Overlapping Linear Quadtrees: a Spatio-temporal Access Method*

Theodoros Tzouramanis

ttzouram@athena.auth.gr

Michael Vassilakopoulos

mvass@computer.org

Yannis Manolopoulos

manolopo@eng.auth.gr

Department of Informatics
Aristotle University
54006 Thessaloniki, Greece

Abstract

Overlapping is a technique used in access methods to com-
bine consecutive structure instances into a single structure
by not storing identical sub-structures. This way, space
is saved without sacrificing time performance. Here, we
present the structure of Overlapping Linear Quadtrees which
is used to store consecutive raster images according to frans-
action time. Experimentation with synthetic region data
shows that considerable storage is saved in comparison to
independent linear quadtrees, in the case of similar consecu-
tive images. Therefore, this structure can be used in spatio-
temporal databases to support query processing of evolv-
ing images. Besides, an efficient algorithm that uses the
new structure and auswers spatio-temporal window queries
is presented.

Index terms: Spatio-temporal databases, transaction time,
access methods, indexing, B¥trees, quadtrees, linear quad-
trees, overlapping, time/space performance.

1 Introduction

Several spatial access methods have been proposed in the lit-
erature, for storing multi-dimensional objects (e.g. points,
line segments, areas, volumes, and hyper-volumes) without
considering the notion of time. These methods are classified
in one of the following two categories according to the prin-
ciple guiding the hierarchical decomposition of data regions
in each method.

e Data space hierarchy: a region containing data is split
(when, for example, 2 maximum capacity is exceeded)
to sub-regions which depend on these data only (for
example, each of two sub-regions contains half of the
data)

*Research performed under the European Union’s TMR Cho-
rochronos project, contract number ERBFMRX-CT36-0056 {(DG12-
BDCN).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are niot made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or 10

redistribute to lists, requires prior specific permission and/or a fee.

ACNM GIS *88 11/38 Washington, D.C., USA

© 1998 ACM 1-58113-115-1/98/0011...$5.00

e Embedding space hierarchy: a region containing data
is split (when a certain criterion holds) to sub-regions
independently of these data (for example, a square re-
gion is always split in four quadrant sub-regions)

The book by Samet [14] and the recent survey by Gaede
and Guenther [4] provide excellent information sources for
the interest reader.

On the other hand, temporal access methods have been
proposed to index data varying over time without consider-
ing space at all. The notion of time may be of two types:
transaction time (i.e., time when the fact is current in the
database and may be retrieved) and valid time (i.e., time
when the fact is true in the modeled reality) [6]. A temporal
DBMS would support at least one of these two types of time.
Thus, we distinguish among three temporal DBMSs: valid-
time (in the past called historical), transaction-time (in the
past called rollback), and bi-temporal databases. Indexing
methods are also classified according to the above taxon-
omy. A wide range of access methods has been proposed
to support multi-version/temporal data by keeping track of
data evolution over time. For excellent recent surveys on
temporal access methods see [11, 13].

Until recently the field of temporal databases and spatial
databases remained two separate worlds. However, modern
applications (e.g. geographical information systems, mul-
timedia systems, scientific and statistical databases, such
as medical, meteorological, astrophysics oriented databases)
jnvolve the efficient manipulation of moving spatial objects,
and the relationships among them. For instance, Worboys
[21] provides a survey of (mainly GIS oriented) spatio-tem-
poral applications on administrative areas, road networks,
and land ownership. Therefore, there is an emerging growing
need to study the case of “spatio-temporal databases”. Ac-
cording to the first attempt towards a specification and clas-
sification scheme for spatio-temporal access methods [17}, up
until now, only four spatio-temporal indexing methods have
appeared in the literature: 3D R-trees [16], MR-trees and
RT-trees [22], and HR-trees [12]. These approaches have the
following characteristics:

e 3D R-trees treat time as another dimension using a
state-of-the-art spatial indexing method, namely the
R-tree [5],

¢ MR-trees and HR-trees use overlapping in R-trees to
represent successive states of the database, and

e RT-trees couple time intervals with spatial ranges in
each node of the tree structure by adopting ideas from
R-trees and TSB-trees [8].

All these methods are extensions of the R-tree, which is
based on the “conservative approximation principle”, i.e.
spatial objects are indexed by considering their minimum
bounding rectangle (MBR). These methods are not suitable
Tor representing regional data, in cases where a lot of empty
{“dead™) space is introduced in the MBRs, since this fact de-
creases the index ability to prune space and objects during
a top-bottom traversal.

In the present paper, we follow a different paradigm, that
of quadtrees, by using quadcodes to decompose image data
in an exact (Le. non-rough) manner. More specifically, we
present an efficient indexing and retrieval method for re-
gional data and describe the design and implementation of
a new structure: Overlapping Linear Quadtrees. Evidently,
this structure is based on linear quadirees which are en-
hanced by using the overlapping technique in order to avoid
storing identical sub-quadrants of successive instances of im-
age data evolving over transaction time.

The rest of the paper is organized as follows. Section 2
describes the building blocks of the implementation of Over-
lapping Linear Quadirees. Section 3 describes an efficient
algorithm that uses the new structure and answers spatio-
temporal window queries. In Section 4 we present the ex-
perimental setting and show that the new structure demon-
strates a remarkable storage performance. We conclude in
Section 5, suggesting also directions for future work.

2 The new structure

The notion of overlapping consecutive instances of access
methods has been mentioned in the previous section. Except
of the cases of MR-trees and HR-trees, overlapping has been
also used in a number of occasions, where successive data
snapshots are similar. For example, it has been used as
a technique to compress similar text files [2], B-trees and
Bttrees [3, 9, 18], as well as main-memory quadtrees [19,
20] In this section, first we make a short presentation of
region quadtrees a.nd the application of overlapping to these
trees when they are stored in main memory, and second we
describe the application of overlapping to secondary memory
quadtree variations.

2.1 Region Quadirees

The region quadtree is the most popular member in the
family of quadtree-based access methods. It is used for the
representation of binary images, that is 2” x2™ binary arrays
{for a positive integer n), where 2 1 (0) entry stands for a
black (white) picture element. More precisely, it is a degree
four tree with height n, at most. Each node corresponds to
a square array of pixels {(the root corresponds to the whole
image). If all of them have the same color (black or white)
the node is a leaf of that color. Otherwise, the node is
colored gray and has four children. Each of these children
corresponds to one of the four square sub-arrays to which
the array of that node is partitioned. We assume here, that
the first (leftmost) child corresponds to the npper left sub-
array, the second to the upper right sub-array, the third
to the lower left sub-array and the fourth (rightmost) child
to the lower right sub-array. For more details regarding
quadtrees see [14]. Figure 1.c shows a quadtree for the 8 x
8 pixel array of Figure 1.a. Note that black (white) squares
vepresent black (white) leaves, whereas circles represent gray
nodes.

() (b)

330

330 000 : \

322 323 031 032 033
(d)

=)

é\.

030 032

g/&hm

T
ML ljljii Om

Figuare 1: (2),(b): two sumlar 8><8 images, (c),(d): the cor-
responding quadtrees and (e): the overlapped structure.

322 323

2.2 Overlapped Pointer Quadtrees

Region quadtrees, as presented above, can be implemented
as main memory tree structures (each node being repre-
sented as a record that points to its children). We can save
memory space by overlapping quadtrees, that is by using the
same memory area for storing common subtrees of different
trees. Consider two quadtrees that represent an image and
a variation of that image. If the two images have common
sub-images covering the same co-ordinates, the correspond-
ing subtrees of the two trees that represent these images are
identical and may be kept only once in memory, while they
belong to paths of both trees. In case there are mnot any
common sub-images between the two images we have two
distinct trees. In case the two instances are two identical
images so are the trees (the pointers to the roots of the trees
remain distinct although they point to the same node). If
there are not two images only, but a long sequence of images
representing for example a gradually changing image, com-
mon sub-structures may be shared by more than two con-
secutive trees. This sharing is transparent to the algorithms
accessing the trees. In other words, there is not any ac-
cess time overhead because of overlapping. Figures 1.a and
1.b demonstrate two similar images and Figures 1.c and 1.d
demonstrate the respective quadtrees. The result of apply-
ing overlapping to these trees is shown in Figure 1.e. Note,
that when there is a different sub-structure (which might
even be a different pixel for a certain image position) the
total path to this sub-structure is stored. This guarantees
that the access time of any node remains the same.

2.3 Overlapping Linear Quadtrees

Variations of region quadtrees have been developed for sec-
ondary memory. Linear region quadtrees are the ones used
most extensively. A linear quadtree representation consists

of a list of values where there is one value for each black node
of the pointer-based quadtree. The value of a node is an ad-
dress describing the position and size of the corresponding
block in the image. These addresses can be stored in an ef-
ficient structure for secondary memory (such as a B-tree or
one of its variations). There are also variations of this rep-
resentation where white nodes are stored too, or variations
which are suitable for multicolor images. Evidently, this rep-
resentation is very space efficient, although it is not snited to
mauny useful algorithms that are designed for pointer-based
quadtrees. The most popular linear implementations are the
FL (Fixed Length), the FD (Fixed length — Depth) and the
VL (Variable length) linear implementations [15].

In the FL implementation, the address of a black Quad-
tree node is a code-word that consists of n base 5 digits.
Codes 0, 1, 2 and 3 denote directions NW, NE, SW and SE,
respectively, while code 4 denotes a do-not-care direction.
If the black node resides on level i, where n > 7 > 0, then
the first » — 7 digits express the directions that constitute
the path from the root to this node and the last ¢ digits are
all equal to 4. In the FD implementation, the address of a2
black quadtree node has two parts: the first part is code-
word that consists of n base 4 digits. Codes 0, 1, 2 and 3
denote directions NW, NE, SW and SE, respectively. This
code-word is formed in a similar way to the code-wozrd of the
FI-linear implementation with the difference that the last i
digits are all equal to 0. The second part of the address has
[loga{n + 1)] bits and denotes the depth of the black node,
or in other words, the number of digits of the first part that
express the path to this node. In the VL implementation
the address of a black quadtree node is a code-word that
consists of at most n base 3 digits. Code 0 is not used
in addresses, while codes 1, 2, 3 and 4 denote one of the
four directions each. If the black node resides on level ¢z,
where n > ¢ > 0, then its address consists of n — i digits
expressing the directions that constitute the path from the
root to this node. The depth of a node can be calculated by
finding the smallest value equal to a power of 5 that gives
0 quotient when the address of this node is divided (using
integer division) with this value.

Each quadtree, in a sequence of quadtrees modeling time
evolving images, can be represented in secondary memory by
storing its linear FD codes in a B¥tree. The new structure,
called Overlapping Linear Quadtrees, is formed by overlap-
ping consecutive Btrees. Since in the same quadtree two
black nodes that are ancestor and descendant cannot co-
exist, two FD linear codes that coinade at all the directional
digits cannot exist neither. This means that the directional
part of the FD codes is sufficient for building B¥trees at all
the levels. At the leaf-level, the depth of each black node
should also be stored so that images are accurately repre-
sented and that overlapping can be correctly applied. In
Figures 1.c and 1.d you can see the directional code of each
black node of the two depicted trees. The above part of
TFigure 2 depicts the B¥trees that correspond to the trees of
Figures 1.c and 1.d and the below part depicts the resulting
overlapped linear structure. Note that in Overlapping Lin-
ear Quadtrees there is no extra cost for accesses in a specific
linear quadtree.

The choice of FD linear representation, instead of the
other two linear representations, is not accidental. The FD
linear representation is made of base 4 digits and is thus
casily handled using two bits for each digit. Besides, the
sorted sequence of FD linear codes is a depth-first traversal
of the tree. Since internal and white nodes are omitted, this
means that sibling black nodes are stored consecutively in

032 330 032 330
000 032 322 330 000 032 322 330
030 —_ 323 — 031 033 323 -
AN Z
032 330 032
000 032 322 330 000 032
030 — 323 - 031 033

Figure 2: Two B¥trees storing linear quadiree codes and
the corresponding linear overlapped structure.

the Bttree and there is increased probability for the same
image part to reside in the same leaf between consecutive
Bttrees. This property maximizes the probability that a
leaf will not change and will be overlapped between consec-
utive Bttrees, since consecutive images have large identical
parts. In order to make this probability even higher, the
Bttree leaves hold a small number of codes (a few black
nodes are very likely to remain unchanged). Note, also,
that in our implementation a disk page may host a number
of consecutive Bt tree leaves.

During an image update, a number of FD quadcode dele-
tions from, and a number of FD quadcode insertions into
the last B*tree instance has to be performed. However,
as usually happens, given a new image, we do not know
beforehand which exactly are the quadcode insertions and
deletions. Thus, we face image updates in two stages. The
first stage is to sort the quadcodes of the new image version
and compare this sequence against the set of quadcodes of
the last image version, which resides in a binary table (see
Section 4 for details). The next stage follows the approach
of [7], and builds the new tree instance by performing these
insertions/deletions in a batched manner, instead of per-
forming them one at a time.

A consequence of this technique is that a specific B
tree leaf may accept a number of quadcode insertions much
greater than the number of available free slots. Thus, a
specific leaf may split in more than two nodes. In a simi-
lar manner, more than two Btree consecutive leaves may
merge during quadcode deletions.

On top of Overlapping Linear Quadtrees, another tree
structure is used to index transaction-time values and to
point to the roots of the respective B¥trees. This tree struc-
ture has a reasonable size, hence it can be stored in main
memory. All nodes of Overlapping Linear Quadtrees have
an extra field, called “StartTime”, that can be used to detect
whether a node is being shared by other trees. We assign
a value to StartTime during the creation of the correspond-
ing node and there is no need for future modification of this
field. Moreover, leaf-nodes have one more extra field, called
“EndTime”, that is used to register the transaction time

when a specific leaf changes and becomes historical.

In order to keep track of the image evolution (in other
words, the evolution of quadcodes) and efficiently satisfy
spatio-temporal queries over the stored raster images, we
embed some additional horizontal pointers in the B¥tree
leaves. This way there will be no need to top-down traverse
consecutive tree instances to search for a specific quadcode,
thus avoiding excess page accesses. More specifically, we em-
bed four additional pointers in every B¥ tree leaf to support
spatio-temporal queries. Names and roles of these pointers
are:

B-pointer is used during a temporal query to traverse the
structure backwards. When not-null, it points to a his-
torical leaf from the previous tree instance. The node
accommodating a not-null B-pointer has been created
after a merge/split/update of that historical node.

BC-pointer is also used during a temporal query to tra-
verse the structure backwards. The node accommo-
dating a not-null BC-pointer is always historical. BC-
pointer always refers to a historical leaf of the same
tree instant. This field is involved in the merge proce-
dure.

F-pointer is used during a temporal query to traverse the
structure forwards. The node which accommodates a
not-null F-pointer is always historical. In such a case
F-poluter points to a successive tree instant leaf, which
had been created from this specific historical node after
a split /merge/update.

FC-pointer is also used during 2 temporal query to tra-
verse the structure forwards. When this pointer is
not-null, it points to a node of the same tree instant,
which had been created after a split.

B BC FC F
Liylece -], [=
T ==
HE e cecel (1]
= Y = =2
T oo el T3
I ‘T INS C;-Cy1
L

[sCaoCa - {1 [
pu

!
=

DEL Cg-Cg
1=3 Cay Cg- -
& C30-Cna 37

Figure 3: Forward and backward chaining for the support
of temporal queries.

Figure 3 shows how the leaves of three successive B¥trees
can be forward- and backward-chained to support temporal
queries. The leaf on the left-top corner of the figure corre-
sponds to the first time instant, =1, and contains the FD
codes C;=002/3, C»,=003/3 and C3=302/3 (the form of the
codes is direction/depth). Suppose that during time in-
stant =2, eight quadcodes with keys C;=030/3, Cs=031/3,
Ce=032/3, Cr=200/2, Cs=211/3, Co=330/3, C10=331/3,
and C;1=332/3 are inserted. In such a case, we have a node
split. In other words, we have to allocate three new B¥tree

leaves at time instant ¢=2, in order to accommodate eleven
quadcodes in total. The leaf in question of time instant =1
is connected to the first of these three new nodes by using
the F-pointer field, whereas the FC-pointer field is used to
chain together the three new nodes. During time instant
1=3, a set of 5 quadcodes is deleted, namely the quadcodes
with key values Cg, C7, Cs, C1o and Cyi. Thus, two nodes
of the tree corresponding to time instant =2 are merged to
produce a new node as depicted in the figure. B-pointer and
BC-pointer fields are maintained accordingly.

The structure of Overlapping Linear Quadtrees presents
small differences from the structure of Overlapping B trees.
The former structure has an auxiliary substructure, a binary
table that keeps the set of quadcodes of the last image ver-
sion (see Section 4 for details). Besides, a disk page may
host a number of consecutive Bttree leaves. On the other
hand in the latter structure there is a direct correspondence
between pages and leaves, assuming that each leaf entry is
accompanied with extra data related to it. Nevertheless,
Overlapping Linear Quadtrees are used in a completely dif-
ferent context than Overlapping B*trees: they do not store
ordinary numeric data, but they store quadcodes that repre-
sent image parts and they are used for answering temporal
window queries (see the next section). More details about
Overlapping B*trees and their use can be found in [18].

3 Temporal Window Query Processing

In Spatial Databases and Geographical Information Systems
there exists the need for processing a significant number of
different spatial queries. For example, nearest neighbor find-
ing, similarity queries, spatial joins of various kinds, window
queries, etc. In this section we provide a solution for the
temporal window strict containment query and the temporal
window partially overlap query for evolving regional data.
Given a window belonging in the area covered by our im-
ages and a time interval the following spatio-temporal query
may be expressed:

¢ Find the black regions of the window at all the time
points within the interval.

Although this kind of query is very likely to be made by
users, no efficient method for its processing has been pre-
sented so far. In this subsection, we present such a method
as a sequence of steps.

1. The window is broken into maximal sub-quadrants, as
if it were a black region represented by a region quadtree.

2. For each of these sub-windows, the smallest and largest
directional codes that may appear in the sub-window are
computed. The range of these codes includes all the codes
of the black sub-quadrants that are strictly included within
the sub-window. A respective range search is performed in
the Bt tree of the first time point and the leaves that either
contain such codes or would contain them if they had been
inserted are discovered. The codes that fall within the above
range and appear in these nodes are the black sub-quadrants
that are strictly contained within the window for the specific
time point.

3. For each leaf discovered, following the F-pointer at
first step and the chain of FC-pointers at second step, the
leaves that evolve from this leaf at the next time point are
discovered. The leaves that do not intersect with the range
specified in step 2 are discarded from further consideration.
The codes that fall within this range and appear in the re-
maining leaves are the black sub-quadrants that are strictly
contained within the sub-window for the specific time point.

We proceed to the tree for the next time point by repeating
step 3 for each remaining leaf. We stop when we reach the
last time point of the time interval.

An analogous procedure could be followed by starting
from the end of the time interval and by using the B-pointer
and BC-pointers.

Note that the above procedure finds all the black sub-
quadrants that fall strictly within the query window. In
order to be able to find black regions that partially overlap
with the window, the directional codes for all the ances-
tors of the sub-windows specified in step 1 must be calca-
lated. Since an ancestor may be common to two or more
sub-windows, duplicate entries must be eliminated. Then,
the leaves of the B tree for the first time point that either
contain such codes or would contain them if they had been
inserted are discovered. These leaves are treated in a similar
manner as the leaves that concern strictly contained black
sub-quadrants (step 3).

An alternative algorithm for answering this spatio-tem-
poral query would be to perform a suitable range search for
all the trees that correspond to the given time interval. By
intuition, we claim that the algorithm presented, when ap-
plied to a sequence of similar images, will demonstrate an
O(# of leaves needed for answering the query -+ range search
at the first tree) time performance on the average. The alter-
native algorithm will perform in time that is O(range search
at the 1st tree + range search at the 2nd tree +...+ range
search at the last tree). Thus, the algorithm presented is
very promising in terms of expected execution time. Its the-
oretical performance analysis is among the issues currently
studied by the authors.

4 Experiments

We implemented the structure of Overlapping Linear Quad-
trees in C++. The maximum and minimum capacity of
internal nodes {leaves) were 250 and 125 keys (10 and 5 FD
codes), respectively. Therefore, with a page size of 2.048
bytes, the size of each internal node (leaf) was one (1/20
of a) page. The size of our images was 256 x 256 pixels
and we used the algorithm OPTIMAL BUILD described in
[15] for converting the images from raster to linear FD rep-
resentation. Every experiment was repeated 50 times using
a pair of similar images. At the start, the first image was
created and its FD codes were inserted in an empty B tree.
The codes were inserted one at a time, as they were pro-
duced by OPTIMAL_BUILD. Thus, we obtained the result
of a typical Bttree with average storage utilization equal
to In2. Next, the second image was created as an alterna-
tion of the first image and its FD codes were inserted in
the second Bttree, so that the identical subirees between
the two trees overlapped. The codes were first sorted in in-
creasing order, so that an algorithm which performs batch
modifications (Le. insertions, deletions and updates), along
the lines of [7], could be used. There was no I/O cost for
black quadrants that were identical between the two con-
secutive images, since, by keeping the quadcodes of the last
inserted image in 2 main memory compacted binary array
{256 x 256/8 bytes), we were able to sort out the respective
identical ¥D codes.

The main goal of our experiments was to count the aver-
age storage gain measured as a ratio of the number of com-
mon Bttree nodes between the two images over the number
of the B¥tree nodes of the second image. The parameters
that varied in our experiments were:

o The black/white analogy, i.e. the percentage of the
black pixels (from 50% up to 95%) for the creation of
the first random image. Note that a random image
is not considered very realistic when the black/white
analogy does not differ significantly from 50%, since
the image created includes very small unicolor regions
and corresponds to an almost full quadtree.

o The aggregation coeflicient agg(l) of an image I. This
quantity has been defined and studied in [10] and ex-
presses the coherence of unicolor regions of the image.
Starting from a random image and using the algorithm
presented in [10], an image with the same black/white
analogy and higher aggregation (more realistic) can be
created.

o The image difference, the percentage of pixels changing
value from the first image to the consecutive one (from
2% to 10%). Note that the random changing of sin-
gle pixels is an extreme method of producing evolving
images and the results produced by this policy should
be seen as very pessimistic. In practice, much higher
storage gains are expected.

80 T — T T T T T T

T
2% ——

70

60

50

40

Storage galn (%)

30

20

10

50 55 60 65 70 75 80 85 90 95 100
Black pixel probability (%)

100 T T T T T T T T T

20 4% +— A

Percentage of common FD codes (%)

0 2] 1 I I 1 I 1 1

50 55 60 65 70 75 80 8 90 95 100
Black pixel probability (%)

Figure 4: The storage gain and the percentage of common
FD codes (obtained during the first experiment) as a func-
tion of black probability, for various change percentages.

First ezperiment. This experiment concerned random
images of various black/white analogies, the aggregation
of which remained unchanged. Each image was randomly
changed and overlapped with its changed version. The up-
per part of Figure 4 depicts the average storage gain as a
function of black/white analogy for the first image of each
pair, for various change percentages. The lower part of this
figure depicts the average percentage of common FD codes
between the images of each pair. In most cases, the storage
gain is significant and varies between 20% and over 70%,
according to the change probability. The abrupt decrease
of the common disk space after the 85% black percentage
is explained by the fact that images with 85% black pixels
and higher, form many large and solid black spatial regions
(“islands™). Thus, when we change the color of the 2% (for
instance) of the pixels of this image in order to produce the
consecutive image, many of these islands are fragmented,
producing different quadrants. It is evident that all the
curves of Fignre 4 converge to point (100,6).

80 T T T T T T T
e
LA —
70 + so: = |
8% —»—
B0 + 10% ——
£ s0f 1
£
S 4014
o 40F 4
o
[
Q .
3 30
20 F 1
10+ k
06 08 07 075 08 08 09 095 1
Aggregation Coefficient
80 T T T
£
o]
o -
o]
o
g
=) R
15

0.8 0.85 0.9 0.95 1
Aggregation Coefficient

Figure 5: The storage gain as a function of aggregation (ob-
tained during the second experiment), for various change
percentages. The images were 60% black (above) and 80%
black (below).

Second experiment. This experiment concerned random
images of various black/white analogies, the aggregation of
which was increased at various amounts. Then, each im-

age was randomly changed and overlapped with its changed
version. Since a large amount of results was produced, Fig-
ure 5 depicts for two cases only (for images being 60% black,
above and 80% black, below) the storage gain as a function
of aggregation for various change percentages.

80 T T T T T T T T T
50% ——
60% ——
70 70% —=—1
80:/u -
60 -
. NI5% —*—
&£ 50 .
£ \
S
o 40 E
[=2]
o
o -
4 30
20 E
a
i
10 ¥
0 . : . . R . . : .
05 055 06 065 0.7 075 08 0.85 09 09 1
Aggregation Coefficient
40
35
30
8 2
£
=3
> 20
o
]
[=]
a2 15
10
5
0 . : : . . : . . e
05 055 06 065 07 075 08 085 08 095 1
Aggregation Coefficient

Figure 6: The storage gain as a function of aggregation
(obtained during the second experiment), for various black
probabilities. The change percentage was 2% (a2bove) and
8% (below).

Figure 6 was based on the data produced by the same
experiment. The difference in this figure is that in each
plotted line the black/white analogy was stable (while in
Figure 5 the change percentage was stable). Again, for two
cases only (for change percentage equal to 2%, above and to
8%, below) the storage gain as a function of aggregation for
various black probabilities is depicted. In this experiment,
the storage gain is significant also and, in most cases, varies
between 15% and 70%, according to the change probability.
The decrease of the percentage of the common disk-space
inversely to the increase of the coefficient of the aggregation
took place, for the same reason that was described in the
first experiment.

5 Conclusions

In the present report, we presented a new structure: Over-
lapping Linear Quadtrees, which may be used as an access
mechanism for consecutive transaction-time raster images.
Experimentation with synthetic region data revealed that
considerable storage is saved with respect to the case of in-
dependent linear quadtrees when used to store similar con-
secutive images. An efficient algorithm that takes advantage
of the new structure and answers spatio-temporal window
queries was also presented. Therefore, this structure can be
used in spatio-temporal databases to support query process-
ing of evolving images.

In the future, we plan to examine the structure of multi-
version B-Trees [1] by accommodating quadcodes imstead
of ordinary numeric data, and pursue an experimental per-
formance comparison for these compatible methods (com-
patible in the sense that they do not follow the “conmser-
vative approximation principle”, but use instead quadcodes
to decompose and store image data). Also, important is to
examine the performance of Overlapping Linear Quadtrees
in the context of various spatio-temporal operations, such
as spatio-temporal joins, as well as spatio-temporal nearest
neighbor queries [17).

Acknowledgments

The authors would like to thank Alex Nanopoulos for his
useful comments during the development of this work. The
second author, who is a Post-doctoral Scholar of the State
Scholarship Foundation of Greece, would like to thank this
foundation for its financial assistance.

References

1] B. Becker, S. Gschwind, T. Ohler, B. Seeger and P. Wid-
mayer: “An Asymptotically Optimal Multiversion B-tree”,
The VLDB Journal, Vol.5, No.4, pp.264-275, 1996.

[2] F.W. Burton, M.W. Huntbach and J. Kollias: “Multiple
Generation Text Files Using Overlapping Tree Structures”,
The Computer Journal, Vol.28, No.4, pp.414-416, 1985.

[3] F.W. Burton, J.G. Kollias, V.G. Kollias and D.G. Matsakis:
“Implementation of Overlapping B-trees for Time and Space
Efficient Representation of Collection of Similar Files”, The
Computer Journal, Vol.33, No.3, pp.279-280, 1990.

] V. Gaede and O. Guenther: “Multidimensional Access
Methods”, ACA! Computer Surveys, to appear. Address
for downloading: http://www.wiwi.hu-berlin.de/~gaede/
survey.rev.ps.Z.

5] A. Guttman: “R-trees- a Dynamic Index Structure for Spa-
tial Searching”, Proceedings of the ACM SIGMOD Confer-
ence, pp.47-57, Boston MA, 1984.

6] C.S. Jensen, J. Clifford, R. Elmasri, S.K. Gadia, P. Hayes
and 8. Jajodia (ed.): “A Consensus Glossary of Temporal
Database Concepts”, ACM SIGMOD Record, Vol.23, No.1,
pp.52-64, 1994,

[7] S.D. Lang and J.R. Driscoll: “Improving the Differential
File Technique via Batch Operations for Tree Structured
File Organizations™, Proceedings of the IEEE International
Conference on Data Engincering, 1986.

[8] D. Lomet and B. Saltzberg: “Access Methods for Multi-
version Data”, Proceedings of ACM SIGMOD Conference,
Pp-315-324, Portland OR, 1989.

[9] Y. Manolopoulos and G. Kapetanakis: “Overlapping B4~
trees for Temporal Data”, Proceedings of the 5th Jerusalem
Conference on Information Technology (JCIT), pp.491-498,
Jerusalem, Israel, 1990.

[10] Y. Manolopoulos, E. Nardelli, G. Proietti and M. Vas-
silakopoulos: “On the Generation of Aggregated Ran-
dom Spatial Regions”, Proceedings of the 4th International
Conference on Information and Knowledge Management
(CIKM), pp.318-325, Washington DC, 1995.

[11] M. Nascimento and M. Eich: “An Introductory Survey to
Indexing Techniques for Temporal Databases”, Southern
Methodist University, Technical Report, 1995.

[12] M.A. Nascimento and J.R.O. Silva: “Towards Historical R~
trees”, Proceedings of ACM Symposium on Applied Com-
puting (ACM-SAC), 1998.

[13] B. Saltzbergand V. Tsotras: “A Comparison of Access Me-
thods for Time Evolving Data”, ACM Computing Surveys,
to appear. Address for downloading: ftp://ftp.ccs.neu.edu/
pub/people/salzberg/tempsurvey.ps.gz.

[14] H. Samet: “The Design and Analysis of Spatial Data Struc-
tures”, Addison- Wesley, Reading MA, 1990.

[15] H. Samet: “Applications of Spatial Data Structures”, Addi-
son-Wesley, Reading MA, 1990.

[16] Y. Theodoridis, M. Vazirgiannis and T. Sellis: “Spatio-
Temporal Indexing for Large Multimedia Applications”,
Proceedings of the 3rd IEEE Conference on Multimedia
Computing and Systems (ICMCS), 1996.

[17] Y. Theodoridis, T. Sellis, A. Papadopoulos and Y. Mano-
lopoulos: “Specificationsfor Efficient Indexingin Spatiotem-
poral Databases™, Proceedings of the 7th Conference on Sta-
tistical and Scientific Database Management Systems (SS-
DBM), pp.123-132, Capri, Italy, 1998.

[18] T. Tzouramanis, Y. Manolopoulosand N. Lorentzos: “Over-
lapping B+-trees - an Implementation of a Transaction Time
Access Method”, submitted.

[19] M. Vassilakopoulos, Y. Manolopoulos and K. Economou:
“Overlapping for the Representation of Similar Images”, Im-
age and Vision Computing, Vol.11, No.5, pp.257-262, 1993.

[20] M. Vassilakopoulos, Y. Manolopoulos and B. Kroell: “Effi-
clency Analysis of Overlapped Quadtrees”, Nordic Journal
of Computing, Vol.2, pp.70-84, 1995.

[21] ML.F. Worboys: “A Unified Model for Spatial and Temporal
Information”, The Computer Journal, Vol.37, No.1, pp.26-
34, 1994.

[22] X. Xu, J. Han, and W. Lu: “RT-tree - an Improved R-tree
Index Structure for Spatiotemporal Databases”, Proceedings
of the 4th International Symposium on Spatial Data Han-
dling (SDH), 1990.

