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ABSTRACT

The top-k dominating query returns the k database objects
with the highest score with respect to their dominance score.
The dominance score of an object p is simply the number
of objects dominated by p, based on minimization or max-
imization preferences on the attribute values. Each object
(tuple) is represented as a point in a multidimensional space,
and therefore, the number of attributes equals the number
of dimensions. The top-k dominating query combines the
dominance concept of skyline queries with the ranking func-
tion of top-k queries and can be used as an important tool
in multi-criteria decision making systems. In this work, we
focus on the 2-dimensional space and present, for the first
time, novel algorithms for top-k dominating query process-
ing in main memory with non-trivial asymptotic guarantees.
In particular, we focus on both the semi-dynamic case (only
insertions are allowed) and the fully-dynamic case (inser-
tions and deletions are supported). We perform a detailed
cost analysis regarding the worst-case complexity of prepro-
cessing, the worst-case complexity for the query cost and
the worst-case and amortized complexity for updates (in-
sertions and deletions) focusing on the RAM computation
model. Our solutions require space linear with the number
of points, which is very important especially for modern ap-
plications which manipulate massive datasets. In addition,
we discuss the case of the word-RAM computation model,
where slightly better results are obtained.

Categories and Subject Descriptors
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1. INTRODUCTION
Recently, there has been an increasing interest in prefe-

rence-based queries, due to their ability to select the most
interesting objects of a given dataset. The data objects
are characterized by a number of usually contradictory at-
tributes, such as price and quality, and therefore, selecting
a suitable result becomes a challenging task.

As an example, consider a hotel database, where each
hotel is represented as a 2-dimensional point with two at-
tributes (dimensions): (a) its distance from the conference
venue and (b) the price for a standard room per night. Gen-
erally, a potential customer would be interested in hotels
that have both of these attributes as small as possible. The
solution would then consist of all hotels that are in a sense
more “preferred” than others. In the sequel, each object will
be represented as a point in a multidimensional space, where
each dimension corresponds to an attribute. The dataset of
points is denoted as S . Our work is based in the concept of
domination (or dominance) which is defined as follows:

Definition 1 (Domination). A point p ∈ S dominates
another point q ∈ S, and we write p ≺ q, iff p is as good as
q in all dimensions and it is strictly better than q in at least
one of the dimensions. A point p is a minimum point if it
is not dominated by any point in S.

Without loss of generality, we will assume that “better”
means“smaller”. Therefore, we say that a point p dominates
q (and we write p ≺ q) when ∀i ∈ [1, d], p[i] ≤ q[i] and
∃j : p[j] < q[j], where d is the total number of dimensions
and p[i] is the value of p in the i-th dimension. The concept
of domination leads naturally to the concept of skyline [5].

Definition 2 (Skyline Query). The result of a sky-
line query, SKY (S) over a dataset S is composed of all
points that are not dominated by any other point (i.e. all
minima points). Formally:

SKY (S) = {p ∈ S : ∄q s.t. q ≺ p}

Essentially, the skyline set contains the best possible ob-
jects with respect to the attribute values. This means that
there is no other point which is strictly better than the points
in SKY (S) in all of the dimensions. Evidently, the skyline
query may be combined with additional constraints on the
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Figure 1: The hotel database.

attribute values. For example, we may ask for the skyline
set of a small area of the data space and not of the entire
dataset. Moreover, the skyline set is invariant in dimension
scaling and it does not require any user-defined function,
since it is based solely on the concept of domination. How-
ever, the cardinality of SKY (S) depends heavily on the data
distribution and dimensionality, resulting sometimes in cum-
bersome results (too many skyline points) and sometimes in
very few.

On the contrary, a top-k query [9] returns exactly k points
which are the best in terms of a user-defined scoring func-
tion. Most of the algorithms assume that the scoring func-
tion is monotone with respect to the values of the dimen-
sions.

Definition 3 (TopK Query). The result of a top-k
query over a dataset S, with respect to a specific scoring
function, is composed of the k points with the maximum
scores.

An example is given in Figure 1. The result of the sky-
line query is composed of the points p1, p3 and p4, since
these points are not dominated by any other point of the
dataset. In contrast, the rest of the points are dominated
by at least one skyline point. For instance, p7 is dominated
by p1 whereas p2 is dominated by p1, p3 and p7. The result of
a top-2 query based on the scoring function f(p) = p.x+p.y
(sum of coordinates) consists of p1 and p3. We observe that
p1 is contained in both the skyline query result and the top-2
query result. In fact, it can be proved that for any monotone
scoring function, the top-1 query result is always a member
of the skyline.

As an attempt to eliminate the limitations of skyline and
top-k queries another preference-based query type has been
proposed initially in [17] and later studied in detail in [20,
21]. As in a typical top-k query, the k objects with the high-
est scores are selected and returned to the user. However, a
fundamental difference is that no user-defined scoring func-
tion is required since by default the dominance relation is
being used. This is done by defining the score of an object
p to be the number of objects that p dominates.

Definition 4 (Dominance Score). The dominance
score s(p) of a point p is the number of points dominated
by p. Formally:

s(p) = |{q ∈ S|p ≺ q}| (1)

Definition 5 (Top-k Dominating Query). The re-
sult of a top-k dominating query consists of the k points
with the highest scores with respect to domination.

The top-k dominating queries have the following desirable
properties:

• the result does not depend on the scaling of the dimen-
sions,

• no additional scoring functions are required and

• the cardinality of the result is controlled by the pa-
rameter k.

A top-2 dominating query on the data set of Figure 1 will
return the points p1 and p7. Note that, p1 dominates four
points (p2, p5, p6 and p7) and p7 dominates three points (p2,
p5 and p6).

Related Work. A basic method for retrieving the top-
k dominating points of a dataset would consist of, firstly,
computing the dominance score of each point and then using
a linear time selection algorithm [3] to find the point v with
the k-th largest score. To find all the top-k dominating
points we perform a final scan on the dataset and report all
points with a greater score than the score of v.

The simplest approach for computing the domination score
for all points would be to compare each point p with every
other point q in the dataset and increment p’s score if it dom-
inates q. This results in O(n2) time cost and O(n) space
cost. An approach with lower time complexity would be
to use a 2-dimensional range counting data structure (e.g.,
[8, 12]). For each point p = (xp, yp) in a dataset S , the
points lying in the query rectangle Q = [xp,∞) × [yp,∞)
can be counted in O(log n) time and O(n) space using the
2-dimensional range counting data structure by Chazelle [8].
The number of points found in Q is equal to p’s domi-
nance score. In order to compute the dominance score of
each point, we repeat the process for all the points in S in
O(n log n) total time. Lastly, an algorithm by Chan and
Pǎtraşcu [7] is able to compute the dominance score for all
points in O(n

√
log n) time in the word-RAM model [11] of

computation. Insertions and deletions can be trivially sup-
ported in the above methods in O(n) time since one has
to update the dominance scores of all points in the worst-
case. In the following, we describe more elaborate methods
to answer a top-k dominating query.

Papadias et al. [17], first proposed the d-dimensional top-k
dominating query along with a solution based on the itera-
tive computation of a dataset’s skyline points. More specif-
ically, they observed that the top-1 dominating point of a
dataset is contained in the dataset’s skyline points. This
stems from the observation that for every point p not in the
skyline, there exists a point p′ in the skyline that dominates
it and, as a result, p′ has a larger score than p. Thus, in their
approach, they compute the set of skyline M (using the BBS
algorithm [17]) and compute the dominance score of all the
points in M . The point q with the highest score is the top-1
dominating point and is thereby reported. Finally, q is re-
moved from the dataset and the procedure is repeated until
k points have been reported. However, this approach does
not avoid the quadratic trap, since the score computation
of skyline points as well as the update of dominance scores
after the removal of the point with the highest score, may
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lead to O(n2) dominance checks, whereas the space remains
linear 1.

Yiu and Mamoulis [20, 21] recommended using aggregate
R-trees (aR-trees) to efficiently compute d-dimensional top-
k dominating queries. They provided various algorithms
based on aR-trees that proved experimentally to be quite
fast. They also make an analytic study making the assump-
tion that the data points are uniformly and independently
distributed in a domain space. The authors do not make any
statement for the worst-case time complexity of the query
but it is certainly Ω(n).

Both methods [17, 21] focus on the top-k dominating
query, where k is arbitrary. Update operations can be ap-
plied in both cases with a linear time cost. However, the
top-k dominating query has to be re-evaluated in both cases.
Finally, both prove the efficiency of their approach experi-
mentally (extensive experiments can be found in [21]).

As a closing remark, we should further note that top-k
dominating queries have also been studied in the context
of uncertain databases [14, 22], data streams [13], spatial
objects [19] and vertically decomposed data [18].

Motivation, Contribution & Assumptions. This work
is the first attempt to provide efficient algorithms for top-k
dominating query processing in the semi-dynamic and the
fully-dynamic cases, which are the most interesting and chal-
lenging. In contrast to previously proposed techniques, we
are interested in algorithms with non-trivial performance
guarantees.

One may think that perhaps a direct application of the
divide-and-conquer algorithmic technique could provide an
efficient solution at least for the static top-k dominating
query, where given the dataset S we are asking for the k
points with the highest domination scores. The problem
with this approach is that the top-k dominating query is
a non-decomposable query, because the score of each point
depends on the coordinates of all the other points in S . A
query q in S is decomposable [2] if its output can be com-
puted accurately by executing q in a partition of S . The
non-decomposability of top-k dominating queries prohibits
us from using standard divide-and-conquer techniques and
thus increases the problem difficulty significantly.

This paper concentrates on 2-dimensional data for two
reasons. First, there is no previous work with asymptotic
guarantees and as a result, this paper provides a deeper un-
derstanding of the complexity of the problem. The second,
more practical, reason is that many applications are inher-
ently 2-dimensional. This is because, one often faces the
situation of having to strike a balance between a pair of
naturally contradicting factors (e.g., price vs quality, space
vs query time). Finally, our algorithms are based on a novel
restricted dynamization of layers of minima [4]. This is of
independent interest in case we only need to access the first
k layers of minima.

Since static datasets are being handled rarely by modern
applications, we consider the problem in the semi-dynamic
case (insertions only), where logarithmic complexities are
attained. In the fully-dynamic case, we attain polynomial
complexities for update operations (insertions and deletions).
In many applications, insertions occur much more frequently
than deletions. As a practical example, consider an applica-

1The BBS algorithm is based on the use of R-trees which
require linear space.

tion that retrieves the top-k dominating tweets (i.e., Twitter
messages) according to some user-selected attributes (e.g.
number of retweets, number of the author’s followers etc.).
In this application, the semi-dynamic algorithms would suf-
fice since tweets very rarely are deleted [1]. Other possi-
ble examples of datasets where insertions take place signifi-
cantly more frequently than deletions include the measure-
ments collected by a scientific instrument or the full-year
sales log of a retail company. In conclusion, applications
where deletions occur orders of magnitude less frequently
than insertions can benefit from the use of the semi-dynamic
algorithms and the associated data structures.

For each of the semi-dynamic and fully dynamic settings
we provide two solutions (k-list and 1-list) that provide a
trade-off between update and query time. All our algorithms
use linear space and work well under the realistic assump-
tion that k is a fixed user-defined parameter which is small
compared to the size n of the dataset (i.e., k << n). Table
1 provides a detailed overview of our results.

Roadmap. The rest of the paper is organized as follows.
Section 2 presents some necessary concepts related to the
discussion that follows. Our contribution for the semi-dy-
namic case is detailed in Section 3, whereas the study of
the fully-dynamic case is offered in Section 4. In addition
to the results for the RAM computation model, in Section
5 we provide an adaptation to the word-RAM model, ob-
taining better asymptotic bounds. Concluding remarks and
directions for further research are offered in Section 6.

2. PRELIMINARIES
In this section, we discuss the basic concepts that are used

throughout the rest of this work. First of all, we note that
we augment the definition of each point pi to also include
its score si = s(pi), so pi becomes a triple of the form pi =
(xi, yi, si).

In the following two sections, we describe the concept of
layers of minima and we cite a previous result in the form
of a lemma, that will be used in the query phase of some of
our proposed solutions.

2.1 Two-dimensional Layers of Minima
The algorithms presented in the remaining sections are

based on the concept of layers of minima. In order to com-

Figure 2: The first layer of minima (skyline).

227



Table 1: SD stands for Semi-Dynamic, where only insertions are allowed, whereas FD stands for Fully-
Dynamic where both insertions and deletions are supported. Worst-case times are marked with ”w.c.” while
amortized times are marked with ”am.”

Algorithm Space Preprocessing Cost (worst-case) Query Cost (worst-case) Update Cost

SD/k-list O(n) O(n log n) O(k) O(log2 n+ k2 log n) w.c.
SD/1-list O(n) O(n log n) O(k log n) O(log2 n+ k log n) w.c.
FD/k-list O(n) O(n log n) O(k) O((k +

√
n)k log n) am.

FD/1-list O(n) O(n log n) O(k log n) O((k +
√
n) log n) am.

pute the layers of minima of a dataset S we perform a skyline
query on S , remove the answer set of points from S and re-
peat the process until no points remain in S . The set that
results from the i-th skyline query forms the i-th layer of
minima. By collecting all the layers, we form the layers of
minima of S . A concise definition of the layers of minima
follows:

Definition 6. Let M1 be the set of all minima points in
S. The first layer of minima of S is equal to the set M1 and
the second layer of minima M2 of S is equal to the set of
all minima points in S −M1. The j-th layer of minima of
S is accordingly defined to be equal to the set of all minima
points in S−(⋃j−1

i=1
Mi). The sequence < M1,M2, . . . ,Mλ >

where S =
⋃λ

i=1
Mi is the layers of minima of S.

Figure 2 depicts a layer of minima on the plane. Any point
located in the shadowed region is dominated by at least one
point in the layer of minima.

Blunck and Vahrenhold [4] proposed in-place algorithms
that use O(1) extra space and compute the layers of minima
of a dataset of 2-dimensional points in O(n log n) time.

2.2 Reporting Lemma
Finally, we use the following lemma from [10]:

Lemma 1. Let A1, . . . , Am be arrays of values from a to-
tally ordered set such that each array is sorted. Given an
integer L ≤ ∑m

i=1 |Ai|, there is a comparison-based algo-
rithm that finds in O(m) time a value τ that is greater than
at least L but at most O(L) values in A1 ∪ . . . ∪ Am.

Lemma 1 can be adjusted to report a value τ that is
smaller than at least L but at most O(L) values in A1 ∪
. . . ∪ Am. This lemma forms the basis in allowing us to ef-
ficiently find the k-th point with the highest score out of a
collection of ordered lists and is used in Sections 3 and 4.

3. THE SEMI-DYNAMIC CASE
In this section, we propose a solution to the semi-dynamic

top-k dominating query problem and describe in detail the
data structures and algorithms we use to achieve it. Let S
be a set of n 2-dimensional points. Recall that the semi-
dynamic top-k dominating query aims at reporting the k
points in S with the highest dominance score where k is a
user-defined parameter that is fixed at the time when the
data structure is constructed. Furthermore, S is subject to
insertions of new points. This poses an additional challenge
since after inserting a new point, it is possible that the dom-
inance score of many (or even all) the points in S must be
updated. Individually updating the score of each such point
would be computationally prohibitive so we follow a differ-
ent approach and only update lazily the score of groups of
points that are candidates for being in the final answer.

We first note that when a point p dominates another point
q, p’s score is strictly greater than the score of q:

∀p, q ∈ S , p ≺ q ⇒ sp > sq (2)

Organizing S into layers of minima offers an intuitive way
of using the above property to eliminate points that are not
possible to belong in the final answer. As an example, con-
sider a top-1 dominating query in S . The point with the
highest dominance score is found in the first layer of min-
ima of S since all the points in the second and subsequent
layers are dominated by at least one other point. Similarly,
in a top-2 dominating query, the first point is found in the
first layer and the second point is found in either the first or
the second layer. In general, the following lemma holds for
the top-k dominating points:

Lemma 2. The top-k dominating points of S are located
in the first k layers of minima of S.

Proof. If S has only k or less layers of minima, the
lemma obviously holds. Otherwise, assume that a point p
belongs to the i-th layer of minima, where i ≥ k + 1. There
are at least i−1 points dominating p and due to Equation 2
all of them have a larger score than p. As a result, p is not
included in the top-k dominating points of S .

A direct consequence of Lemma 2 is that, when inserting
a new point p, we only need to update the scores of some
points in the first k layers of minima. However, some of the
layers may have many points and thus individually updating
the score of these points would result in a high update cost.
To avoid this, after inserting a new point p in S , we find only
the first and last point that dominate p in each layer. This
pair of points denotes an interval that marks all the points
in each layer whose score must be updated. Consequently,
by examining only O(1) points in each layer the total update
cost is reduced.

Lastly, an issue brought up by the use of layers of minima
is that the insertion of a new point p may create cascading
changes to the structure of the layers. In particular, by
inserting p into S , p must also be inserted in one of the
layers of S . Let Li be that layer. The insertion of p in Li

may cause some of its points to be discarded as a result of
them being dominated by p. This group of points must be
inserted into the next layer Li+1 possibly discarding some of
the points in Li+1 in the process. Due to Lemma 2 and the
fact that only insertions are allowed, this chain of operations
only has to be performed up until the k-th layer.

To achieve efficient insertion, we model each layer as an
(a, b)-tree. In the following, we provide a detailed overview
of the data structure and the operations it supports and
then we describe the update and query algorithms for the
semi-dynamic top-k dominating query.
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Figure 3: An (a, b)-tree node (k = 2). The coor-
dinates in node v are designated by the respective
representative points pi, 1 ≤ i ≤ b− 1, where pi is the
leftmost point of the i+ 1-th child of v.

3.1 The Augmented (a, b)-Tree
We model each layer of minima using an augmented leaf-

oriented (a, b)-tree. Let L be a layer of minima containing m
points, i.e., p1, p2, . . . pm where pi = (xi, yi, si), 1 ≤ i ≤ m.
Since the points in L are totally ordered on each dimension2,
we can use a single (a, b)-tree to search among the points in
both dimensions. To achieve that, each inner node stores
representative keys for both dimensions, instead of storing
keys for only one of them. We use hv to denote the height
of a node v in the tree.

For each node v of the tree with hv ≥ logb k we maintain a
field add(v). The field’s contents denote a score that has to
be added to the score of all the points in v’s subtree. Finally,
each node v with hv ≥ logb k is augmented with a k-sized
list top(v) which stores the k points with the highest score
in v’s subtree. An example of an augmented (a, b)-tree node
with height > logb k for k = 2 can be seen in Figure 3.

For the remainder of this work we assume that b = O(1)
since we present main memory algorithms. The following
lemma provides the tree’s total space cost.

Lemma 3. The total space cost of an augmented (a, b)-
tree storing m points is O(m).

Proof. All the nodes with height lower than logb k only
store O(1) additional information so their total space cost
is O(m). There are O(m/k) nodes with height higher than
or equal to logb k each augmented with a k-sized list. The
total space cost of this part of the data structure is O(m/k)×
O(k) = O(m). As a result, the total space cost of the entire
data structure is O(m).

The following lemma provides the time complexity for the
construction of an augmented (a, b)-tree.

Lemma 4. The construction of an augmented (a, b)-tree
over m points that are sorted according to their dimensions
can be carried out in O(m log k) time, where k is a user-
defined parameter.

Proof. In order to construct the leaf-oriented augmented
(a, b)-tree we follow a bottom-up approach and assume that
the input points are sorted according to their dimensions.
The augmented (a, b)-tree is constructed in a similar way
to a typical (a, b)-tree with an additional issue. At first,
the nodes of the augmented (a, b)-tree are constructed by
scanning the input points, creating the leaves and then re-
cursively creating the inner nodes from bottom to top. Each

2For two points pa = (xa, ya, sa) and pb = (xb, yb, sb) in L if
xa > xb then yb > ya

node is only visited once so the procedure up to this point
requires O(m) time.

The last step is to compute the top lists for all nodes with
hv ≥ logb k. For each node v with hv > logb k, the top(v)
list must be computed from the top lists of v’s children.
By simultaneously traversing the O(b) = O(1) top lists of
v’s children we can compute top(v) in O(k) time. There
are O(m/k) nodes with hv > logb k and since this process
is repeated for every node, the time required is O(m/k) ×
O(k) = O(m).

Finally, we compute the top lists for each node v with
hv = logb k. Since v’s children are not augmented with top
lists we follow a different approach. We sort all the points
found in v’s subtree3 in O(k log k) time and store them in
top(v). There are O(m/k) nodes with hv = logb k and thus
this step requires O(m log k) total time.

Thus, the total time required for the construction of the
(a, b)-tree is O(m log k).

3.1.1 Operations

In this section, we formally describe all the operations sup-
ported by the augmented (a, b)-tree. More specifically, the
augmented (a, b)-tree supports searching for a point, insert-
ing a new point, or deleting an existing one. Furthermore,
splits and concatenations between two different (a, b)-trees
are also supported.

The search operation search(T, pz) locates in the aug-
mented (a, b)-tree T a specific point pz and can be performed
with respect to either dimension of pz by using the appro-
priate set of keys. Let v be a node of T , x1, x2, . . . , xb−1 be
the x-representative keys of v’s children and y1, y2, . . . , yb−1

be the y-representative keys of v’s children. In order to
search for a point pz = (xz, yz, sz) in T , we begin at the
root and search down until we reach a leaf. If the search is
performed on the x dimension, we select the i-th child of v
such that xi−1 < xz ≤ xi. Otherwise, if the search is per-
formed on the y dimension, we select the i-th child of v such
that yi−1 > yz ≥ yi. Since T is height-balanced, a search
operation requires O(b logm) = O(logm) time.

The rest of the operations are based on node splits and
merges. For reasons of clarity, we first describe how node
splits and node merges are handled on the augmented (a, b)-
tree in relation to typical (a, b)-trees.

The node split operation node_split(v, v1, v2) is executed
similarly to the split operation of typical (a, b)-trees with a
few modifications. More specifically, before dividing a node
v into two nodes v1 and v2 we check the contents of add(v).
If add(v) stores a value different than 0, we add the contents
of add(v) to the add variable of v’s children and set add(v)
to 0. Afterwards, v is divided into v1 and v2 and the keys for
the x and y dimensions of v are “divided”between v1 and v2
in O(b) = O(1) time. After sharing the keys, top(v1) for v1
and top(v2) for v2 must be recomputed. If hv > logb k we can
compute top(v1) and top(v2) in O(k) time by simultaneously
traversing the O(b) = O(1) top lists of v1’s and v2’s children
respectively. As a result, the split operation requires O(k)
time in this case.

If hv = logb k then the children of v1 and v2 are not aug-
mented with top lists and thus the computation of top(v1)
and top(v2) cannot be performed using the above procedure.
Each of v1 and v2 have up to k points in their subtree since
their height is equal to logb k. To compute the top lists for

3There are up to k points in v’s subtree since hv = logb k
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v1 and v2 we sort all the points in v1’s and v2’s subtree in
O(k log k) time and store the result in top(v1) and top(v2)
respectively. This results in the split operation requiring
O(k log k) time in this case. Finally, if hv < logb k then
the split operation requires O(b) = O(1) time since v is not
augmented with top(v).

For the merge operation node_merge(v1, v2, v) we follow a
similar procedure to the merge operation of standard (a, b)-
trees. More specifically, before merging two nodes v1 and
v2 into v we check the contents of add(v1) and add(v2). If
add(v1) stores a value different than 0 we add the contents of
add(v1) to v1’s children and set add(v1) to 0. We follow the
same procedure for add(v2). Then, v1 and v2 are merged into
v and the keys for the x and y dimensions of v are derived
from the keys of v1 and v2 in O(b) = O(1) time. After
merging the keys, top(v) must be recomputed. To achieve
this, if hv > logb k we simultaneously traverse top(v1) and
top(v2) and store the k points with the highest score in top(v)
in O(k) time. If hv = logb k we follow a similar approach to
that of a node split and first compute top(v1) and top(v2) by
sorting all the points in v1’s and v2’s subtree respectively.
Then by simultaneously traversing top(v1) and top(v2) we
store the k points with the highest score in top(v). As in the
split operation, if hv < logb k the merge operation requires
O(b) = O(1) time due to the fact that v is not augmented
with top(v).

Operation insert(T, p), inserts a point p in T . The point
is inserted as a leaf in T and the tree is rebalanced using
node splits. Since there are O(logm) node splits that cost
O(k) time and O(1) splits that cost O(k log k) time, the time
cost to insert a point is O(k logm).

Operation delete(T, p), removes a point p from T . The
leaf corresponding to the point is removed and the resulting
tree is rebalanced. There are O(logm) merges that costO(k)
time, O(1) merges that cost O(k log k) time and a possible
terminating split and as a result the time cost to delete a
point is O(k logm).

Using the node split and node merge operations as build-
ing blocks, we can define two additional operations on the
augmented (a, b)-trees: Tree Concatenation and Tree Split.
For both the operations, we use the definition and algorithms
provided in [15].

Operation concat(T1, T2, T3), concatenates two augment-
ed (a, b)-trees T1 and T2 into a third augmented (a, b)-tree
T3. This operation assumes that max {T1} ≤ min {T2}
where max {Ti} is the largest x coordinate of all the points
in Ti and min {Ti} is smallest x coordinate of all the points
in Ti (a similarly defined order is implied for the y dimension
as well). In a tree concatenation one merge operation and
up to O(logmax(|T1|, |T2|)) split operations are performed.
Since there are O(1) merge and split operations that cost
O(k log k) time and the rest of the merge and split opera-
tions cost O(k) time, a tree concatenation operation requires
O(k logmax (|T1| , |T2|)) time. Before initiating this opera-
tion, all add variables in the affected path are flashed to
their children (get a zero value).

Lastly, operation split(T1, val, T2, T3), splits an augment-
ed (a, b)-tree T1 into two augmented (a, b)-trees T2 and T3 at
element val with respect to the one of the two dimensions,
so that T2 ← {z ∈ T1; z ≤ val} and T3 ← {z ∈ T1; z > val}.
In a tree split operation the starting (a, b)-tree is first split
into two forests of trees. Then, the roots of the trees in
each forest are merged with each other recursively. Split-

ting the tree into two forests requires O(log |T1|) time and
since there are O(1) merge operations that cost O(k log k)
time and O(log |T1|) merges for both forests, each requir-
ing O(k) time, a tree split operation requires O(k log |T1|)
time. Similarly to concat, before initiating this operation,
all add variables in the affected path are flashed to their
children. The following theorem summarizes the discussion
on the (a, b)-tree.

Theorem 1. Given a parameter k and m 2-dimensional
points pi = (xi, yi, si) where 1 ≤ i ≤ m, we can construct in
O(m log k) time an augmented (a, b)-tree T1 that uses O(m)
space. The construction time assumes that the points are
sorted according to their dimensions. The tree T1 supports
the following operations:

• search(T1, p) in O(logm) time,

• insert(T, p) and delete(T, p) in O(k logm) time,

• split(T1, val, T2, T3) in O(k logm) time and

• concat(T1, T4, T5) in O(k logmax (|T1| , |T4|)) time (we
note that T4 is an augmented (a, b)-tree such that the
condition max{T1} ≤ min{T4} holds).

3.2 Insertion
Let p = (xp, yp, sp) ∈ R be a point to be inserted into S .

Furthermore, let L1, . . . , Lk be the first k layers of minima
of S . Before inserting p we compute its dominance score
using the dynamic range counting data structure proposed
in [8]4. We also insert p in the dynamic range counting data
structure in order to support score computation for future
insertions. The data structure supports queries and updates
in O(log2 n) time and O(n) space.

Next, we find if p must be inserted in one of L1, . . . , Lk by
searching each of the k respective (a, b)-trees for p. Starting
from L1 and iterating towards Lk, we search each tree for
p both in the x and in the y dimension and retrieve the
predecessor of p in the x dimension and the predecessor of p
in the y dimension. If neither of those two points dominate
p, we insert p in the tree’s respective layer and stop the
iteration. Otherwise, the iteration may end without any
layer satisfying the above condition. In that case, p does
not become a member of any of the k first layers.

If we do not insert p in any of the k first layers then we
only have to update the scores of some points in each of
L1, . . . , Lk. Otherwise, assume that p is inserted into Li

where 1 ≤ i ≤ k. Then we have to update scores of points
in L1, . . . , Li−1 and alter the structure of Li, . . . , Lk (Figure
4). We first describe how to handle score updating on a
layer and afterwards how to alter a layer’s structure using
tree splits and tree concatenations.

To update the score of the points in layer L, we perform
this procedure. We search the augmented (a, b)-tree of L
for xp and yp. All points whose score must be updated lie
to the left of xp and to the right of yp. Since updating the
score of each point would be time consuming, we only find
the two boundary points that define the above interval and
mark the subtrees between them. For example, in Figure
4 the insertion of p causes a score increment for the points

4The data structure is built only once as a preprocessing
step before the first insertion
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Figure 4: Insertion of a new point p.
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b in layer Li−2 and the points pi−1
t to pi−1

b in
layer Li−1.

We start from height = logb k+1 of the two search paths
and move up towards the root, adding +1 to add(v) if v is
a node hanging immediately to the left of the search path
for xp or immediately to the right of the search path for yp.
Using this method we denote that the score of all the points
in v’s subtree must be incremented by one, without actually
visiting the points themselves. Adding +1 to add(v) does
not change top(v) since we increment the score of all the
points in v’s subtree and thus their relative order according
to score remains unchanged. For each node v′ on the search
paths or hanging on the search paths with hv′ = logb k,
instead of incrementing add(v′), we exhaustively check the
points in the subtree of v′ and individually update their score
based on if they are dominating p. Finally, we sort the points
in the subtree of v′ based on the updated scores and store
the result in top(v′). For each node with height < logb k
no action is necessary since all the points in its subtree can
be found in the top list of its ancestor with height = logb k.
Thus, at the end, we have indirectly marked all the points
between yp and xp for score increment.

Finally, we update the top lists of the nodes in the search
path as a result of modifying the add fields of their children.
Starting from height = logb k + 1 and moving towards the
root, we recursively compute the top list of each node v by
simultaneously merging the top lists of its children. While
merging the lists, we also add the contents of each node’s
add field to the score of the node’s top list points so as to take
into account the score changes caused by the insertion of p.
At the end, the top list found in the root of the (a, b)-tree
will have the correct top-k points for that layer of minima.

Indirectly marking all the points between yp and xp for
score increment requires O(log n + k log k) total time while
merging the top-k lists of a node’s children requires O(bk) =
O(k) time and as a result the total cost for all the nodes in
the search paths of the tree is O(bk log n) = O(k log n) time.
Thus, the total time required to update scores in a layer is
O(k log n).

In the second case, the point p may have to be inserted in
layer of minima Li. Since inserting or deleting points from
the layer of minima one-by-one would be time consuming,
we insert the point and remove the now-dominated points

Li

Li+1

·
·
·

p = (xp, yp)

T

Insertion of p

·
·
·

p = (xp, yp)

T2

T1

1) Split(T, yp, T1, T2)

·
·
·

p = (xp, yp)

T3
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·
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·
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·

p
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·
·
·

p

Tnew

Tc

Tc is now the input to Li+1

Figure 5: Example of layer restructuring.

by executing a series of tree splits and tree concatenations.
First, we find the interval of points dominated by p as pre-
viously by querying the layer of minima tree T for xp and
yp. Then we perform the following sequence of operations
in order:

1. split(T, yp, T1, T2),

2. split(T2, xp, T3, Tc),

3. insert(T3, p) and

4. concat(T3, T1, Tnew).

Recall that all add variables of nodes on the affected paths
for operations split and concat are flashed to their chil-
dren, that is in all such paths the add variables have zero
value. The effects of this sequence of operations on the lay-
ers of minima can be seen in Figure 5. The layer of minima
tree Tnew for Li now correctly has p inserted and every point
previously in Li that is now dominated by p (i.e., Tc) has
been discarded.

If Tc is empty, the iteration stops. Otherwise, Tc is propa-
gated to the next layer of minima Li+1 where we repeat the
above procedure with Tc as the input. Since Tc may have
more than one points, instead of inserting them one-by-one
we perform a tree concatenation at step (3) instead of an
insertion. Finally, the insertion spot of Tc in Li+1 can be
found by querying the tree of Li+1 for p′ = (x′

p, y
′

p) where
x′

p is the x coordinate of the leftmost point in Tc and y′

p is
the y coordinate of the rightmost point in Tc.
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In Figure 4, the insertion of p causes the points pit to pib to
be discarded from layer Li. These points are propagated to
layer Li+1 and will, in turn, discard the points pi+1

t to pi+1
b

from Li+1. This procedure is repeated until the k-th layer
of minima.

In each layer of minima we perform a series of O(1) splits
and concatenations. Since each tree split or concatenation
requires O(log n) time, the total time required to alter a
layer’s structure given a point or an (a, b)-tree as an input
is O(k log n).

As described in the beginning of the section, after an inser-
tion a layer must either update the score of some of its points
or alter its structure. Since either case requires O(k log n)
time, the time cost of manipulating the k first layers after
an insertion is O(k2 log n). Adding the cost of computing
the score of the inserted point and inserting the point in the
dynamic range counting data structure, the total insertion
cost is O(log2 n+ k2 log n) time.

3.3 Query
To find the top-k dominating points of S , we apply Lemma

1 for L = k on all the top-k lists found in the root of each
(a, b)-tree of each of the k first layers of minima. Let I be the
list returned by Lemma 1. By selecting the (|I | − k + 1)-th
order statistic5 of I we obtain the dominance score τ of the
k-th top dominating point. Finally, we traverse all the top-k
lists we previously collected and report all points with score
larger than τ . Since the lists are sorted according to their
score, we can stop traversing a list when a point with score
lower than τ has been found. Applying Lemma 1 requires
O(k) time while finding the (|I | − k + 1)-th order statistic
of I requires O(I) = O(k) time. Finally, traversing all lists
requires O(k) time in total. By combining all of the above,
we achieve O(k) query time.

3.4 Reducing the Update Cost
We can reduce the algorithm’s update cost by shrinking

the size of the top list in each node of each (a, b)-tree. In
particular, we store a top list in each node of the (a, b)-tree
but instead of storing k points in each list we only store 1.
This removes the cost of computing top lists during each
node split or merge since each top list can be computed
using O(b) = O(1) comparisons. As a result, node splits
and merges cost O(1) time and updating the score of points
in a layer or altering its structure costs O(log n) time. This
brings the total insertion cost down to O(log2 n + k log n)
time.

This change also implies that at the time of a query, each
(a, b)-tree’s root only stores 1 element with the highest score
in the layer and as a result we can no longer directly apply
Lemma 1. To overcome this we build a Strict Fibonacci
Heap [6] by inserting each point with the highest score from
each layer. Strict Fibonacci Heaps support insertions in
O(1) worst-case time and deletions of the maximum key
in O(log n) worst-case time. By querying the heap we are
able to find (and delete) the top-1 dominating point. After
deleting a point p (belonging in a layer L) from the heap,
we have to replace it by the point of L with the next highest
score. This point can be found by querying L’s tree for p.
Due to the definition of top lists, the point with the next

5The i-th order statistic of a set of n elements is the i-th
smallest element in the set

highest score in L is guaranteed to be amongst the O(b)
top lists of each node in the search path of p. We insert all
O(b log n) = O(log n) such points in the heap and repeat the
process until k points have been deleted from the heap. In
order to not have any duplicate points in the heap, we also
employ a marking process.

Deleting a point from the heap requires O(log n) time,
while adding O(log n) points also requires O(log n) time.
Since there aren’t any duplicate points in the heap and the
process is repeated k times, the query phase of the algorithm
requires O(k log n) time.

Lastly, we review the preprocessing cost in both semi-
dynamic algorithms. In the case of the k-list augmented
(a, b)-tree the construction time is equal to O(n log n). To
achieve this, we build Chazelle’s static range counting data
structure [8] in O(n log n) time and count the score of each
point using the method we described in Section 1. We also
build Chazelle’s dynamic range counting data structure [8]
which is required by our insertion algorithm in O(n log n)
time. The layers of minima can be computed in O(n log n)
time [4]. A subsequent scan of the output provides us with
the points of each layer of minima in sorted order and as a re-
sult we can build the (a, b)-trees in O(n log k) time (Lemma
4). Therefore, the construction time is equal to O(n log n).
In the case of the 1-list augmented (a, b)-tree the only dif-
ference is the construction cost of the (a, b)-trees which is
reduced to O(n) since each node in each (a, b)-tree is aug-
mented with a top list of size 1. The discussion of this section
can be summarized in the following theorem:

Theorem 2. Given a set of n 2-dimensional points, we
can build a data structure that supports insertions of new
points in O(log2 n+k2 log n) worst-case time and top-k dom-
inating queries in O(k) worst-case time. Alternatively, we
can build a data structure that supports insertions of new
points in O(log2 n+k log n) worst-case time and top-k dom-
inating queries in O(k log n) worst-case time. Both data
structures are built in O(n log n) time and use O(n) space.

4. THE FULLY-DYNAMIC CASE
The algorithms presented so far only support insertions

due to the fact that all operations could be restricted in the
first k layers of minima of a dataset S . However, assume the
deletion of a point p in layer Lk. Then we would have to
store and manipulate more than k layers since it is possible
that some points from Lk+1 might have to be inserted in Lk

as a result of them not being dominated by any other point
in Lk apart from p. This brings a cascading of restructuring
operations since some of the points in Lk+2 might have to
be inserted in Lk+1. Thus, a deletion operation may reach
the last layer of S in the worst-case. It should be noted
that a deletion of a point may not always result in layer
restructuring. Consider the example in Figure 6. Deleting
pd will cause the layers to be restructured since pf is not
dominated by any other point. However, deleting pe will
not cause any changes to the layers’ structure since both pg
and ph are dominated by at least one other point in pe’s
layer.

A deletion of an existing point can be defined in a simi-
lar way to the insertion of a point with each layer requiring
either score updating or restructuring. To perform score up-
dating we follow the same steps as those discussed in Section
3.2 but instead of adding +1 to the add field of a node, we
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add −1. After deleting a point p = (xp, yp) from a layer Li,
we query Li+1 to find all the points (if any) that must be
inserted in Li due to the deletion of p. The query point in
Li+1 is p′ = (x′

p, y
′

p) where x′

p is the successor of xp in Li

and y′

p is the successor of yp in Li.
Our algorithms for the semi-dynamic setting can be ex-

tended to the fully dynamic setting through the use of the
global rebuilding technique [16]. More specifically in an up-
date operation, instead of manipulating only the first k lay-
ers we perform score updates and layer restructuring opera-
tions in the first k +

√
n layers. Since we stop restructuring

operations on a predefined point, after the i-th deletion the
(k +

√
n− i+ 1)-th layer will have become invalid. As a re-

sult, after
√
n deletions, only the first k layers remain valid

and at that point we rebuild the entire layers of minima data
structure. We also recompute the score of each point and
reconstruct the (a, b)-trees.

The following theorem analyzes the cost of the global re-
building operation.

Theorem 3. The global rebuilding cost of the data struc-
tures is O(n log n) time and O(n) space.

Proof. The result is derived from Theorem 2 and the
discussion prior to it. Note that the dynamic range counting
data structure is only built once (in the preprocessing phase)
and it is not built again in any global rebuilding process
applied to the data structures.

We perform the global rebuilding step once in every
√
n

updates. An update up to the (k +
√
n)-th layer, requires

O(log2 n+ (k +
√
n)k log n) time. We perform

√
n such up-

dates and then we globally rebuild the data structures in
O(n log n) time so the amortized time for an update over√
n updates is O(

√
n log n + (k +

√
n)k log n) = O((k +√

n)k log n).
The global rebuilding technique can also be applied on the

method of Section 3.4 to obtain a data structure that han-
dles insertions and deletions with reduced update cost. The
results in this section are outlined in the following theorem:

Theorem 4. Given a set of n 2-dimensional points, we
can support updates in O((k +

√
n)k log n) amortized time

and top-k dominating queries in O(k) time. Alternatively,
we are able to support insertions and deletions in O((k +√
n) log n) amortized time and top-k dominating queries in

pd

pe

pf

pg

ph

Figure 6: Deletion of existing points.

O(k logn) time. Both data structures are constructed in
O(n log n) time and use O(n) space.

5. RESULTS FOR WORD-RAM
In the previous results we have focused on the RAMmodel

of computation. We can obtain slightly faster update al-
gorithms for the semi-dynamic algorithm we presented by
extending our results to the word-RAM model of computa-
tion. In the unit-cost word-RAM model [11], the memory
is represented as an array of infinite cells (words) with each
word storing w bits. The input elements are considered to
be integers from the universe [U ]2 = {0, . . . , 2w−1}2 so that
any word can be addressed by any other word (through the
use of a pointer).

The model supports random access of words as well as
comparisons, arithmetic, shift and bitwise operations be-
tween words in constant time. In this work, we make the
assumption that w = Θ(log n) where n is the input’s dataset
size. This fact permits an input point or an index to the
data structure to fit in a single word. The space cost under
the word-RAM model is defined with respect to the num-
ber of words occupied; while the query and update times
with respect to the number of word accesses and compar-
isons or operations needed to answer a query or perform
an update respectively. The word-RAM model is a realistic
model of computation, with integers of bounded precision,
that closely emulates the mechanics of many programming
languages [7].

To obtain our results, we use the dynamic range counting
data structure of He andMunro [12] which, for word size w =
Ω(log n), supports queries in O(( log n

log log n
)2) worst-case time,

insertions and deletions in O(( log n

log log n
)2) amortized time and

uses O(n) space.
The construction cost of our data structure is equal to

the cost of constructing the dynamic range counting data
structure, computing the score of each point, computing the
layers of minima and constructing the (a, b)-trees. To build
the dynamic range counting data structure we insert each
point in the data structure for a total of O(n( log n

log log n
)2)

amortized time. The score of all points can be computed
using the data structure in O(n( log n

log log n
)2) total amortized

time. The layers of minima can be built in O(n log n) time.
Lastly, we can build the (a, b)-trees in O(n log k) time us-

ing Lemma 4. Apart from the dynamic range counting data
structure, the insertion and query algorithms remain the
same. Combining the above observations we obtain the fol-
lowing result.

Theorem 5. Given a set of n 2-dimensional points in the
word-RAM model with word size w = Θ(logn), we can build
a data structure that supports insertions of new points in
O( log n

log log n
)2+k2 log n) amortized time and top-k dominating

queries in O(k) worst-case time. Alternatively, we can build
a data structure that supports insertions of new points in
O( log n

log log n
)2 + k log n) amortized time and top-k dominating

queries in O(k log n) worst-case time. Both data structures
are constructed in O(n( log n

log log n
)2) amortized time and use

O(n) space.

6. CONCLUSIONS AND FUTURE WORK
In this work, we have developed for the first time, algo-

rithms for answering semi-dynamic and fully-dynamic top-k
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dominating queries in the 2-dimensional space, with non-
trivial performance guarantees. In our solutions, k is a pa-
rameter that is considered fixed between queries.

The algorithms we have studied in this paper constitute
the first attempt to process top-k dominating queries offer-
ing asymptotic performance guarantees for both their time
and space cost. Existing work in the area is based com-
pletely on heuristic solutions built on top of access methods
that work well in practice (e.g., R-trees).

Since object ranking in databases is a fundamental oper-
ation with many applications, we highlight some interesting
research directions for future work in the area:

• An interesting and challenging problem is to lower the
update cost for the fully-dynamic algorithms, by avoid-
ing the global rebuilding technique.

• A second direction is to provide efficient top-k domi-
nating query processing for any number of dimensions.

• A third direction is to design efficient algorithms for
the external memory model. A baseline approach could
be based on the successive computation of the k first
layers of minima using iterative skyline computation.
However, the goal is to offer more efficient algorithms
with better performance bounds.

• Finally, it is worth examining top-k dominating queries
under the streaming model of computation, by offering
approximate results as well as accuracy vs performance
trade-offs.
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