
Content-based Dimensionality Reduction

for Recommender Systems

Panagiotis Symeonidis

Aristotle University, Department of Informatics, Thessaloniki 54124, Greece
symeon@csd.auth.gr

Abstract. Recommender Systems are gaining widespread acceptance in e-commerce
applications to confront the information overload problem. Collaborative Filtering
(CF) is a successful recommendation technique, which is based on past ratings of
users with similar preferences. In contrast, Content-based Filtering (CB) exploits in-
formation solely derived from document or item features (e.g. terms or attributes).
CF has been combined with CB to improve the accuracy of recommendations. A
major drawback in most of these hybrid approaches was that these two techniques
were executed independently. In this paper, we construct a feature profile of a user
based on both collaborative and content features. We apply Latent Semantic Index-
ing (LSI) to reveal the dominant features of a user. We provide recommendations
according to this dimensionally-reduced feature profile. We perform experimental
comparison of the proposed method against well-known CF, CB and hybrid algo-
rithms. Our results show significant improvements in terms of providing accurate
recommendations.

1 Introduction

Collaborative Filtering (CF) is a successful recommendation technique. It is
based on past ratings of users with similar preferences, to provide recom-
mendations. However, this technique introduces certain shortcomings. For in-
stance, if a new item appears in the database, there is no way to be recom-
mended before it is rated.

In contrast, Content-Based filtering (CB) exploits only information derived
from document or item features (e.g., terms or attributes). Latent Semantic
Indexing (LSI) has been extensively used in the CB field, in detecting the
latent semantic relationships between terms and documents. LSI constructs a
low-rank approximation to the term-document matrix. As a result, it produces
a less noisy matrix which is better than the original one. Thus, higher level
concepts are generated from plain terms.

Recently, CB and CF have been combined to improve the recommendation
procedure. Most of these hybrid systems are process-oriented: they run CF on
the results of CB and vice versa. CF exploits information from the users and



2 Panagiotis Symeonidis

their ratings. CB exploits information from items and their features. However
being hybrid systems, they miss the interaction between user ratings and item
features.

In this paper, we construct a feature profile of a user to reveal the duality
between users and features. For instance, in a movie recommender system, a
user prefers a movie for various reasons, such as the actors, the director or
the genre of the movie. All these features affect differently the choice of each
user. Then, we apply Latent Semantic Indexing Model (LSI) to reveal the
dominant features of a user. Finally, we provide recommendations according
to this dimensionally-reduced feature profile. Our experiments with a real-life
data set show the superiority of our approach over existing CF, CB and hybrid
approaches.

The rest of this paper is organized as follows: Section 2 summarizes the
related work. The proposed approach is described in Section 3. Experimental
results are given in Section 4. Finally, Section 5 concludes this paper.

2 Related Work

In 1994, the GroupLens system implemented a CF algorithm based on com-
mon users preferences. Nowadays, this algorithm is known as user-based CF.
In 2001, another CF algorithm was proposed. It is based on the items’ similar-
ities for a neighborhood generation. This algorithm is denoted as item-based
CF.

The Content-Based filtering approach has been studied extensively in
the Information Retrieval (IR) community. Recently, Schult and Spiliopoulou
(2006) proposed the Theme-Monitor algorithm for finding emerging and per-
sistent themes in document collections. Moreover, in IR area, Furnas et al.
(1988) proposed LSI to detect the latent semantic relationship between terms
and documents. Sarwar et al. (2000) applied dimensionality reduction for the
user-based CF approach.

There have been several attempts to combine CB with CF. The Fab Sys-
tem (Balabanovic et al. 1997), measures similarity between users after first
computing a content profile for each user. This process reverses the Cine-
maScreen System (Salter et al. 2006) which runs CB on the results of CF.
Melville et al. (2002) used a content-based predictor to enhance existing user
data, and then to provide personalized suggestions though collaborative filter-
ing. Finally, Tso and Schmidt-Thieme (2005) proposed three attribute-aware
CF methods applying CB and CF paradigms in two separate processes before
combining them at the point of prediction.

All the aforementioned approaches are hybrid: they either run CF on the
results of CB or vice versa. Our model, discloses the duality between user rat-
ings and item features, to reveal the actual reasons of their rating behavior.
Moreover, we apply LSI on the feature profile of users to reveal the princi-
pal features. Then, we use a similarity measure which is based on features,
revealing the real preferences of the user’s rating behavior.



Content-based Dimensionality Reduction for Recommender Systems 3

3 The Proposed Approach

Our approach constructs a feature profile of a user, based on both collaborative
and content features. Then, we apply LSI to reveal the dominant features
trends. Finally, we provide recommendations according to this dimensionally-
reduced feature profile of the users.

3.1 Defining Rating, Item and Feature Profiles

CF algorithms process the rating data of the users to provide accurate rec-
ommendations. An example of rating data is given in Figures 1a and 1b. As
shown, the example data set (Matrix R) is divided into a training and test
set, where I1−12 are items and U1−4 are users. The null cells (no rating) are
presented with dash and the rating scale is between [1-5] where 1 means strong
dislike, while 5 means strong like.

Definition 1 The rating profile R(Uk) of user Uk is the k-th row of matrix
R.

For instance, R(U1) is the rating profile of user U1, and consists of the
rated items I1,I2,I3,I4,I8 and I10. The rating of a user u over an item i is
given from the element R(u, i) of matrix R.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

U1 5 3 5 4 - 1 - 3 - 5 - -

U2 3 - - - 4 5 1 - 5 - - 1

U3 1 - 5 4 5 - 5 - - 3 5 -

(a)

f1 f2 f3 f4

I1 1 1 0 0

I2 1 0 0 0

I3 1 0 1 1

I4 1 0 0 1

I5 0 1 1 0

I6 0 1 0 0

I7 0 0 1 1

I8 0 0 0 1

I9 0 1 1 0

I10 0 0 0 1

I11 0 0 1 1

I12 0 1 0 0

(c)

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

U4 5 - 1 - - 4 - - 3 - - 5

(b)

Fig. 1. (a) Training Set (n × m) of Matrix R, (b) Test Set of Matrix R, (c) Item-
Feature Matrix F

As described, content data are provided in the form of features. In our
running example illustrated in Figure 1c for each item we have four features
that describe its characteristics. We use matrix F , where element F (i, f) is
one, if item i contains feature f and zero otherwise.

Definition 2 The item profile F (Ik) of item Ik is the k-th row of matrix F .



4 Panagiotis Symeonidis

For instance, F (I1) is the profile of item I1, and consists of features F1

and F2. Notice that this matrix is not always boolean. Thus, if we process
documents, matrix F would count frequencies of terms.

To capture the interaction between users and their favorite features, we
construct a feature profile composed of the rating profile and the item profile.

For the construction of the feature profile of a user, we use a positive
rating threshold, Pτ , to select items from his rating profile, whose rating is
not less than this value. The reason is that the rating profile of a user consists
of ratings that take values from a scale(in our running example, 1-5 scale).
It is evident that ratings should be “positive”, as the user does not favor an
item that is rated with 1 in a 1-5 scale.

Definition 3 The feature profile P (Uk) of user Uk is the k-th row of matrix
P whose elements P (u,f) are given by Equation 1.

P (u, f) =
∑

∀R(u,i)>Pτ

F (i, f) (1)

In Figure 2, element P (Uk,f) denotes an association measure between user
Uk and feature f . In our running example (with Pτ = 2), P(U2) is the feature
profile of user U2, and consists of features f1, f2 and f3. The correlation of a
user Uk over a feature f is given from the element P (Uk, f) of matrix P . As
shown, feature f2 describe him better, than feature f1 does.

f1 f2 f3 f4

U1 4 1 1 4

U2 1 4 2 0

U3 2 1 4 5

(a)

f1 f2 f3 f4

U4 1 4 1 0

(b)

Fig. 2. User-Feature matrix P divided in (a) Training Set (n × m), (b) Test Set

3.2 Applying SVD on Training Data

Initially, we apply Singular Value Decomposition (SVD) on the training data
of matrix P that produces three matrices based on Equation 2, as shown in
Figure 3:

Pn×m = Un×n · Sn×m · V
′

m×m (2)

4 1 1 4

1 4 2 0

2 1 4 5

Pn×m

-0.61 0.28 -0.74

-0.29 -0.95 -0.12

-0.74 0.14 0.66

Un×n

8.87 0 0 0

0 4.01 0 0

0 0 2.51 0

Sn×m

-0.47 -0.28 -0.47 -0.69

0.11 -0.85 -0.27 0.45

-0.71 -0.23 0.66 0.13

-0.52 0.39 -0.53 0.55

V ′
m×m

Fig. 3. Example of: Pn×m (initial matrix P), Un×m (left singular vectors of P),
Sn×m (singular values of P), V ′

m×m (right singular vectors of P).



Content-based Dimensionality Reduction for Recommender Systems 5

3.3 Preserving the Principal Components

It is possible to reduce the n × m matrix S to have only c largest singular
values. Then, the reconstructed matrix is the closest rank-c approximation of
the initial matrix P as it is shown in Equation 3 and Figure 4:

P ∗

n×m = Un×c · Sc×c · V
′

c×m (3)

2.69 0.57 2.22 4.25

0.78 3.93 2.21 0.04

3.17 1.38 2.92 4.78

P ∗

n×i

-0.61 0.28

-0.29 -0.95

-0.74 0.14

Un×c

8.87 0

0 4.01

Sc×c

-0.47 -0.28 -0.47 -0.69

0.11 -0.85 -0.27 0.45

V ′
c×m

Fig. 4. Example of: P ∗
n×m (approximation matrix of P), Un×c (left singular vectors

of P ∗), Sc×c (singular values of P ∗), V ′
c×m (right singular vectors of P ∗).

We tune the number, c, of principal components (i.e., dimensions) with the
objective to reveal the major feature trends. The tuning of c is determined by
the information percentage that is preserved compared to the original matrix.

3.4 Inserting a Test User in the c-dimensional Space

Given the current feature profile of the test user u as illustrated in Figure 2b,
we enter pseudo-user vector in the c-dimensional space using Equation 4. In
our example, we insert U4 into the 2-dimensional space, as shown in Figure 5:

unew = u · Vm×c · S
−1

c×c
(4)

-0.23 -0.89

unew

1 4 1 0

u

-0.47 0.11

-0.28 -0.85

-0.47 -0.27

-0.69 0.45

Vm×c

0.11 0

0 0.25

S−1
c×c

Fig. 5. Example of: unew (inserted new user vector), u (user vector), Vm×c (two
left singular vectors of V), S−1

c×c (two singular values of inverse S).

In Equation 4, unew denotes the mapped ratings of the test user u, whereas
Vm×c and S−1

c×c
are matrices derived from SVD. This unew vector should be

added in the end of the Un×c matrix which is shown in Figure 4.

3.5 Generating the Neighborhood of users/items

In our model, we find the k nearest neighbors of pseudo user vector in the c-
dimensional space. The similarities between train and test users can be based
on Cosine Similarity. First, we compute the matrix Un×c · Sc×c and then we
perform vector similarity. This n×c matrix is the c-dimensional representation
for the n users.



6 Panagiotis Symeonidis

3.6 Generating the top-N recommendation list

The most often used technique for the generation of the top-N list, is the
one that counts the frequency of each positively rated item inside the found
neighborhood, and recommends the N most frequent ones. Our approach
differentiates from this technique by exploiting the item features. In particular,
for each feature f inside the found neighborhood, we add its frequency. Then,
based on the features that an item consists of, we count its weight in the
neighborhood. Our method, takes into account the fact that, each user has
his own reasons for rating an item.

4 Performance Study

In this section, we study the performance of our Feature-Weighted User Model
(FRUM) against the well-known CF, CB and a hybrid algorithm. For the
experiments, the collaborative filtering algorithm is denoted as CF and the
content-based algorithm as CB. As representative of the hybrid algorithms,
we used the Cinemascreen Recommender Agent (SALTER et al. 2006), de-
noted as CFCB. Factors that are treated as parameters, are the following:
the neighborhood size (k, default value 10), the size of the recommendation
list (N , default value 20) and the size of train set (default value 75%). Pτ

threshold is set to 3. Moreover, we consider the division between training and
test data. Thus, for each transaction of a test user we keep the 75% as hidden
data (the data we want to predict) and use the rest 25% as not hidden data
(the data for modeling new users). The extraction of the content features has
been done through the well-known internet movie database (imdb). We down-
loaded the plain imdb database (ftp.fu-berlin.de - October 2006) and selected
4 different classes of features (genres, actors, directors, keywords). Then, we
join the imdb and the Movielens data sets. The joining process lead to 23
different genres, 9847 keywords, 1050 directors and 2640 different actors and
actresses (we selected only the 3 best paid actors or actresses for each movie).
Our evaluation metrics are from the information retrieval field. For a test user
that receives a top-N recommendation list, let R denote the number of rel-
evant recommended items (the items of the top-N list that are rated higher
than Pτ by the test user). We define the following: Precision is the ratio of R
to N .Recall is the ratio of R to the total number of relevant items for the test
user (all items rated higher than Pτ by him). In the following, we also use
F1 = 2 · recall · precision/(recall + precision). F1 is used because it combines
both precision and recall.

4.1 Comparative Results for CF, CB, CFCB and FRUM
Algorithms

For the CF algorithms, we compare the two main cases, denoted as user-
based (UB) and item-based (IB) algorithms. The former constructs a user-user



Content-based Dimensionality Reduction for Recommender Systems 7

similarity matrix while the latter, builds an item-item similarity matrix. Both
of them, exploit the user ratings information(user-item matrix R). Figure 6a
demonstrates that IB compares favorably against UB for small values of k.
For large values of k, both algorithms converge, but never exceed the limit of
40% in terms of precision. The reason is that as the k values increase, both
algorithms tend to recommend the most popular items. In the sequel, we will
use the IB algorithm as a representative of CF algorithms.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100
k

UB IB

p
r
e
c
i
s
i
o
n

(a)

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100
k

ACTOR DIRECTOR GENRE KEYWORD

p
r
e
c
i
s
i
o
n

(b)

58

60

62

64

66

68

70

10 20 30 40 50 60 70 80 90 100
k

P
r
e
c
i
s
i
o
n

FRUM-70 FRUM-30 FRUM-10

(c)

Fig. 6. Precision vs. k of: (a) UB and IB algorithms, (b) 4 different feature classes,
(c) 3 different information percentages of our FRUM model

For the CB algorithms, we have extracted 4 different classes of features
from the imdb database. We test them using the pure content-based CB algo-
rithm to reveal the most effective in terms of accuracy. We create an item-item
similarity matrix based on cosine similarity applied solely on features of items
(item-feature matrix F). In Figure 6b, we see results in terms of precision for
the four different classes of extracted features. As it is shown, the best perfor-
mance is attained for the “keyword” class of content features, which will be
the default feature class in the sequel.

Regarding the performance of our FRUM, we preserve, each time, a dif-
ferent fraction of principal components of our model. More specifically, we
preserve 70%, 30% and 10% of the total information of initial user-feature
matrix P. The results for precision vs. k are displayed in Figure 6c. As shown,
the best performance is attained with 70% of the information preserved. This
percentage will be the default value for FRUM in the sequel.

In the following, we test FRUM algorithm against CF, CB and CFCB
algorithms in terms of precision and recall based on their best options. In
Figure 7a, we plot a precision versus recall curve for all four algorithms. As
shown, all algorithms’ precision falls as N increases. In contrast, as N in-
creases, recall for all four algorithms increases too. FRUM attains almost
70% precision and 30% recall, when we recommend a top-20 list of items. In
contrast, CFCB attains 42% precision and 20% recall. FRUM is more robust
in finding relevant items to a user. The reason is two-fold:(i) the sparsity has
been downsized through the features and (ii) the LSI application reveals the
dominant feature trends.



8 Panagiotis Symeonidis

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21 24 27 30

Recall

CF CB CFCB FRUM

p
r
e
c
i
s
i
o
n

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

15 30 45 60 75
training set size (perc.)

F
1

CF CB CFCB FRUM

(b)

Fig. 7. Comparison of CF, CB, CFCB with FRUM in terms of (a) precision vs.
recall (b) training set size.

Now we test the impact of the size of the training set. The results for the
F1 metric are given in Figure 7b. As expected, when the training set is small,
performance downgrades for all algorithms. FRUM algorithm is better than
the CF, CB and CFCB in all cases. Moreover, low training set sizes do not
have a negative impact on measure F1 of the FRUM algorithm.

5 Conclusions

We propose a feature-reduced user model for recommender systems. Our ap-
proach builds a feature profile for the users, that reveals the real reasons
of their rating behavior. Based on LSI, we include the pseudo-feature user
concept in order to reveal his real preferences. Our approach outperforms sig-
nificantly existing CF, CB and hybrid algorithms. In our future work, we will
consider the incremental update of our model.

References

BALABANOVIC, M. and SHOHAM, Y. (1997): Fab: Content-based, collaborative
recommendation, ACM Communications,volume 40,number 3,66-72

FURNAS, G. and DEERWESTER, et al. (1988): Information retrieval using a sin-
gular value decomposition model of latent semantic structure, SIGIR , 465-480

MELVILLE, P. and MOONEY R. J. and NAGARAJAN R. (2002): Content-Boosted
Collaborative Filtering for Improved Recommendations, AAAI, 187-192

SALTER, J. and ANTONOPOULOS, N. (2006): CinemaScreen Recommender
Agent: Combining Collaborative and Content-Based Filtering Intelligent Sys-

tems Magazine, volume 21, number 1, 35-41
SARWAR, B. and KARYPIS, G. and KONSTAN, J. and RIEDL, J. (2000) Applica-

tion of dimensionality reduction in recommender system-A case study”, ACM

WebKDD Workshop
SCHULT, R and SPILIOPOULOU, M. (2006) : Discovering Emerging Topics in

Unlabelled Text Collections ADBIS 2006, 353-366
TSO, K. and SCHMIDT-THIEME, L. (2005) : Attribute-aware Collaborative Fil-

tering, German Classification Society GfKl 2005


