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Abstract

A desirable feature in spatio-temporal databases is the ability to answer future queries, based on the current data
characteristics (reference position and velocity vector). Given a moving query and a set of moving objects, a
future query asks for the set of objects that satisfy the query in a given time interval. The difficulty in such a case is
that both the query and the data objects change positions continuously, and therefore we can not rely on a given
fixed reference position to determine the answer. Existing techniques are either based on sampling, or on
repetitive application of time-parameterized queries in order to provide the answer. In this paper we develop an
efficient method in order to process nearest-neighbor queries in moving-object databases. The basic advantage of
the proposed approach is that only one query is issued per time interval. The time-parameterized R-tree structure
is used to index the moving objects. An extensive performance evaluation, based on CPU and I/O time, shows that
significant improvements are achieved compared to existing techniques.
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1. Introduction

Spatio-temporal database systems aim at combining the spatial and temporal
characteristics of data. There are many applications that benefit from efficient processing
of spatio-temporal queries such as: mobile communication systems, traffic control systems
(e.g., air-traffic monitoring), geographical information systems, multimedia applications.
The common basis of the above applications is the requirement to handle both the space
and time characteristics of the underlying data [22], [30], [31]. These applications pose
high requirements concerning the data and the operations that need to be supported, and
therefore new techniques and tools are needed towards increased processing efficiency.

Many research efforts have focused on indexing schemes and efficient processing
techniques for moving-object datasets [1], [5], [11], [21], [24], [29]. A moving dataset is
composed of objects whose positions change with respect to time (e.g., moving vehicles).
Examples of basic queries that could be posed to such a dataset include:

e Window query: given a rectangle R that changes position and size with respect to time,
determine the objects that are covered by R from time point ¢ to ¢,.
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® Nearest-neighbor query: given a moving point P determine the k nearest-neighbors of

P within the time interval [, 1,].

e Join query: given two moving datasets S; and S,, determine the pairs of objects (sy,s,)
with s; €S, and s, €S, such that s; and s, overlap at some point in [, ?,].

Queries that require an answer for a specific time point (time-slice queries) are special
cases of the above examples, and generally are more easily processed. Queries that must be
evaluated for a time interval [t,,7,] are characterized as continuous [23], [27]. In some
cases, the query must be evaluated continuously as time advances. The basic characteristic
of continuous queries is that there is a change in the answer at specific time points, which
must be identified in order to produce correct results.

Among the plethora of spatio-temporal queries we focus on k nearest-neighbors queries
(NN for short). Existing methods are either computationally intensive performing
repetitive queries to the database, or are restrictive with respect to the application settings
(i.e., are applied only for static datasets, or are applicable for special cases that limit the
space dimensionality or the requested number of NNs). The objective of this work is
twofold:

e to study efficient algorithms for NN query processing on moving object datasets,

e to compare the proposed algorithms with existing methods through an extensive
experimental evaluation, by considering several parameters that affect query
processing performance.

The rest of the article is organized as follows: In the next section we give the appropriate
background and related work to keep the paper self-contained. In Section 3, the proposed
approach is studied in detail and the application to TPR-trees is presented. In Section 4, a
performance evaluation of all methods is conducted and the results are interpreted. Finally,
Section 5 concludes and provides ideas for future work in the area.

2. Background
2.1. Organizing moving objects

The research conducted in access methods and query processing techniques for moving-
object databases are generally categorized in the following areas:

e query processing techniques for past positions of objects, where past positions of
moving objects are archived and queried, using multi-version access methods or
specialized access methods for object trajectories [12], [14], [16], [17], [25], [26], [33],

e query processing techniques for present and future positions of objects, where each
moving object is represented as a function of time, giving the ability to determine its
future positions according to the current characteristics of the object movement
(reference position, velocity vector) [1], [8]-[11], [13], [15], [18], [21], [32].
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We focus on the second category, where it is assumed that the dataset consists of moving
point objects, which are organized by means of a time-parameterized R-tree (TPR-tree)
[21]. The TPR-tree is an extension of the well known R*-tree [2], designed to handle
object movement. Objects are organized in such a way that a set of moving objects is
bounded by a moving rectangle, in order to maintain a hierarchical organization of the
underlying dataset. The TPR-tree differs from the R-tree [4] and its variations in several
aspects:

e bounding rectangles in the TPR-tree internal nodes although are conservative, they are
not minimum in general,

e the TPR-tree is efficient for a time interval [¢,, H), where H (horizon) is the time point
which suggests a reorganization, due to extensive overlapping of bounding rectangles,

e all metrics used for insertion, reinsertion and node splitting in TPR-trees are based on
integrals which calculate overlap, enlargement and margin for the time interval [ty, H),

e TPR-trees answer time-parameterized queries (range, NN, joins) for a given time
interval [z,,1,], or for a specific time point.

2.2. Nearest-neighbor queries
Allowing the query and the objects to move, an NN query takes the following forms:

e Given a query point reference position g,,, a query velocity vector q,, a time point 7,
and an integer k, determine the k£ NNs of q at 7, (time-slice NN query).

e Given a query point reference position (, a query velocity vector (,, an integer k and a
time interval [#,, ,), determine the k£ NN of q according to the movement of the query
and the movement of the objects from ¢, to ¢, (continuous or time-interval NN query).

The second query type is more difficult to answer, since it requires knowledge of
specific time points which indicate that there is a change in the answer set (split points).
Figure 1 shows an example database of four moving objects. Assume that the £ = 2

o = N W e 00 ®
T

Figure 1. A query example.
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NNs are requested for the time interval [0,5]. Assume also that the query point is static
(black circle). By observing the movement of the objects with respect to the query, it is
evident that for the time interval [0,2) the NNs of ¢ are b and a, whereas for the time
interval [2,5) the NNs are ¢ and d. In the sequel we briefly describe research results
towards solving NN queries in moving datasets.

Kollios et al. [10] propose a method able to answer NN queries for moving objects in 1D
space. The method is based on the dual transformation where a line segment in the native
space corresponds to a point in the transformed space, and vice-versa. The method
determines the object that comes closer to the query between [z, ,] and not the NNs for
every time instance.

Zheng and Lee [34] proposed a method for computing a single NN (k = 1) of a moving
query, applied to static points indexed by an R-tree. The method is based on Voronoi
diagrams and it seems quite difficult to be extended for other values of k and higher space
dimensions.

In Song and Roussopoulos [23] a method is presented to answer such queries on
moving-query, static-objects cases. Objects are indexed by an R-tree, and sampling is used
to query the R-tree at specific points. However, due to the nature of sampling, the method
may return incorrect results if a split point is missed. A low sampling rate yields more
efficient performance, but increases the probability of incorrect results, whereas a high
sampling rate poses unnecessary computational overhead, but decreases the probability of
incorrect results.

Benetis et al. [3] propose an algorithm capable of answering NN queries and reverse NN
queries in moving-object datasets. The proposed method is restricted in answering only
one NN per query.

In Tao et al. [27] the authors propose an NN query processing algorithm for moving-
query moving-objects, based on the concept of time-parameterized queries. Each query
result is composed of the following components: (i) R, is the current result set of the query,
(i1) T, is the time point in which the result becomes invalid, and (iii) C, the set of objects
that influence the result at time 7. Therefore, by continuously calculating the next set of
objects that will influence the result, we determine the NNs of the query from ¢ to #,. A
TPR-tree index is used to organize the moving objects.

The main drawback of the aforementioned method is that the TPR-tree is searched
several times in order to determine the next object that influences the current result. This
implies additional overhead in CPU and I/O time, which is more severe as the number of
requested NNs increases. In Tao and Papadias [28] the same authors present a method
which is applicable for static datasets, in order to overcome the problems of repetitive NN
queries. By assuming that the dataset is indexed by an R-tree structure, a single query is
performed and therefore each participating tree node is accessed only once. Performance
results demonstrate that NN queries are answered much more efficiently concerning query
response time. However, the proposed techniques can only be applied for static datasets.

Table 1 presents a categorization of NN queries with respect to the characteristics of
queries and datasets. There are four different versions of the problem which are formulated
by considering queries and datasets as static or moving. The table also summarizes the
previously mentioned related work for each problem.
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Table 1. NN queries for different query and data characteristics.

Query Data Related Work

Static Static Conventional techniques
Static Moving Handled by MQMD
Moving Static Roussopoulos et al. [19],

Song and Roussopoulos [23]

Zheng and Lee [34]

Tao and Papadias [28]
Moving Moving Tao et al. [27]

Kollios et al. [10]

Benetis et al. [3]

2.3. Motivation

To the best of the authors knowledge, there is no method based on the TPR-tree to answer
NN queries for moving-query moving-objects other than the repetitive approach proposed
in Tao et al. [27]. Therefore, motivated by the extensive overhead of the existing method
and taking into account that the continuous algorithm reported in Tao and Papadias [28]
can not handle moving-object datasets, we provide efficient methods for NN query
processing for moving-query moving-object databases, with the following characteristics:

e the method is applied for any number of requested NN,

e the method can be applied for any number of space dimensions, since only relative
distances are computed during query processing,

e different tree pruning algorithms may be applied during tree traversal,

e cach tree node is accessed only once, therefore reducing the consumption of system
resources,

e the method not only reports the time points when there is a change in the result, but
also the time points when there is a change in the order of the NNs in the current
result.

3. NN query processing

The challenge is to determine the k NNs of ¢, given a moving query ¢, a query velocity
vector vq and a time interval [£,,7,]. We want to answer such a query, by performing only
one search, thus avoiding posing repetitive queries to the database. The answer to the
query is a set of mutually exclusive time intervals, and a sorted list of object IDs for each
time interval, which are the £ NNs of g for the respective interval.

By assuming that the distance between two points is given by the Euclidean distance,
the distance D, ,(f) between query g and object o as a function of time is given by the
following equation:
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Figure 2. Visualization of the distance between a moving object and a moving query.

Dq,o(t):\/cl'tz—l—cz-t+c3, (1)
where ¢, ¢,, c3 are constants given by:

€= (VOX - qu)2 + (Voy - VQy)z

G = 2- [(ox - qx) : (Vox - qu) + (Oy - Qy) . (Voy - VQy)}
2 2

€3 = (OX - Q,\') + (oy - qy)

vo,, vo, are the velocities of object o, vq,, vq, are the velocities of the query in each
dimension, and (o, 0,), (¢, g,) are the reference positions of the object o and the query ¢
respectively. In the sequel, we assume that the distance is given by (Dq‘o(t))2 in order to
perform simpler calculations.

The movement of an object with respect to the query is visualized by plotting the
function (quo(t))z, as it is illustrated in figure 2. For NN query processing the distance
from the query point contains all the necessary information, since the exact position of the
object is irrelevant. Note that since ¢; > 0 the plot of the function always has the shape of a
“valley’’.

Assume that we have a set of moving objects ¢V and a moving query q. The objects and
the query are represented as points in a multi-dimensional space. Although the proposed
method can be applied to any number of dimensions, the presentation is restricted to 2-D
space for clarity and convenience. Moving queries and objects are characterized by their
reference positions and velocity vectors. Therefore, we have all the necessary information
to define the distance (quo(t))2 for every object o€ (. By visualizing the relative
movement of the objects during [¢,, ] a graphical representation is derived, such as the one
depicted in figure 3.

By inspecting figure 3 we obtain the £ NN of the moving query during the time interval
[£;,t,]. For example, for k = 2 the NN of ¢ for the time interval are contained in the shaded
area of figure 3. The NNs of ¢ for various values of k£ along with the corresponding time
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Figure 3. Relative distance of objects with respect to a moving query.

intervals are depicted in figure 4. The pair of objects above each time point ¢, declare the
objects that have an intersection at #,. These time points where a modification of the result
is performed, are called split points. Note that not all intersection points are split points.
For example, the intersection of objects @ and c in figure 3 is not considered as a split point
for k = 2, whereas it is a split point for k = 3.

The previous example demonstrates that the £ NNs of a moving query can be
determined by using the functions that represent the distance of each moving object with
respect to the moving query. Based on the previous discussion, the next section presents
the design of an algorithm for NN query processing (NNS) which operates on moving
objects.
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Figure 4. NNs of the moving query for kK = 2 (top) and k£ = 3 (bottom).
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3.1. The NNS algorithm
The NNS algorithm consists of two parts, which are described separately:

® NNS-a algorithm: given a set of moving objects, a moving query and a time interval,
the algorithm returns the &k NNs for the given interval, and

® NNS-b algorithm: given the & NNs, the corresponding time intervals, and a new
moving object, the algorithm computes the new result.

3.1.1. Algorithm NNS-a. We are given a moving query ¢, a set 0 of N moving objects, a
time interval [7,7,] and the k NNs of ¢ are requested. The target is to partition the time
interval into one or more sub-intervals, in which the list of NNs remains unchanged. Each
time sub-interval is defined by two time split points, declaring the beginning and the end of
the sub-interval. During the calculation, the set () is partitioned into three sub-sets:

e the set ¢, which always contains k objects that are currently the NNs of ¢,

e the set ¥, which contain objects that are possible candidates for subsequent time
points, and

e the set #, which contains rejected objects whose contribution to the answer is
impossible for the given time interval [z,,7,].

Initially, # = 0, € = O, and # = (). The first step is to determine the k¥ NNs for time
point ¢,. By inspecting figure 3 for k = 2 we get that these objects are @ and b. Therefore,
H ={a,b}, € ={c,d,e} and Z = (). Next, for each 0 € #" the intersections with objects
in 4" + % are determined. If there are any objects in ¢ that do not intersect any objects in
A, they are removed from % and are put in #, meaning that they will not be considered
again (Proposition 1). In our example, object e is removed from % and we have
A ={a,b}, € = {c,d} and # = {e}. The currently determined intersections are kept in
an ordered list, in increasing time order. Each intersection is represented as (7., {u,v}),
where ¢, is the time point of the intersection and {u, v} is the objects that intersect at z,.

Proposition 1: Moving objects that do not intersect the k nearest neighbors of the query
at time 7, can be rejected.

Proof: An intersection between o; and o, denotes a change in the result. Therefore, if
none of the k nearest-neighbor objects intersect any other object between |[¢t,, ,], there will
be no change in the result. This means that we do not have to consider other objects for
determining the nearest-neighbors. []

Each intersection is defined by two objects' u and v. The currently determined
intersection points comprise the current list of time split points. According to the example,
the split point list has as follows: (¢,{a,b}), (t,,{a,d}), (¢, {a,c}), (13,{b,d}),
(t4,{b,c}). For each intersection we distinguish between two cases:
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e ueX and vet”
e ucH and ve®¥ (or ue% and ve A")

In the first case, the current set of NNs does not change. However, the order of the
currently determined objects changes, since two objects in " intersect, and therefore they
exchange their position in the ordered list of NNs. Therefore, objects # and v exchange
their position. In the second case, object v is inserted into %~ and therefore the list of NNs
must be updated accordingly (Proposition 2).

Proposition 2: Let us consider a split point at time ¢, at which objects o; and o,
intersect. If 0, € 4" and 0, €% then at ¢, o, is the k-th nearest-neighbor of the query.

Proof: Assume that o, is not the k-th nearest-neighbor at the time of the interscection.
However, o, belongs to the result (is among the k nearest-neighbors) at time ¢.. The
intersection at time ¢, denotes that objects o, and o, are consequtive in the result. This
implies that o, is already contained in the current result (set .#") which contradicts our
assumption that o, is not contained in the result set. Therefore, object o; must be the k-th
nearest-neighbor of the query. [

According to the currently determined split points, the first split point is #;, where
objects a and b intersect. Since both objects are contained in 4", no new objects are
inserted into 2, and simply objects a and b exchange their position. Up to this point
concerning the sub-interval [z, ¢, ) the nearest neighbors of ¢ are a and b. We are ready now
to check the next split point, which is #, where objects a and d intersect. Since a € 4 and
d e € object a is removed from %" and it is inserted into . On the other hand, object d is
removed from % and it is inserted into " taking the position of a. Up to this point, another
part of the answer has been determined, since in the sub-interval [¢,, #,) the NNs of ¢ are b
and a. Moving to the next intersection, 7., we see that this intersection is caused by objects
a and c. However, neither of these objects is contained in #". Therefore, we ignore ¢, and
remove it from the list of time split points. Since a new object d has been inserted into 7",
we check for new intersections between d and objects in 2#" and . No new intersections
are discovered, and therefore we move to the next split point ¢;. Currently, for the time sub-
interval [t,, ;) the NNs of ¢ are b and d. At t; objects b and d intersect, and this causes a
position exchange. We move to the next split point 7, where objects b and c intersect.
Therefore, object b is removed from " and it is inserted into %, whereas object ¢ is
removed from % and it is inserted into J#". Since ¢ does not have any other intersections
with objects in " and €, the algorithm terminates. The final result is depicted in figure 4,
along with the corresponding result for £ = 3. The outline of the method is illustrated in
figure 5.

Each object 0 € " is responsible for a number of potential time split points, which are
defined by the intersections of o and the objects contained in . Therefore, each time an
object is inserted into ¢ intersection checks must be performed with the objects in €. In
order to reduce the number of intersection tests, if an object was previously inserted into
" and now it is reinserted, it is not necessary to recompute the intersections. Moreover,
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Algorithm NNS-a

Input: a set of moving objects (/, a moving query g,

time interval [¢,,1,], the number k of requested NNs

Output: a list of elements of the form ([t;,%,],0;, 05, ...,0;)

where o4, ..., 0; are the NNs of g from ¢, to t, (CNN-list),

split-list containing the split points

Local: k-list containing the current NNs
1. initialize X =0, 4 =0, and Z =0
2. initialize split-list with split points ¢, and ¢,
3. find the k£ NNs of g at time point 7,
4. update k-list

5. foreach ue " do

6 find intersections with ve %"

7 find intersections with ve %

8 update split list

9. move irrelevant objects from € to #

10. endfor

11.  while more split-points are available do

12. check next time split point 7, (intersection)

13. if (uex") and (ve.x") then

14. update CNN-list

15. exchange positions in k-list

16. endif

17. if (ue#’) and (ve%) then

18. move u from A" to ¥

19. move v from € to A~

20. update k-list

21. update CNN-list

22. if (v participates for the first time in k-list) then
23. determine intersections of v with objects in @
24. update split-list

25. endif

26. endif

27. if (ue®) and (ve%) then

28. ignore split point ¢,

29. endif

30. endwhile
31. return CNN-list, split-list

Figure 5. The NNS-a algorithm.

according to Proposition 3, intersections at time points prior to the currently examined
split point can be safely ignored.

Proposition 3: If there is a split point at time ¢,, where 0, € 4" and 0, € % intersect, all
intersections of 0, with the other objects in " that occur at a time before ¢, are not
considered as split points.

Proof: This is evident, since the nearest-neighbors of the query object up to time ¢,
have been already determined and therefore the intersections at time points prior to ¢, do
not denote a change in the result. []
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Evidently, in order to determine if two objects # and v intersect at some time point
between 7, and ¢,, we have to solve an equation. Let the square of the Euclidean distance
between g and the objects be described by the functions Dw(t)2 =uy > + Uyt + uz and
D‘,,q(t)2 =v, > + v, t+v; respectively. In order for the two object to have an
intersection in [z, ,] there must be at least one value ¢, t, < f, < ¢, such that:

() = vi) 13+ (g — va) * b, + (uz — v3) = 0.

From elementary calculus it is known that this equation can be satisfied by none, one, or
two values of 7. If (i, — v5)> — 4+ (u; — v;) * (3 — v3) < 0, then there is no intersection
between u and v. If (1, —v,)* — 4+ (u; —v;)*(u3 —v3) =0 then the two objects
intersect at t, = — (uy — v,)/2 - (u; — v;). Otherwise the objects intersect at two points ¢,
and ¢, given by:

—(“2—V2)+\/(”2—V2)2—4’(u1 — i)+ (u3 —v3)

! 2+ (uy —vy)
; _*('42*"2)*\/(”2*"2)2*4’(”1 —vi)* (u3 —v3)
t 2+ (uy —vy) ‘

3.1.2. Algorithm NNS-b. After the execution of NNS-a, the CNN-list is formulated,
which contains elements of the form: ([t|,,],0;,0,,...,0;) Where oy, ..., 0, are the NNs
of ¢ from ¢, to t,, in increasing distance order. Let .% be the set containing the NNs of ¢ at
any given time between f, and ¢,. Clearly, k < |¥’| < |(@)]. Assume now that we have to
consider another object w, which was not known during the execution of NNS-a. We
distinguish among the following cases, which describe the relation of w to the current
answer:

Case I: w does not intersect any of the objects in % between ¢, and ¢,, and it is ‘‘above”’’
the area of relevance. In this case, w is ignored, since it can not contribute to the
NNs. The number of split points remains the same.

Case 2: w does not intersect any of the objects in & between ¢, and f,, and it is
completely ‘‘inside’’ the area of relevance. In this case w must be taken into
account, since it affects the answer from ¢, to ¢, (Proposition 4). The number of
split points may be reduced.

Case 3: w intersects at least one object ve.% at time ¢, <t <t,, but at time ¢, v is not
contained in the set of NNs. In this case, again w is ignored, since this
intersection can not be considered as a split point because the answer is not
affected. Therefore, no new split points are generated.

Case 4: w intersects at least one object ve¥ at time ¢, <t <t,, and object v is
contained in the set of NN at time ¢,. In this case w must be considered because
at least one new split point is generated. We note, however, that some of the old
split points may be discarded.
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Figure 6. The four different cases that show the relation of a new object to the current NNs.

Proposition 4:  Assume that a new object w does not intersect any of the NNs from ¢, to
t,. If at time ¢ its position among the k NNs is pos,, then it maintains this position
throughout the query duration.

Proof: Assume that there is a change in the result at some point #,, where object w
changes its position among the nearest-neighbors. This implies that there is an
intersection at time ¢, since only an intersection denotes a result change. This contradicts
our assumption that there are no intersections of w with other objects in the result. []

The aforementioned cases are depicted in figure 6. Object e corresponds to Case 1, since
it is above the area of interest. Object f corresponds to Case 2, because it is completely
covered by the relevant area. Object g although intersects some objects, the time of these
intersections are irrelevant to the answer, and therefore the situation corresponds to Case
3. Finally, object % intersects a number of objects at time points that are critical to the
answer and therefore corresponds to Case 4.

The outline of the NNS-b algorithm is presented in figure 7. Note that in lines 14 and 20
a call to the procedure modify-CNN-list is performed. This procedure, takes into
consideration the CNN-list and the new split-list that is generated. It scans the split-list in
increasing time order and performs the necessary modifications to the CNN-list and the
split-list. Some of the split-points may be discarded during the process. The steps of the
procedure are illustrated in figure 8.

3.2.  Query processing with TPR-trees
Having described in detail the query processing algorithms in the previous section we are

ready now to elaborate in the way these methods are combined with the TPR-tree. Let T be
a TPR-tree which is built to index the underlying data. Starting from the root node of T the
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Algorithm NNS-b

Input: a list of elements of the form ([t;,%,],0;,0,, ..
where o4, ..., 0, are the NNs of g from ¢, to ¢, (CNN list}),

a new object w, the split-list

Output: an updated list of the form ([t;, 2], 0, 0,, ..

where oy, ..., 0, are the NNs of ¢ from ¢, to t, (CNN list)
Local: k-list current list of NNs,
split-list, the current list of split points

initialize . = union of NNs from ¢ to ¢,
intersectionFlag = FALSE
foreach se ¥do
check intersection between s and w
if (s and w intersect) then // handle cases 3 and 4
intersectionFlag = TRUE
collect all #;,s // t; is where w and s intersect
if (at #; object s contributes to the NNs) then
update split-list
endif
endif
endfor
if (intersectionFlag == TRUE) then
call modify-CNN-list
else // handle cases 1 and 2
calculate Dy, (f)" at time point ¢,
if (D,,,(t,)? > D}yy) then
ignore w
else
call modify-CNN-list
endif
endif
return CNN-list, split-list

Figure 7. The NNS-b algorithm.
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tree is searched in a depth-first-search manner (DFS).? The first phase of the algorithm is
completed when m > k objects have been collected from the dataset. Tree branches are
selected for descendant according to the mindist metric [19] (Definition 1) between the
moving query and bounding rectangles at time ¢,. These m moving objects are used as
input to the NNS-a algorithm in order to determine the result from ¢, to ¢,. Therefore, up to
now we have a first version of the split-list and the CNN-list. However, other relevant
objects may reside in leaf nodes of T that are not yet examined.

Definition 1: Given a point p at (p,p,, ...
upper-right corners are (s;,s,,...

defined as follows:

mindist(p,r) =

,P,) and a rectangle r whose lower-left and
,s,) and (t;,t5,...,t,), the distance mindist(p,r) is
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Procedure modify-CNN-list
Input: a list of elements ([t,,1,],0,,0,, ..., 0;)
where o4, ..., 0; are the NNs of g from ¢, to ¢, (CNN list),
a new object w, the split-list
Output: an updated list of elements ([r,,%,],0;,0,, ..., 0;)
where oy, ..., 0, are the NNs of ¢ from ¢, to t, (CNN list)
Local: k-list current list of NNs

1. calculate Dq_w(t)2 at time point 7,

2. consult CNN-list and update the current k-list

3. while more split-points are available do

4. check next split-point (¢, {u,v})

5. update CNN-list

6 if (u ¢k-list) and (v & k-list) then

7 remove split-point (., {u,v})

8 elseif (u ¢k-list) and (v ¢k-list) then

9 remove u from k-list

10 insert v in k-list

11. update k-list

12. elseif (v ¢k-list) and (u &k-list) then
13. remove v from k-list

14. insert u in k-list

15. update k-list

16. else

17. exchange positions between u and v
18. update k-list

19. endif

20. endwhile

Figure 8. The modify-CNN-list procedure.

where
rp= fj Dj > [j

p;,  otherwise.

In the second phase of the algorithm, the DFS continues to search the tree, by selecting
possibly relevant tree branches and discarding non-relevant ones. Every time a possibly
relevant moving object is reached, algorithm NNS-b is called in order to update the spliz-
list and the CNN-list of the result. The algorithm terminates when there are no relevant
branches to examine.

In order to complete the description of the algorithm, the terms possibly relevant tree
branches and possibly relevant moving objects must be clarified. In other words, the
pruning strategy must be described in detail. Figure 9 illustrates two possible pruning
techniques that can be used to determine relevant and non-relevant tree branches and
moving objects:

Pruning technique 1 (PTI): In this technique we keep track of the maximum distance
D, between the query and the current set of NNs. In figure 9(a) this distance is defined
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(a) one bounding rectangle (b) many bounding rectangles

Figure 9. Pruning techniques.

between the query and object b at time ¢,,,,,. We formulate a moving bounding rectangle
R centered at g with extends D,,, in each dimension and moving with the same velocity
vector as q. If R intersects a bounding rectangle E in an internal node, the corresponding
tree branch may contain objects that contribute to the answer and therefore must be
examined further. Otherwise, it can be safely rejected since it is impossible to contain
relevant objects. In the same manner, if a moving object o, found in a leaf node intersects
R it may contribute to the answer, otherwise it is rejected.

Pruning technique 2 (PT2): This technique differs from the previous one in the level of
granularity that moving bounding rectangles are formulated. Instead of using only one
bounding rectangle, a set of bounding rectangles is defined according to the currently
determined split points. Note that it is not necessary to consider all split points, but only
these that are defined by the k-th nearest-neighbor in each time interval. An example set
of moving bounding rectangles is illustrated in figure 9(b). Each internal bounding
rectangle and moving object is checked for intersection with the whole set of moving
bounding rectangles and it is considered relevant only if it intersects at least one of them.

Other pruning techniques can also be determined by grouping split points in order to
keep the balance between the number of generated bounding rectangles and the existing
empty space. Several pruning techniques can be combined in a single search by selecting
the preferred technique according to some criteria (e.g., current number of split-points,
existing empty space).

It is anticipated that PT1 will be more efficient with respect to CPU time, but less
efficient concerning I/O time, because the empty space will cause unnecessary disk
accesses. On the other hand, PT2 seems to incur more CPU overhead due to the increased
number of intersection computations, but also less I/O time owing to the detailed pruning
performed. Based on the above discussion, we define the NNS-CON algorithm which
operates on TPR-trees and can be used with either of the two pruning techniques. The
outline of the algorithm is illustrated in figure 10.
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Algorithm NNS-CON
Input: the TPR-tree root,
a moving query g,
the number k£ of NNs
Output: the k NNs in [¢,7,]
Local: a set O of collected objects,
Flag is FALSE if NNS-a has not yet been called
number col of collected objects
1. if (node is LEAF) then
2 if (|O0| <k) then
3 add each entry of node to (0
4. update |0
5. endif
6 if (|O| > k) and (Flag == FALSE) then
7 call NNS-a
8 set Flag = TRUE

9 elseif (|0 > k) and (Flag == TRUE) then
10. apply pruning technique

11. for each entry of node call NNS-b

12 endif

13. elseif (node is INTERNAL) then

14. apply pruning technique

15. sort entries of node wrt mindist at t

16. call NNS-CON recursively

17. endif

Figure 10. The NNS-CON algorithm.

4. Performance evaluation
4.1. Preliminaries

In the sequel a description of the performance evaluation procedure is given, aiming at
providing a comparison study among the different processing methods. The methods
under consideration are (i) the NNS-CON algorithm enabled by pruning technique 1
described in the previous section, and (ii) the NNS-REP algorithm which operates by
posing repetitive NN queries to the TPR-tree [28]. Both algorithms as well as the TPR-tree
access method have been implemented in the C programming language.

There are several parameters that contribute to the method performance. These
parameters, along with their respective values assigned during the experimentation are
summarized in Table 2.

The datasets used for the experimentation are synthetically generated using the uniform
or the gauss distribution. The dataspace extends are 1,000,000 x 1,000,000 meters and the
velocity vectors of the moving objects are uniformly generated, having speed values
between 0 and 30 m/sec. Based on these objects, a TPR-tree is constructed. The page size
of the TPR-tree is fixed at 2 Kbytes.

The query workload is composed of 500 uniformly distributed queries having the same
characteristics (length, velocity). The comparison study is performed by using several
performance indices, such as: (i) the number of disk accesses, (ii) the CPU-time, (iii) the
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Table 2. Parameters and corresponding values.

Parameter Value

Database size, N 10K, 50K, 100K, 1M
Space dimensions, d 1,2,3

Data distribution, D Uniform, gaussian
Number of NN, k& 1-100

Travel time, #,ye| 26-1048 sec

LRU buffer size, B 0.1-20% of tree pages

I/O time and (iv) the total running time. In order to accurately estimate the I/O time for
each method a disk model is used to model the disk, instead of assigning a constant value
for each disk access [20]. Since the usage of a buffer plays a very important role for the
query performance we assume the existence of an LRU buffer having its size vary between
0.1% and 20% of the database size.

The results presented here correspond to uniformly distributed datasets. Results
performed for gaussian distributions of data and queries demonstrated similar performance
and therefore are omitted. The main difference between the two distributions is that in the
case of the gaussian distribution, the algorithms require more resources since the data
density increases and therefore more split-points and distance computations are needed to
evaluate the queries.

4.2.  Performance results

Several experimental series have been conducted in order to test the performance of the
different methods. The experimental series are summarized in Table 3.

The purpose of the first experiment (EXP1) is to investigate the behavior of the methods
for various values of the requested NNs. The corresponding results are depicted in figure
11. By increasing k, more split points are introduced for the NNS-CON method, whereas

Table 3. Experiments conducted.

Experiment Varying Parameter Fixed Parameters

EXP1 NN, k& N =1M,B = 10%, t,4yes = 110sec
d = 2,D = uniform

EXP2 Buffer size, B N =1M,k =5,t,, = 110sec
d = 2,D = uniform

EXP3 Travel time, #,,¢ N=1M,k=5,B = 10%,
d = 2,D = uniform

EXP4 Space dimensions, d NNs, k N =1M,B = 10%, tyaye; = 110sec
D = uniform

EXPS5 Database size, N NN, k B = 500 pages, f,, = 110sec

d = 2,D = uniform
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Figure 11. Results for different values of the number of NNs.
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Figure 12. CPU cost over I/O cost.

more influence calculations are needed by the NNS-REP method. It is evident that NNS-
CON outperforms significantly the NNS-REP method. Although both methods are highly
affected by k, the performance of NNS-REP degrades more rapidly. As figure 11(a)
illustrates, NNS-REP requires a large number of node accesses. However, since there is a
high locality in the page references performed by a query, the page faults are limited. As a
result, the performance difference occurs due to the increased CPU cost required by NNS-
REP (figure 12). Another interesting observation derived from figure 12 is that the CPU
cost becomes more significant than the I/O cost by increasing the number of nearest-
neighbors.

The next experiment (EXP2) illustrates the impact of the buffer capacity (figure 13).
Evidently, the more buffer space is available the less disk accesses are required by both
methods. It is interesting that although the number of node accesses required by NNS-REP
is very large, (see figure 11(a)) the buffer manages to reduce the number of disk accesses
significantly due to buffer hits. However, even if the buffer capacity is limited, NNS-CON
demonstrates excellent performance.

Experiment EXP3 demonstrates the impact of the travel time to the performance of the
methods. The corresponding results are depicted in figure 14. Small travel times are
favorable for both methods, because less CPU and 1/O operations are required. On the
other hand, large travel times increase the number of split-points and the number of
distance computations, since the probability that there is a change in the result increases.
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Figure 13. Results for different buffer capacities.

However, NNS-CON performs much better for large travel times in contrast to NNS-REP
whose performance is affected significantly.

The next experiment (EXP4) demonstrates the impact of the space dimensionality.
The increase in the dimensionality has the following results: (i) the database size
increases due to smaller tree fanout, (ii) the TPR-tree quality degrades due to overlap
increase in bounding rectangles of internal nodes, and (iii) the CPU cost increases
because more computations are required for distance calculations. Both methods are
affected by the dimensionality increase. However, by observing the relative performance
of the methods (NNS-REP over NNS-CON) in 2-D and 3-D space illustrated in figure 15,
it is realized that NNS-REP is affected more significantly by the number of space
dimensions.

Finally, figure 16 depicts the impact of database size (EXPS5). In this experiment, the
buffer capacity is fixed to 500 pages, and the number of moving objects is set between
10,000 and 100,000. The number of requested NN is varying between 1 and 15, whereas
the travel time is fixed to 110 sec. By increasing the number of moving objects, more tree
nodes are generated and, therefore, more time is needed to search the TPR-tree. Moreover,
by keeping the buffer capacity constant, the buffer hit ratio decreases, producing more
page faults. As figure 16 illustrates, the performance ratio (NNS-REP over NNS-CON)
increases with the database size.
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5. Concluding remarks

Applications that rely on the combination of spatial and temporal characteristics of the
objects demand new types of queries and efficient query processing techniques. An
important query type in such a case is the k nearest-neighbor query, which requires the
determination of the k closest objects to the query for a given time interval [¢,,]. The
major difficulty in such a case is that both queries and objects change positions
continuously, and therefore the methods that solve the problem for the static case can not
be applied directly.

In this work, a study of efficient methods for NN query processing in moving-object
databases is performed, and several performance evaluation experiments are conducted to
compare their efficiency. The main conclusion is that the proposed algorithm outperforms
significantly the repetitive approach for different parameter values. Future research may
focus on:

e cxtending the algorithm to work with moving rectangles (although the extension is
simple, the complexity of the algorithm increases due to more distance computations),

e comparing the performance of different pruning techniques,

e studying the performance of the method to other access methods like the STAR-tree
[18],

e modifying the algorithm to provide the ability for incremental computation of the
NNs, as the work in Hjaltason and Samet [6], [7] suggests for static datasets,

e adapting the method to operate on access methods which store past positions of objects
(trajectories), in order to answer past queries, and

e providing cost estimates concerning the number of node accesses, the number of
intersection checks and the number of distance computations.

Notes

1. Tt is assumed that an intersection is defined by two objects. If three or more objects intersect at the same point
t, the conflict is resolved by evaluating the first derivative for each object at ¢, and taking the minimum value.
2. The proposed methods can also be combined with a breadth-first-search based algorithm.
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