec,Eval} is called FHS
if it has the following properties:
Homomorphic. KeyGen generates a pair of public and
secret key (pk, sk). Let f be any function defined over
the message space and mi (i = 1, 2, ..., t) are some
messages and ci = Encpk(mi) are the corresponding
ciphertexts. Enc (resp. Dec) is the encryption (resp.
decryption) function. If

c∗ = Eval(f, c1, c2, ..., ct),

then
Decsk(c

∗) = f(m1,m2, ...,mt).

Security. We assume that the scheme is semantically se-
cure (with the usual notion in public key cryptosystems).
Compact. c∗ is independent on the complexity of f (i.e.
decrypting c∗ is easier than computing f ).

Security Model We assume that the cloud provider is
honest-but-curious. Honest means that the cloud-hosted
server-side processing will follow the protocol as defined by
the data owner and will return the results. Curious means
that the cloud can look at the data; thus the data owner on
the client side needs to devise the processing protocols in
such a way that no or minimal information leakage takes
place.

2.1. LWE and BV-11

In 2005, Regev defined the learning with errors (LWE)
problem [7]. Before we formally define it, we need the
definition of the LWE distribution. Let an integer N ≥ 1,
a prime q ≥ 2 and s ∈ ZN

q (where Zq is the finite field
with q elements, with addition and multiplication mod q).
We define the LWE distribution As,χ over ZN

q ×Zq by the
following process:
• pick a vector a uniformly from ZN

q and e from Zq

according to a (discrete) distribution χ over Z.
• return (a,a · s+ e), i.e. the inner product of s and a plus
a noise e and then reduce by mod q.

Definition 2. (LWE problem) Let s be arbitrary in ZN
q .

Having arbitrary many pairs {(ai,ai · s+ ei)}i compute
s.

If we choose χ as the discrete Gaussian distribution over Zq

with mean zero and σ = αq/
√
2π (where α ∈ (0, 1)) and

q = O(poly(N)) then, this problem has been proved that it
is as hard as a standard hard lattice problem [9].

In [6], the authors provide a cryptosystem based on the
LWE problem, which we call it BV-11. The cryptosystem
is briefly described as follows:
(i) Choose an integer t ≪ q and an integer number m ∈
(−t/2, t/2) to encrypt.
(ii) Pick a random vector of ZN

q , say a. Then the encryption
function is c = encs(m) = (a,a · s+ te+m) = (a, b) (all
the operations are mod q), where s is the secret key.
(iii) In order to decrypt, construct the polynomial fa,b(x) =
b−a·x ∈ Zq[x]. Then, the decryption function is decs(c) =
fa,b(s) (mod t) = m.

This system is symmetrical (same encryption-decryption
key : s). To see that is homomorphic with respect addition
and multiplication, we choose two messages m1,m2 and let
c1 = (a1,a1 · s+ te1 +m1) = (a1, b1), c2 = (a2,a2 · s+
te2 +m2) = (a2, b2). Then someone that does not have the
secret key, for the addition, computes the coefficients of the
polynomial fa1,b1(x)+fa2,b2(x) and form a vector say cadd;
similarly, for the multiplication, computes the coefficients
of the polynomial fa1,b1(x)fa2,b2(x) and form a vector say
cmult. Now, someone that has the secret key and having
cadd and cmult constructs the two previous polynomials and
set x = s. Then the result will be (m1 + m2) (mod t)
and m1m2 (mod t), respectively. Choosing carefully the
parameter t i.e. m1 + m2,m1m2 < t we get m1 + m2

and m1m2, respectively. To choose secure parameters for
LWE we follow [10] (see also Section 4.4).

2



3. Related Work

Here, we briefly discuss other proposals for securely im-
plementing k-means. Vaidya and Clifton proposed a privacy-
preserving k-means clustering algorithm for vertically par-
titioned data [11]. Their protocol involves more than two
parties, i.e., it does not fit into the client-sever model.
Another approach to designing a secure k-means clustering
algorithm in arbitrarily partitioned data for a two-party
setting has been presented by Bunn and Ostrovsky in [12]. In
this work, the authors have combined cryptographic security
tools with several secure multi-party communication (SMC)
protocols able to be readily implemented only using the so-
called Scalar Product Protocol, which has been extensively
explored, see e.g. [13]. Protocols for SMC have been pro-
posed by the authors in [14] as well. Finally, multi-party
computation of k-means can be based on the work of [15].
Compared to the above proposals, apart from focusing on a
client-server setting, we differ in that we use as a security
tool for encryption, the BV-11 cryptosystem which is based
on the LWE problem, while most of the related work uses
the Pallier’s cryptosystems which is partially homomorphic
and base its security in hard problems of number theory.
Furthermore, Pallier’s cryptosystem is not quantum resistant,
since the Decisional Composite Residuosity problem on
which Pallier’s cryptosystem is based is an easy one if fac-
torization is easy, and the factorization problem in quantum
computers is an easy problem indeed. Further application of
HE to data mining problems are discussed in works, such
as [4], [5], which do not deal with k-means.

4. The proposed framework for securely im-
plementing k−means

Here, we describe three variants of a secure protocol for
k-means. Each one has some positive and negative points
with regards to the performance and the security of the
system and different trade-offs are made regarding the load
on each side.

In all three variants, the client and server agree on
some secure parameters of BV-11 system. The basic steps
of k−means algorithm, as considered in this work, are
presented below.
Input: A dataset of n d-dimensional integer points,
{P1, . . . , Pn} ⊂ Zd, and a positive integer k, which denotes
the number of clusters, and a threshold dthreshold. It is safely
assumed that k ≪ n). The threshold is used in the stopping
criterion.
Output: k d-dimensional points of Rd denoting the cluster
centers.

1) Consider k random points from the dataset as the
initial centers.

2) Assign each point to the group with the closest
euclidean distance from the center of the group.

3) When all points have been assigned to a cluster,
recalculate the positions of the k centers by com-
puting the average of the points belonging to each
group.

4) Repeat steps 2 and 3 if, for at least one of the k
centers, the distance of the previous and the new
center is greater than dthreshold; the difference is
computed by Euclidean distance.(2)

In all variants, we assume that the available memory
on the server is too small to hold the nd point data, but
is adequate to hold both the intermediate and final result,
which consists of kd values; actually the minimum required
memory is the amount needed to store the centers in two
iterations, while holding the sum per dimension and the
amount of data per cluster separately, which amounts to
2k(d + 1) values. The 2nd step is always computed via
a collaboration between the server and the client, and the
4th step is always computed on the client. The type of the
collaboration and the execution of the 3rd step is where
the variants differ. The collaboration is needed because the
server can compute homomorphically the distance between
the data points and the centers in an efficient manner, but
cannot establish which distance is the smallest. This also
implies that the client needs additional memory to hold k
more values, so that it can check the minimum distance from
a point to a center. Therefore, the minimum client memory
required is space for 2k(d+ 1) + k integers.

In the following, we use the notation Qi = Enc(Pi) for
the homomorphic encryption of the point Pi, i.e. Enc(Pi) =

(Enc(P
(1)
i ), . . . , Enc(P

(d)
i )). The black dots correspond to

operations on the client side, whereas white dots correspond
to operations on the server side.

4.1. Variant I: computing the new centers on the
client

The details of the first variant are as follows:

1) Initialization.
• The client encrypts each of the d−entries of
P1, . . . , Pn and sends them to the server.

◦ The server permanently stores the encrypted data
in a matrix A. It also picks the first kd−encrypted
entries to form the initial centers Ci, i = 1, 2, ..., k.

2) Finding the closest cluster to each data point-
Assignment step.
◦ The server (homomorphically) computes
the k squares of distances dist(Qj , Ci)

2 for
i = 1, 2, . . . , k and j ∈ {1, . . . , n}. Finally, the
server sends the distances back to the client along
with Qj

(3).

• The client decrypts all the distances and
computes their minimum. The client keeps the
sum for each dimension for each cluster along

(2). It is also common to allow steps 2 and 3 to run for a predefined
number of iterations.

(3). In the first round, j starts from k + 1 since Ci = Enc(Pi)(1 ≤
i ≤ k)

3



with the number of the points of each cluster in
each iteration; the dimension values of Pj are
retrieved through decrypting Qj .

3) Re-calculate the positions of the k centers- Update
step.
• The client calculates the new centers, i.e., it
divides each of the d numbers with the number
of the points in each cluster and keeps the nearest
integer. If at least one new center differs from its
previous value by at least dthreshold, it encrypts
the new centers, sends them to the server, and the
assignment step is re-executed.

An analysis of the 1st variant is as follows. In each
iteration, n(d+ k) encrypted values are sent back from the
server to the client. The client needs some extra memory to
hold this data. Assuming that the transmission is in batches,
the smallest batch corresponds to the data of a single point
and comprises d+k encrypted values. Thus, the client needs
to have available memory for at least 2k(d + 1) + d + k
values. Also, the client performs n(d + 1) additions and d
divisions when storing the intermediate center information
and the final center coordinates, respectively.

4.2. Variant II: computing the new centers on the
server with information leakage

The second variant aims to alleviate the load on the
client side and perform the computation of the sum of each
dimension per cluster on the server side. This also makes
the need to send Qj back to the client obsolete. More
specifically, the assignment and update steps are modified
as follows (see also Figure 1):

1) Finding the closest cluster to each data point-
Assignment step.
◦ The server (homomorphically) computes
the k squares of distances dist(Qj , Ci)

2 for
i = 1, 2, . . . , k and j ∈ {1, . . . , n} and sends the
distances back to the client for each Qj without
sending Qj per se.

• The client decrypts all the k distances and
computes their minimum. The client sends the
identifier i of the minimum distance back to the
server in an unencrypted form. The client only
keeps a counter for the number of data points
assigned to each cluster in the current iteration.

2) Re-calculate the positions of the k centers- Update
step.
◦ The server homomorphically computes the sum
for each coordinate for each center and sends the
result to the client.

• The client decrypts the information received and
calculates the new centers, i.e., it divides each of
the d numbers with the number of the points in each

Fig. 1 A summary of the 2nd variant.

cluster and keeps the nearest integer. If at least one
new center differs from its previous values by at
least dthreshold, it encrypts the new centers, sends
them to the server, and the assignment step is re-
executed.

The memory requirements on the client are very slightly
affected. The main advantage of this variant is that the
data communicated during the assignment step drops to nk
encrypted values and only n additions are performed on the
client. This comes at the expense of a) O(nd) homomorphic
additions on the server, and b) some security leakage, in the
sense that the server knows about the cluster identifiers for
each encrypted point.

Note that we can avoid sending the cluster identifier
in plaintext using AES (or some other secure symmetric
encryption algorithm). This can be done easily if we have
a Pubic key infrastructure. In more details, the server must
have a digital certificate signed by a trusted authority. Then
before the initialization (step 1), the client and server can
agree to a common key, say 128 bits, which can be used
by AES. So, in this way we can avoid a possible Man
in the Middle attack. Furthermore, not keeping secret the
cluster identifier, gives rise to a potential threat of someone
changing its value; in this way, the results will be false.
But through encrypting the cluster identifiers and assuming
that the server is trusted in the sense that will execute the
framework as presented, our results will be correct.

4.3. Variant III: computing the new centers on the
server without information leakage

This variant aims to address the main limitation of the
previous one, namely to reveal the cluster identifiers for each
point to the server. To this end, the assignment and update
steps are modified as follows:

1) Finding the closest cluster to each data point-
Assignment step.
◦ The server (homomorphically) computes
the k squares of distances dist(Qj , Ci)

2 for
i = 1, 2, . . . , k and j ∈ {1, . . . , n} and sends the

4



Points in matrix A Clustering in matrix B
d1 d2 d3 d4 c1 c2 c3
2 8 5 3 0 1 0
6 6 2 1 1 0 0
2 1 5 2 0 0 1
5 2 7 6 1 0 0
3 4 9 6 1 0 0

TABLE 1: Example of the (encrypted) information on the
server according to the 3rd variant.

Variant I Variant II Variant III
encryptions kd kd (n+ k)d
decryptions n(k + d) nk nk
transmission n(k + d) nk n(k + d)

additions nk(d− 1) nk(d− 1) + nk(d− 1) +
(n− k)d kd(n− 1)

multiplications nd nd nd(k + 1)

extra client memory d 0 k

TABLE 2: Summary of amount of operations on encrypted
integers per iteration of k-means.

distances back to the client for each Qj without
sending Qj per se.

• The client decrypts all the k distances and
computes their minimum. Let us assume that the
identifier of the cluster with the minimum distance
is i. The client creates a vector with k entries,
where all entries are 0 apart from the i-th one,
which is set to 1. It encrypts this vector and sends
it to the server.

◦ The server stores the encrypted vector row-by-
row. It forms a matrix n × k, which we call it B.
Table 1 shows an example of the total information
stored on the server for 5 4-dimensional points
and 3 centers.

2) Re-calculate the positions of the k centers- Update
step.
◦ The server has already formed a matrix A having
as columns the encrypted points (i.e. n× d) and is
homomorphically multiplied by B (i.e. dk inner
products are computed). The resulting dk values
correspond to the sums for each dimension for
each center. These values are sent to the client.

• The client decrypts the information received and
calculates the new centers, i.e., it divides each of
the d numbers with the number of the points in each
cluster and keeps the nearest integer. If at least one
new center differs from its previous values by at
least dthreshold, it encrypts the new centers, sends
them to the server, and the assignment step is re-
executed.

Table 2 summarizes the main features of each vari-
ant. Encryptions and decryptions take place on the client,
whereas additions and multiplications on encrypted data are
performed on the server. From the table, it is clear that the

enc./dec. add./dec. mult./dec.
0.002/0.52s 10−4/0.67s 6.15/355s

TABLE 3: The cpu times for encrypting/decrypting an in-
teger with 20-bits (left), adding and decrypting two 20-bit
integers (middle) and multiplying two 20-bit integers.

d inner prod./dec. square of distance/dec.
2 13/377s 13/350s
5 61/406s 52/381s
10 136/427s 116/361s

TABLE 4: The cpu times for homomorphic inner product
and the square of their distance between two vectors in Zd

for 3 values of d; we considered vectors with entries integers
of 20-bits.

1st (resp. 3rd) variant places more load on the client (resp.
server), whereas the 2nd variant is less loaded, but at the
expense of a compromise on the information revealed.

4.4. Implementation Issues

As already mentioned, BV-11 is a SHS allowing as many
additions and one multiplication. After an homomorphic
multiplication the size of the multiplicative ciphertext grows
up to O(N2) coefficients, where the input ciphertexts con-
sist of N coefficients each. For d-multiplications (of two
integers) we have dO(N2) coefficients. So for relatively
small d we can control the noise, in order to get correct
decryption. Much care is needed when we choose the value
t of BV-11, so as to decrypt right. The parameters of
LWE are N, a suitable prime q and the parameters for the
Gaussian α. Furthermore, for BV-11, we considered three
more parameters, an integer t which defines the message
space {−⌊t/2⌋, ..., ⌊t/2⌋}, an integer ℓ which is the maxi-
mum number of bits for the integers defining our points,
and ρ, which expresses the depth of the multiplications
we use. We choose the previous parameters as follows:
t = 2⌊2·ℓ+4 ln(ρ)⌋, ρ = 4, q is set to the prime nearest to the
integer t·216.5ρ+5.482(ρ−3)Nρ and α·q = 3.2

√
2π = σ·

√
2π

(for the last choice see [10, section 7]).
We constructed a class which has the following meth-

ods: encrypt,decrypt,add,mult,scalar_mult,
inner_product and hom_distance. We used a basic
class of Sagemath LWE(N, q, σ) which has a method that
generate LWE-samples. Having the previous methods, it
is easy to implement the three suggested variants for k-
means.(4).

5. Experimental results

In our experiments, we used a Ubuntu machine with
8GB RAM and an i5 3.5GHz processor. We implemented
the three variants in Sagemath. In Table 3, we provide

(4). The implementation of this class can be found in https://github.com/
drazioti/python scripts/tree/master/paper lwe

5



Variant I Variant II Variant III
(d = 2, n = 20) client: 810s 684s 803s

server: 209s 190s 606s
(d = 2, n = 100) client: 3723s 3771s 3880s

server: 1030s 1095s 3127s
(d = 5, n = 20) client: 689s 798s 1005s

server: 780s 804s 1865s
(d = 10, n = 20) client: 687s 784s 1024s

server: 1931s 1923s 3808s

TABLE 5: Times for two k-means iterations, with N = 100
providing ≈ 30-bit security, and the number of clusters k =
3.

Variant I Variant II Variant III
(d = 5, n = 10) client: 12.04h 12.12h 13.2h

server: 1.66h 1.65h 1.79h

TABLE 6: Times for two k-means iterations for 90-bit
security, and the number of clusters k = 3.

the CPU times for some simple operations of the BV-11
cryptosystem. We chose the following parameters for LWE
to get 90-bit security N = 256, t = 17592186044416, q
a prime with 132 bits (as we suggested in the previous
section), α · q = 8.02 and σ = 3.2. Table 4 shows the
times for some more advanced applications for the same
level of security, i.e., 90-bit. As can be observed, decryption
dominates.

In Table 5, we provide the overall cpu-times for the three
suggested variants for k-means for the client and server side
if we lower the security of the cryptosystem to a 30-bit
one. The times for 90-bit security are significantly higher,
as shown in Table 6. The results concern only two iterations.

Of course we should never use the parameters given
in Table 5, since BV-11 is not secure. We remark that the
first two variants have almost the same performance, but
differ in the load they impose on the client. The third variant
has the advantage that it is more secure than the 2nd one,
since it hides the identifiers of the clusters, but has the worst
performance.

6. Conclusions and Future Work

In this work, we investigated a client-server implemen-
tation of k-means according to a homomorphic encryption
scheme that relies on the simple LWE problem. More specif-
ically, we proposed a framework using the BV-11 SHS.
We implemented our framework in Sagemath and executed
experiments with parameters giving security ≈ 90−bits, i.e.
the best known attack needs 290 running time to break BV-
11. Our source code is publicly available. Our framework
has been instantiated in three variants, with different trade-
offs regarding the load on the client and the security. In all
cases, the client has constrained resources in that it cannot
hold the complete dataset.

The value of our results is twofold. First, it provides
a basis for practitioners to benefit from our experience in
the efficiency of the implementation and build extensions.
Second, it proves that a BV-11-based solution cannot scale

for a medium or large dataset. Even if we manage to keep the
server response times at tolerable levels, e.g., through par-
allelism, the decryption overhead on the client side remains
a dominant cost. Our directions for future work are, first to
investigate solutions based on the ring-LWE problem [16];
second, to explore approaches that require less collaboration
and alleviate the amount of decryptions on the client side.
For example, using a FHS, would allow us to implement
a circuit for division and comparison, so that the server
can become fully responsible for the evaluation of k-means.
Then, using parallelism in the context of frameworks such
as Spark, we could address server-side bottlenecks.

References

[1] V. V. Gligorov, “Real-time data analysis at the lhc: present and
future,” JMLR: Workshop and Conference Proceedings, vol. 42, pp.
1–18, 2015. [Online]. Available: https://arxiv.org/abs/1509.06173

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
STOC ’09, 2009.

[3] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy
homomorphisms,” in Foundations of secure computation, 1978.

[4] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS, 2015.

[5] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Int. Conf. on Information Security and
Cryptology. Springer, 2012, pp. 1–21.

[6] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic en-
cryption from (standard) lwe,” SIAM Journal on Computing, vol. 43,
no. 2, 2014.

[7] O. Regev, “The learning with errors problem,” Invited survey in CCC
2010 (http://www.cs.tau.ac.il/ odedr/).

[8] The Sage Development Team, “Sage mathematics software,”
http://www.sagemath.org, 2015.

[9] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and
D. Stehle, “Classical hardness of learning with errors,”
https://arxiv.org/pdf/1306.0281.pdf, 2013.

[10] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness
of learning with errors,” Journal of Mathematical Cryptology, vol. 9,
no. 3, pp. 169–203, 2015.

[11] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over
vertically partitioned data,” in Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2003, pp. 206–215.

[12] P. Bunn and R. Ostrovsky, “Secure two-party k-means clustering,” in
Proceedings of the 14th ACM conference on Computer and commu-
nications security. ACM, 2007, pp. 486–497.

[13] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen, “On private
scalar product computation for privacy-preserving data mining,” in
International Conference on Information Security and Cryptology.
Springer, 2004, pp. 104–120.

[14] S. Samet, A. Miri, and L. Orozco-Barbosa, “Privacy preserving k-
means clustering in multi-party environment.” in SECRYPT, 2007,
pp. 381–385.

[15] S. Samet and A. Miri, “Privacy preserving id3 using gini index
over horizontally partitioned data,” in 2008 IEEE/ACS International
Conference on Computer Systems and Applications. IEEE, 2008,
pp. 645–651.

[16] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of the ACM (JACM), vol. 60,
no. 6, p. 43, 2013.

6


