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Abstract. Query processing is one of the most important mechanisms
for data management, and there exist mature techniques for effective
query optimization and efficient query execution. The vast majority of
these techniques assume workloads of rather small transactional tasks
with strong requirements for ACID properties. However, the emergence
of new computing paradigms, such as grid and cloud computing, the
increasingly large volumes of data commonly processed, the need to sup-
port data driven research, intensive data analysis and new scenarios, such
as processing data streams on the fly or querying web services, the fact
that the metadata fed to optimizers are often missing at compile time,
and the growing interest in novel optimization criteria, such as monetary
cost or energy consumption, create a unique set of new requirements for
query processing systems. These requirements cannot be met by modern
techniques in their entirety, although interesting solutions and efficient
tools have already been developed for some of them in isolation. Next
generation query processors are expected to combine features address-
ing all of these issues, and, consequently, lie at the confluence of several
research initiatives. This paper aims to present a vision for such proces-
sors, to explain their functionality requirements, and to discuss the open
issues, along with their challenges.

1 Introduction

The success of databases and the reason they play such a key role in data man-
agement lies largely in their ability to allow users to specify their data retrieval
and update tasks declaratively, relieving them from the burden of specifying how
these tasks should be processed; the responsibility of the latter aspect rests with
the query processor. To this end, query processing involves the phases of trans-
lation, optimization and execution, which have been the topic of investigation
for many decades, resulting in a broad range of effective and efficient techniques
(e.g., [8, 25, 30]). In conventional static query processors, the three phases of
query processing occur sequentially, whereas adaptive query processing (AQP)
solutions differ in that they interleave query optimization with query execution
[12].



Since it is rather unusual for all the data of a single organization to reside
at a single physical place, distributed query processing (DQP) has received con-
siderable attention mainly with a view to supporting transactional tasks over
geographically spread data resources. Distributed query execution involves the
same three phases as centralized query processing, but considers more issues
than in traditional centralized systems, such as dynamic data placement, replica
management and communication cost [34, 43]. Consequently, optimization of dis-
tributed queries is inherently more complex than when applied to a single-node
setting [56] and this is aggravated by the fact that different distributed environ-
ments may shape it towards different, and potentially contradicting goals [42].
For example, in some environments accuracy is not as important as returning
the first results as early as possible (e.g., [31]), or the economic cost may be an
issue (e.g., [53]). A typical optimization criterion is the minimization of a query’s
response time; this problem is often reduced to the problem of minimizing the
communication cost under the assumption that communication is the dominant
cost and there exist several proposals that try to address it [6, 17, 39]. This type
of DQP is suitable for short transactional tasks requiring strong guarantees on
the ACID properties [43].

Nevertheless, modern applications are often characterized by different needs.
Conventional query processing techniques are tailored to settings where data
reside on disk, appropriate indices have been built and metadata have been col-
lected, whereas, nowadays, data sources, either in the form of sensors or not,
may continuously produce data to be processed on the fly. There are several
complications stemming from that, including the unavailability of the metadata
that are typically fed to the optimizer and the applicability of one-pass algo-
rithms only. In addition, more and more data management applications do not
comprise transactional tasks. They rather focus on decision support, analysis
and data driven research, and as such, they tend to comprise particularly data-
and computation-intensive tasks requiring relatively high degrees of parallelism.
The emergence of new computing paradigms, such as grid and cloud computing,
has enabled the runtime pooling of hardware and software resources, whereas
technologies such as web services facilitate the reuse and sharing of remote com-
plex analysis tools called from within database queries (e.g., as in [3, 38]) or
generic workflows (e.g., [50]). Finally, in modern applications, economic cost,
energy consumption, network utilization, quality of analysis tools employed, ac-
curacy of results, data quality and other QoS criteria may be equally if not more
important than query response time, throughput and communication cost.

In this paper, we make a statement that next generation query processors
should evolve so that they can efficiently and effectively support scenarios ad-
dressing all the afore-mentioned issues. Note that not all of these issues are new,
however, until now, they have tended to be investigated in isolation. For instance,
AQP techniques try to deal with the unavailability of statistics mostly when pro-
cessing takes place in a centralized manner [12], and programming frameworks
such as MapReduce [10, 11] and PigLatin [41] offer massive parallelism at the ex-
pense of less declarative task definition and lack of sophisticated optimization.



Also, there have been significant advances in stream data management (e.g.,
[19, 9]), and multi-objective optimization (e.g., [45]), but without considering
wide-area heterogeneous computation platforms with arbitrarily high degrees
of parallelism. The surveys in [27, 44, 55], which focus on data-management on
grid computing infrastructures, and the discussion in [52] about the future of
database are relevant to this work, too.

In the remainder of this paper, we present our vision for next generation
query processors in more detail (Section 2). Next, in Section 3, we discuss three
of the most important open research areas in order this vision to be fulfilled,
namely the programming and execution model, the optimization process and
the need for advanced autonomic techniques. Section 4 concludes the paper.

2 The vision and its requirements

Our vision is in line with the suggestion of the recent Claremont report that
“database researchers should take data-centric ideas (declarative programming,
query optimization) outside their original context in storage and retrieval, and
attack new areas of computing where a data-centric mindset can have major im-
pact” [2]. Recently, some scepticism has been expressed about the suitability
of a single database engine for meeting the afore-mentioned modern needs [52].
This scepticism is mostly grounded on the diversity of characteristics and re-
quirements of modern applications, although there have been some efforts in de-
veloping unifying systems (e.g., [14]). Orthogonally to any architectural choices,
the query processors envisaged in this work have extended functionality, so that
they become capable of supporting scenarios involving arbitrary data sources
requiring arbitrary computational and analysis resources while benefitting from
the significant advances in and the maturity of database technologies in the last
decades. More specifically, the query processors envisaged are characterized by:

– Declarative task statement: Assuming that there are catalogues (either cen-
tralized or distributed) of (i) the computational, (ii) data, and (iii) analysis
resources, users can define complex data analysis tasks in a both expressive
(e.g., SQL-like as opposed to simple keyword searches) and declarative man-
ner. These tasks may be mapped not simply to traditional query plans, but
also to workflows comprising calls to web services (e.g., [50]), or combination
of both, (e.g. [38]). Note that the corresponding language may be lower level
than SQL in order to benefit from a richer type system and programming
patterns such as iteration, which are necessary for several read only, data-
intensive analysis tasks that are typical in data driven research (e.g., [41,
57]).

– Declarative statement of optimization objective(s): Nowadays, query proces-
sors typically operate on a best-effort basis, trying to minimize fixed system-
wide metrics such as total work, throughput, query response time and time
to deliver early results. These metrics still apply, but, in addition, metrics
such as economic cost [53] and energy consumption [28, 36] are becoming



increasingly important. Clearly, there is a need for data management sys-
tems firstly to provide support for multiobjective query optimization [45],
and secondly, to allow users to decide which are the preferred optimization
criteria for a given task. In other words, apart from describing the task, users
should also describe the aspects that they are more interested in (perhaps
along with their weights), with a view to guiding the optimization process.
The proposal of the ripple joins, which are initially proposed in [26] and en-
hanced later in [37], can be deemed as an early example of such an approach.
This type of joins constitute a family of physical pipelining operators that
maximize the flow of information during processing of statistical queries that
involve aggregations and are capable of adapting their behavior during pro-
cessing according to user preferences about the accuracy of the partial result
and the time between updates of the running aggregate. More importantly,
these preferences can be submitted and modified during execution. In [45],
an efficient optimization algorithm is presented for the case where the system
enables users to supply a function describing the desired trade-off between
contradicting parameters. Similar functionality is of significant importance
for modern query processing engines.

– Massively parallel execution (and optimization): Parallelism is now well un-
derstood in databases, both in terms of architectures, where the shared-
nothing model seems to be the most attractive [51], and query processing;
parallel query processing can be further divided in independent, pipeline
and partitioned parallelism [13]. Although partitioned parallelism can lead
to the most significant performance improvements, it is typically employed
to a limited extent in wide area heterogeneous settings (e.g., [9, 40, 49]). Data
analysis tasks may require exceptionally high degrees of parallelism [11, 14,
57] and next generation query processors should evolve to support this re-
quirement, even in the case where the execution environment is remote,
non-dedicated and potentially significantly different from fully controlled
homogeneous clusters. In addition, since wide area optimization is computa-
tionally demanding, optimization may take place in a distributed and parallel
manner, as well. Finally, massive parallelism should be applicable to both
stream and stored data.

– Autonomic execution: This property is becoming increasingly important as
tasks are becoming more complex and long running. Two aspects of au-
tonomic computing [32] that are particularly relevant are self-optimization
and self-healing. The former strongly relates to AQP, and the latter to fault-
tolerance. Today, the vast majority of AQP techniques tackle the problem
of unavailable, inaccurate and/or changing data statistics; however there is
also a need to be capable of adapting to changing resource characteristics
(e.g., [21]).

The characteristics above will render query processors more suitable for on-
line, inbound [52], high performance data analysis in grid and cloud computing
environments. In order to develop such a query engine, several features of exist-



ing research initiatives should be combined, and open research issues should be
investigated, as outlined in the next section.

3 A research agenda

In order to efficiently and effectively support scenarios involving complex anal-
ysis of sheer data volumes in remote, non-dedicated environments with flexible
optimization criteria, next generation query processors should be equipped with
mechanisms to process tasks and optimization criteria submitted declaratively,
benefit from massive parallelism and improve their autonomic behavior. Given
that partial solutions to some of these requirements have been proposed, the
development of the envisaged next generation query processors lies at the conflu-
ence of several paradigms and a question arises as to how these partial solutions
can be combined and in which areas further research should be conducted. In
this section, we deal with this problem focusing on three complementary aspects,
namely the programming and execution model, the optimization process and the
autonomic execution at runtime.

3.1 Unifying programming and execution model

The combination of stream, parallel and distributed databases yields database
systems that can scale to thousands of nodes and numerous data sources, may
employ both push and pull execution model, and exhibit good performance for
lookup tasks that require reading part of the data (due to the presence of in-
dices); also parallel and distributed databases can effectively employ pipeline
parallelism [25], incorporate sophisticated optimization techniques, modify the
execution plan at runtime and, in principle, support multiple optimization cri-
teria. Developing efficient integrated systems combining features from stream,
parallel and distributed databases is a promising research direction, and may
require radical changes in the way DBMSs are designed and implemented [52].

However, integrated systems based solely on database technologies suffer from
inherent limitations. They lack efficient fault tolerance mechanisms; typically
queries are re-executed in case of failure, which is not desirable in long running
tasks. Also, several analysis tasks cannot be easily expressed as user-defined
functions so that they can be called from within queries. On the other hand,
execution paradigms based on, or inspired by, MapReduce offer built-in fault-
tolerance capabilities, a user-convenient way to express complex analysis tasks,
and good performance when these tasks involve the reading of complete sets of
either structured or unstructured data, even in heterogeneous settings [58].

Non-surprisingly, the development of hybrid engines combining the strong
points of both approaches has already been suggested [1]. According to [1], the
integration should be at both the language level and the system and engine level.
At the language level, efforts such as PigLatin [41], and DryadLINQ [57] can be
deemed as an important initial step to this direction. However, developing a
unifying execution model seems to be a more challenging research issue.



Current query processors receive as input a query in a high level language
and transform it to a query execution plan, which, in most of the cases, is in the
form of a directed acyclic graph (DAG), and more specifically, of a binary tree. In
the case of SQL, for example, the tree nodes are query operators, such as joins,
scans, projections and so on. Interestingly, workflows consisting of calls to web
services, which is a common means of expressing data analysis tasks, are typi-
cally represented as DAGs, as well [50]. MapReduce jobs can also be regarded as
simple single-input two stage workflows. Although in both databases, and work-
flow management and MapReduce-like paradigms the tasks can be expressed as
DAGs, the vertex semantics and the execution logic in each case are different. So,
it is unclear how integrated and unifying engines can be developed. In database
query plans, the order of operators may change without affecting the quality of
results with a view to improving the efficiency of the execution, and there exist
well established rules to determine when such re-orderings should take place.
This is not the case in generic workflows. Also, database technologies may adopt
an adaptive execution model, like Eddies [4], which, in essence, corresponds to
different DAGs for each data item; this feature, again, is not supported by to-
day’s workflow management systems and MapReduce implementations. Finally,
stream query processing, apart from specific primitives [52], requires effective
pipelining.

Perhaps, an intermediate goal is to develop integrated systems that can com-
pile and execute database queries, workflows and MapReduce-like tasks in a
common environment, without actually developing a unifying execution engine.
Clustera [14] is an early example of such initiatives.

3.2 Optimization

Optimization of parallel data-intensive query plans involves several important
open research issues. In general, query optimization problems in distributed set-
tings are intractable, even in the case where partitioned parallelism and schedul-
ing issues are ignored [56]. Frameworks such as [14, 41, 57] either do not perform
any optimization or apply a limited set of greedy heuristics. The degree of par-
allelism in these settings is configured in an ad-hoc manner, which may deviate
from (near) optimal solutions significantly. A promising research direction is to
develop more sophisticated, cost based optimizers in this context both for the
execution plan and the order of operations, and the number of machines.

However, even when only traditional database queries are considered, so-
lutions should be developed for the multi-objective cases and for the resource
allocation and scheduling problem. For the later, efficient solutions have been
proposed only for homogeneous settings [18]. In heterogeneous settings, not only
the degree of parallelism must be decided, but also the exact resources partici-
pating in the execution must be selected (e.g., [20]); the challenge here is that
any solution should be as close to optimal as possible without being too complex
with respect to the number of candidate nodes, as, in grid and cloud settings, this
number may be too high. Borrowing solutions from generic workflow scheduling
does not fully help; typically, in DAG scheduling, partitioned parallelism is not



considered [35]. Nevertheless, there exist interesting proposals that do consider
economic cost [7] and heterogeneity [47].

When high level optimization criteria apply, e.g., energy consumption and
economic cost, there is a need to establish how these criteria impact on the
execution and what is their exact correlation with the decisions taken during
optimization; i.e., there needs to be a mapping between high level objectives
and lower level metrics directly manipulated by the system. Furthermore, in the
case of multi-objective optimization further research is required for establishing
a standard efficient way to describe the trade-offs (e.g., [45]). The optimization
process may also differ according to whether the objectives are specified as utility
functions or not [33], and until now, the exact consequences of such a decision
are not well understood.

To summarize, the envisaged query processors require optimizers that can
handle arbitrary combinations of objectives and provide optimal or near opti-
mal parallelized execution plans in reasonable time. Note that the whole op-
timization process may be interactive: the users may submit some criteria the
exact configuration of which can be negotiated, in order to reach a Service Level
Agreement (SLA). This mode of optimization has not been adequately explored
in database query processors.

3.3 Runtime Execution

Operating on data that may have not been preprocessed in a non-dedicated
environment consisting of numerous nodes calls for more advanced AQP tech-
niques. We have already mentioned the need to further emphasize on changing
resources in combination with volatile data characteristics; e.g., adapting the
degree of parallelism in heterogeneous environments on the fly or investigat-
ing the interplay between resource allocation and load balancing [54] are issues
that have been largely overlooked. In addition, more attention should be placed
on the theoretical analysis of adaptive solutions and investigation of properties
such as stability, accuracy, and settling time. To this end, AQP can benefit from
control theory techniques, which are well-established in engineering fields and
are typically accompanied by theoretical investigations of such properties [29].
Interesting examples of applications of control theory to data management sys-
tems have been proposed in [15, 16, 22–24]. Another open research area is the
development of AQP techniques in which actions are driven by utility functions
(e.g., [46]).

Efficient fault tolerance is equally important to runtime re-optimization.
Fault tolerance features are built-in in platforms such as MapReduce; also some
proposals exist also in the database field, mainly for continuous queries and data
streams (e.g., [5, 48]). However, all these solutions are based on different proto-
cols and concepts, so there is a need to reach a consensus as to which approach
is more appropriate in each case.

Finally, data analysis and data driven research may be processed in a way
that early results are delivered as soon as possible, in case users choose to cancel
their queries if, for example, realize that the results are not interesting or the



task has not been specified appropriately. Pipelining execution addresses to an
adequate extent this need. Pipelining may be employed by database engines in
a straightforward manner, but this may not be the case for other computing
paradigms, such as MapReduce.

4 Conclusions

This work aims at specifying the requirements of modern applications and pre-
senting a vision for next generation query processors, so that they are more
tailored to data analysis and data driven research, benefit from declarative task
and objective statement and are capable of being highly parallelized while ex-
hibiting advanced autonomic behavior to cope with the volatility of the environ-
ment. In addition, this work discusses important areas in which further research
is required in order to fulfill the vision. These areas include the development of
integrated execution engines, advanced wide-area optimization and autonomic
runtime execution.
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