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Abstract

Benchmarking of spatio-temporal databases is an issue of growing importance. In case large real data sets are not
available, benchmarking requires the generation of artificial data sets following the real-world behavior of spatial
objects that change their locations, shapes and sizes over time. Only a few innovative papers have recently
addressed the topic of spatio-temporal data generators. However, all existing approaches do not consider several
important aspects of continuously changing regional data. In this report, a new generator, called generator of
time-evolving regional data (G-TERD), for this class of data is presented. The basic concepts that determine the
function of G-TERD are the structure of complex 2-D regional objects, their color, maximum speed, zoom and
rotation-angle per time slot, the influence of other moving or static objects on the speed and on the moving
direction of an object, the position and movement of the scene-observer, the statistical distribution of each
changing factor and finally, time. Apart from these concepts, the operation and basic algorithmic issues of G-
TERD are presented. In the framework developed, the user can control the generator response by setting several
parameters values. To demonstrate the use of G-TERD, the generation of a number of sample data sets is
presented and commented. The source code and a visualization tool for using and testing the new generator are
available on the Web.' Thus, it is easy for the user to manipulate the generator according to specific application
requirements and at the same time to examine the reliability of the underlying generalized data model.

Keywords: spatio-temporal databases, benchmarking, synthetic data generators, regional data, access methods

1. Introduction

Spatio-temporal databases (STDBs) provide a framework for the efficient storage and
retrieval of all states of a spatial database over time. This includes the current and past
states and the support of spatial queries that refer to present and past time points, as well.
Nowadays, new spatio-temporal applications that require spatio-temporal data to be stored
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1 On sabbatical leave from the Department of Informatics, Aristotle University, Thessaloniki, 54006 Greece.
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on-line are emerging. Image and multimedia databases, mobile communications,
geographical information systems (GIS), urban planning, computer-aided design (CAD),
medical databases are among these applications. Commercial database management
systems (DBMSs) do not support the special characteristics of data objects that change
their spatial locations, directions, shapes and sizes over time, because of their inability to
implement a total ordering of objects in space and time domains and preserve proximity, at
the same time. In many cases, the design and implementation of a STDB has been left as
an extension of an established commercial DBMS. The long-term goal is to provide
concepts and techniques that support STDB applications. Towards this goal, during the last
years many efforts have focused on spatio-temporal formalism, data models, query
languages, visualization and access methods [1], [2], [11], [17]. However, little work has
appeared on benchmarks for STDBs. In this paper we will focus on the problem of
generating benchmark data for STDBs.

The goal of benchmarks in STDBs is to compare the performance of different
implementation alternatives. An example of a benchmark is the comparison of space
requirements and query execution time of spatio-temporal access methods (STAMs). In
order to evaluate such STAMs, extensive experimentation using real and synthetic data is
required. A good benchmark must correspond to a recognizable, comprehensible real-life
situation. It is important that the results hold not only for a specific environment but in
more general settings, as well. Thus, the user is able to repeat the experiments and come to
similar conclusions [26]. Along these guidelines, the present research aims at the creation
of realistic benchmark data that enable the comparison of different access methods and
algorithms for STDB applications.

For the comparison of the performance behavior of different access methods, the
selection of data is of high importance as large spatio-temporal data sets are needed. We
can distinguish between real data, which come from real-world applications and synthetic
data generated according to statistical distributions. Very often either real data sets are not
available or they cannot be useful for testing extreme conditions. In both cases synthetic
data sets can be generated by some artificial specifications rather than by obeying a real-
world behavior.

The use of synthetic data allows testing the behavior of access methods in exactly
specified or extreme situations. Furthermore, different statistical distributions and
parameter settings correspond to different scenarios. They also correspond to completely
different synthetic data sets and applications on which an efficient access method should
be evaluated too. Although, it is difficult to derive conclusions with respect to the
performance in realistic situations by using synthetic data, in this paper it is shown that, at
least in some cases, one can generate spatio-temporal data sets that simulate real-world
behavior.

Much work has been done towards data generation for benchmarks in prototype and
commercial non-spatio-temporal databases [3], [6], [7], [9], [10], [14], [16], [19]. These
generated data can be used to test different implementations under various operating
conditions. In STDBs, the work on the generation of test data is limited and only a few
innovative papers have appeared in the literature. In Theodoridis et al. [21] the authors
present a general approach for the generation of synthetic scenes of moving points, or
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rectangular objects. This approach is parameter-driven and does not support the
interaction between objects. In Pfoser and Theodoridis [15], the previous work is
extended by introducing new features to the generation process. In Saglio and Moreira [18]
a specialized spatio-temporal data generator, motivated by an application modeling fishing
boats, is proposed, where there exist no, or very few restrictions for the motion: e.g.,
objects of one type may be attracted, or repulsed by objects of other classes. Recently also,
another approach for the generation of test data, which is motivated from applications in
the context of traffic telematics, has been presented in Brinkhoff [4], [5].

None of these approaches which are more thoroughly presented in Section 7 are suitable
for benchmarking STAMs for regional data (especially quadtree-based STAMs). In this
paper, we introduce a novel approach for data generation, which is specifically designed
for applications stemming from the field of time-evolving regional data. The new
generator, therefore, is called generator of time-evolving regional data (G-TERD).
However, it is not the paper’s goal to demonstrate (e.g., as in a case study) that the data
computed by the presented generator fulfill only the requirements of a specific application
from this field. Instead, our software tool is highly parameterized so that different
parameter values may produce spatio-temporal data set distributions with different
characteristics. In the presented framework, the user can control the behavior of the
generator by defining parameters and statistical models. Such an approach considers the
characteristics of a wide range of applications. The source code, also, is available on the
Web, making it easy for the user to adjust the generator according to different classes of
STDB application requirements.

The remaining part of the paper is organized as follows. Section 2 discusses the spatio-
temporal benchmarking environment. Section 3 describes the basic concepts which were
considered during the generator design for continuously changing synthetic regional data.
Section 4 describes the operation of the new generator and some basic programming
issues. Section 5 provides a description of the visualization demo, whereas Section 6
presents example setups and the sequences of scenes generated. Section 7 summarizes
previous proposals for spatio-temporal data generation and finally, the last section
concludes the paper and discusses future work issues.

2. Benchmarking and data generation in STDBs

The major effort in STDBs focuses on the design and implementation of efficient indexing
techniques aiming at reduced query execution time. The proposed indexing schemes
behave differently according to certain settings, like the spatial objects format (i.e., raster
vs. vector), the spatial objects nature (e.g., points, lines, areas, volumes etc.), the data set
distribution, the buffering strategies, the system caches, the disk page size and the query
types (e.g., contain, overlap, nearest neighbor etc.). Moreover, in most cases, each
indexing scheme has been evaluated separately. It is therefore difficult to compare several
indexing schemes under a common framework. To the authors’ knowledge the only ex-
tensive, though not exhaustive, experimental comparison of STAMs has been done in [12].

In order to compare the behavior of different indexing schemes under the same settings,
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Figure 1. A simplified benchmarking system environment for STDBs.

there must be a flexible performance benchmarking environment. The general architecture
of a benchmarking environment for STAMs is presented in figure 1 and according to [21] it
consists of the following components:

e a collection of access methods,

e a module that generates synthetic data sets which cover a variety of real life
applications,

e a set of real data that also represents various real life examples,

® a query processor capable to handle a large set of queries for extensive
experimentation purposes,

e a reporter to collect all relevant output report logs, and

e a visualization tool that could be able to visualize data sets for illustrative purposes.

In this paper we concentrate on the development of a novel synthetic raster data generator
for STDBs and a visualization tool to facilitate its use. The new generator is called
generator of time-evolving regional data (G-TERD). A framework is also proposed for
defining parameters and statistical models of G-TERD by the users. Test runs have shown
that the new generator is possible to produce data sets with characteristics for a wide
range of STDB applications. The Web site of G-TERD, http://delab.csd.auth.gr/stdbs/g-
terd.html, allows downloading the generator, its documentation and source code, for
experimentation purposes. The visualization tool of G-TERD runs under MS-Windows
and it is also provided by the Web site so that in connection the user can visualize the
computed time-evolving images.

3. Fundamental concepts

We assume a 2-D workspace, where real coordinates are used (float numbers in C) and that
the space extent on the x- and the y-axis is set by the user. In the sequel, in order to simplify
presentation, the values of coordinates are counted in ‘‘units’’. With respect to the time
domain, we assume that the changing scene lasts for a period of time T = [0, #,,,, ). This
period is divided in num_timeslots time slots. We further assume that the scene remains
unchanged during a time slot. In other words, time is digitized.
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3.1. Objects and sub-objects

The basic data structure of G-TERD is the time-evolving 2-D regional object. Each object
consists of a group of sub-objects which are quadrangles of the same, or different colors.
This group of sub-objects, in general, changes at each time slot. An object, or sub-object
may have a static shape, or it can change its spatial extension with time. The spatial
extension of an object is determined by the smallest possible 2-D rectangle, called
minimum bounding rectangle (MBR), that encloses all its sub-objects. The user sets the
maximum size of the object MBR and the maximum size of the sub-object quadrangle.

In order to simulate real-world complex non-rectangular objects (e.g., cars, animals,
airplanes, clouds, islands) by an object, some, or all of its sub-objects may be connected
and remain connected, for the whole lifetime of the object.

The number of objects appearing in the scene and the number of sub-objects in an object
are dynamic. An object, or a sub-object may exist over the whole scene lifetime 7', or may
be created at one time slot and disappear at a later time slot. The objects may be static, or
moving towards any spatial direction. The square sub-objects may, also, expand, or shrink
and rotate around their center.

For the sake of simplicity, both elastic shocks and plastic crushes between objects, are
not allowed. Instead, in case that two objects come towards each other, there is a
possibility that the one object will pass over the other, as if they were moving in different
heights, or there is a possibility that both objects will change moving directions in order to
avoid the crush. More details on the influence of a moving, or a static object on the speed
and moving direction of another object, are given in Subsection 3.4.

3.2. The scene-observer

The scene-observer plays a central role in a time-evolving scene. In real-life, the observer
may be a satellite monitoring the earth surface, a telescope watching the space universe,
the field of vision of a video or a photo camera, the eyes of an onlooker, etc. The scene-
observer in G-TERD is a virtual 2-D rectangular window that shifts, zooms and rotates
over the scene and films it, by printing one snapshot image per time slot, for the whole
lifetime of the evolution.

The observer’s window side length is user-controlled and it should not be wider than the
side length of the space universe, in the x- and y-dimensions. The observer’s window
digitizes a workspace portion. The dimensions of a quadrangle of the workspace that is
represented by a pixel of the observer’s window, or in other words, the size of such a pixel
varies according to the zoom-in, or zoom-out factor. At the starting phase of G-TERD,
every 1 x 1 square units region of the workspace corresponds to one pixel of the observer’s
window. The scene-observer may move towards any spatial direction, or he/she may be
static for some periods of time or for the whole scene lifetime. The observer may shift
(““travel’’) in a random way over the surface of the predefined workspace, or may follow
the movement of a specific ‘‘live’” object. Other functions supported are the zoom in-out
and the rotation around the center point of the observer’s window. Using the concept of the
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scene-observer’s window, a sequence of multicolored images that can be saved in the disk
are produced.

3.3. Change of spatial locations, size, shape and color of the objects

Data objects may change their spatial location, size and/or their shape at different time
intervals, according to the values of their speed, zoom and rotation-angle fields. These
fields are measured in units of the workspace coordinate system per time slot and their
domains are bounded by minimum and maximum values set by the user. The distributions
of the speed, zoom and rotation-angle values are described in Subsection 4.2. A positive
speed value for the x- (y-) axis denotes that the direction of the specific object/sub-object
on this axis is to the East (North). A positive zoom value denotes that the specific object/
sub-object expands (zooms-in), and finally, a positive rotation-angle value means that the
specific object/sub-object rotates clockwise.

There are static, slow and fast moving objects, whereas a special flag is used to
distinguish between them. When an object is static (in slow movement) the speed, zoom
and rotation of all its sub-objects is set at zero (at half the value of the speed, zoom and
rotation of the object).

In real-life examples, objects appear gradually in our field of vision. Thus, when a new
object is created, initially all its square sub-objects have a zero side length and a ““ + 1"’
zoom value. This zoom value guides its expansion. The opposite holds at deletion time,
when the object finally disappears because the surface of every sub-object becomes less
than 1 square unit. A sub-object may, also, disappear if in the course of its lifetime, its
surface is calculated below 1 square unit. During that period, the sub-object remains
““live’’, but it cannot appear in the resulting data set. This may happen to an object, also, if
its “‘live’” sub-objects disappear all together for a while, during the same period of time.

In general, each sub-object has its own color. The number of colors in the color palette is
a user-defined parameter. When a special flag of an object is true, then all its sub-objects
have the same color. However, in real-life applications, the moving objects may have
slightly different colors according to the intensity of light. In order to simulate this
behavior, each object/sub-object may change its color after a period of time (determined
by a specific field of its structure) to an adjacent color, assuming that the color palette of
the changing scene follows the model of the rainbow colors.

34. Interaction movement

Real world objects do not change their spatial locations, or their shape in a completely
random fashion. Instead, the surrounding environment affects them, and their behaviors
are affected by some constraints. Therefore, a scene generation producing completely
random data will not be a representative simulation of numerous classes of real world
application examples.

For instance, a flying observer may watch that a ship cannot navigate over an island
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(static object), or over a second ship, or over a cloud (moving objects). On the contrary, it
is probable that a cloud may pass over the ship and over the island. In order to simulate
such instances, we assume that each object has an attribute array of true or false flags
(obj.CanPassOver]]), where each flag corresponds to another ‘‘live’” object. If for an
object obj,, it holds that obj, .CanPassOver[k| = false, where k is the identifier of another
object obj, (k = obj,.id), then the object obj, cannot ignore the existence of object obj,
in the future and it cannot pass over the object 0bj,, if these two objects come towards
each other. On the one hand, this resembles the case of a ship and an island, whereas
on the other hand, it resembles the case of a ship and a cloud. Additionally, if
obj,.CanPassOver|obj, .id) = false (or = true), then the obj, cannot ignore (can ignore)
the existence of object obj, in the future and it cannot pass (can pass) over object obj,, if
these two objects come towards each other. This resembles the case of the second ship (or
the cloud, respectively) and the first ship, of the previous example.

As mentioned earlier, both elastic shocks and plastic crushes and all their additional
properties that influence the movement and the appearance of the objects, are not
supported. In case of two objects that cannot pass over each other but are coming towards
each other, or in case of an object coming towards a border of the predefined workspace,
an alarm warns the object(s) about the immediate danger of a crush. Then, the sub-objects
that are closer to the danger change their moving directions, or if this is not possible, they
stop moving, at least for a while.

4. The operation of G-TERD

In this section, a number of topics related to the initialization, parameterization, key sub-
functions and the main function of G-TERD are presented.

4.1. User-defined parameters

In G-TERD several parameters may be user-defined in order to let the user control the
behavior of the generator. Table 1 specifies all the user-defined parameters of G-TERD
that can be set according to different classes of STDB application requirements.

The appropriate definition of these parameters is the simplest technique to control the
properties of the resulting data sets. For instance, by setting speed_min = speed_max for
both the x- and y-axes, then all the objects are forced to move in a parallel fashion at the
same speed as if they were one object. This is similar to the movement of birds or military
aircrafts flying together, or to the movement of a group of soldiers. Further, if speed_min
and speed_max are set at zero, the position of the center point of all the objects and all their
sub-objects remains constant, and the sub-objects may only zoom in-out and rotate. If the
user sets rotation_min = rotation_max, then all the objects are forced to rotate together
following the same direction and the same rotation-angle per time slot. This is similar to
people engaged in synchronized movement.
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Table 1. The user-defined parameters of G-TERD.
Parameter Explanation
X ax Workspace length on the x-axis

Y ar Workspace length on the y-axis
num_timeslots Time duration of the changing scene (T = [0, num_timeslots))
max_num_objs Maximum number of ‘‘live’” objects per time slot
max_num_subobjs ~ Maximum number of ‘‘live’’ sub-objects in an object per time slot
num_colors Number of colors of the color palette
observer _side Length of the observer’s window side
obj_side_max Maximum side length of object MBR

Maximum side length of the rectangular sub-object

subobj_side_max
percent_objs_static  Percentage of static objects per time slot

percent_objs_slow
percent_objs_fast

Percentage of objects in slow movement, zoom and rotation per time slot
Percentage of objects in fast movement, zoom and rotation per time slot
(percent_objs_fast = 100 — percent_objs_static — percent_objs_slow)

speed_min|| Minimum object speed per time slot positive value on x- (y-) axis: movement to
the East (North)
speed_max]|) Maximum object speed per time slot positive value on x- (y-) axis: movement to
the East (North)
zoom_min Minimum object in-out zoom per time slot (—1 < zoom_min < 1)
z00m_max Maximum object in-out zoom per time slot (—1 < zoom_max < 1)
rotation_min Minimum object rotation-angle per time slot
rotation_max Maximum object rotation-angle per time slot
oax_duration Maximum number of time slots that have to elapse before the next computation of a field

value of an object, a sub-object or of scene-observer
live_objects at t = 0 Number of ‘‘live’’ objects at time slot t = 0

4.2. Data distributions

A benchmarking environment should support data obeying a variety of widely-used
continuous and discrete data distributions. Some popular well-established statistical data
distributions are the Uniform, Triangular, Normal, Exponential, Zipf, Poisson and Gamma
distributions. In order to have a generalized tool that simulates classes of real-life
applications, several quantities that determine the operation of this tool must be random
variables that obey a specified distribution among the ones mentioned above. For G-
TERD, these random variables are presented in table 2.

Through careful specification of different distributions for the variables of table 2, the
user can simulate several interesting scenarios. For instance, by using the exponential
distribution with small mean for the speed and the period of time before the re-
computation of the object speed, most of the objects would move slowly and ‘‘nervously’’
on the workspace, since their speed would change direction very frequently. On the other
hand, it is possible to use large 7, i.raion a0d €xponential distribution with large mean for
the number of time slots that must elapse before the re-computation of the object speed. In
this case large periods will be required before the subsequent computations of the speed
and many objects will move only in one direction during their whole lifetime. To find an
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Table 2. Variables that are controlled by statistical distributions.

Variable Distribution Domain

Number of “‘live’” sub-objects User-defined [1, max_num_subobjs|
obj.live_subobjs in an object obj
at the time slot of its creation

Initial distribution of the User-defined The workspace
center point of a new object

Number of new objects per time slot User-defined [0, max_num_objs — live_objects]

Number of new sub-objects User-defined [0, max_num_subobjs — obj.live_subobjs]
in an object per time slot

Deletion time slot User-defined [birth time of the object +1, num,timeslots]
obj.endtime of an object

Deletion time slot User-defined [birth time of the object in which
subobj.endtime of a sub-object it belongs +1, obj.endtime]

Color .color of an object or a sub-object User-defined [1, num_colors]

Speed subobj.speed of a moving User-defined [speed_min, speed_max]
sub-object per time slot and spatial axis

Zoom subobj.zoom of a moving User-defined [zoom_min, zoom_max]
sub-object per time slot with —1 < zoom_min < zoom_max < 1

Rotation-angle subobj.rotation of User-defined [rotation_min, rotation_max)

a moving sub-object per time slot

Number of time slots that must elapse User-defined
before the next computation of an attribute
such as the speed, zoom, color, etc.

[l ) tma,\;duration]

intermediate state, i.e., objects having directed movements for longer periods of time, we
have to use intermediate values for the periods of time during which the speed is kept
constant.

Evidently, by properly adjusting the domain value of each variable of table 2, the user
may limit the data generated from the chosen distribution. For instance, we can consider
setting the domain of the zoom value equal to [— 1, 0]. This will lead to a scenario where
every created object would expand for a while, during the initialization phase of its
creation, and afterwards it will be deleted (‘‘die’’) in a very short time. In the same way,
the experimenter may prefer the objects to move towards some specific orientation but
each at a different speed. To achieve this, the experimenter can give non-positive, or non-
negative values different from each other to both the lower and upper bounds of the sub-
objects speed.

Among all the supported distributions, the Uniform U(min, max) and the Triangular
Tr(min, max) distributions require setting only the minimum min and maximum max
values of the domain value, whereas the rest require extra user-adjusted parameters. For
instance, the Exponential E(p, min, max) distribution also needs the mean y parameter as
input, the Normal N (u, g, min, max) also needs the mean p and the mean square deviation
g, whereas the Zipf distribution needs setting of a parameter that controls the distribution
skewedness.
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G-TERD can be utilized to generate benchmark data for many application domains,
given that their data distributions are known. The generator currently supports the
Uniform, Triangular, Normal, Exponential, Zipf and Poisson distributions.

4.3. Creation of a new object

Initially, the new object location is selected so that its center point is randomly placed
in the workspace, according to a predefined statistical distribution. The acceptable
placement of an object obj, is controlled by a function, which checks if the selected
workspace area is occupied by another object obj,. If this happens and
obj,.CanPassOver|obj, .id] = obj,.CanPassOver|obj, .id] = false, then no object can be
positioned over the other. Therefore, another position for the object obj; must be found.

Afterwards, a decision is made about the number of sub-objects that each object will
initially have, about their color (the same for all sub-objects, or not) and about their speed
and rotation-angle per time slot. The surface of each rectangular sub-object is set at zero
and a ““ +1°’ zoom value undertakes its expansion. The speed and rotation-angle of each
sub-object are set randomly, following their domain value and the properties of the related
user-defined distributions. The instance of a sub-object for the next time slot is calculated,
for each speed, zoom and rotation-angle candidate value. If the sub-object comes towards
a crush with a sub-object of another object, then the algorithm checks the .CanPassOver]|)
field of both objects that own these sub-objects. Based on the result of this check, the
algorithm will determine if the sub-object being processed has to change its speed, zoom,
or rotation-angle. The same will happen, if the sub-object being processed is expected to
have invalid coordinates (coordinates located outside the workspace) at the next time slot.

The scenario is not very realistic at the beginning of the data generation. All the sub-
objects of the newly created ‘‘live’” objects cover a surface of zero size and expand by 1
square unit per time slot. Therefore, to obtain satisfactory results, the generated data
should not be used during a warm-up phase [18]. In practice, the warm-up phase may hold
until at least the 1 of the 1 square units region of the workspace becomes colored. If the
output of G-TERD is expected to be a sequence of num_timeslots multicolored images,
then in the course of the data generation process, G-TERD computes and saves in the disk
k + num_timeslots images, where k is the sequence of images belonging to the warm-up
phase. G-TERD names the output images as —k,—k+1,...,—1,0,1,...,
num_timeslots — 1 and the experimenter may ignore the k images corresponding to
scenes produced during the warm-up phase of the evolution.

4.4. Update the instance of an object

The procedure starts with the calculation of the new object location and MBR. If all the
sub-objects of the object have the same color, and the period of time that this color remains
unchanged has expired, then a new color for all its sub-objects is selected. Otherwise, if its
sub-objects do not have all the same color, each of them may change its color,
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independently. If the period of time during which the speed, zoom and/or rotation-angle of
each sub-object has expired, then a new value is set to the corresponding field. The
instance of the sub-object for the next time slot is calculated, for each speed, zoom and
rotation-angle value, and a procedure similar to the one that was described at the end of the
previous paragraph, is followed, to avoid an undesirable crush.

4.5. Positioning of the scene observer

The shift, zoom and rotation functions of the scene-observer are similar to the corres-
ponding functions of an object. If the scene-observer follows the evolution of a specific
object, then the observer’s speed is proportional to the distance of the center point of its
window from the center point of the object followed. In this case, the zoom in-out function
of the observer takes care of keeping the whole object inside the observer’s window.

4.6. The output

The output of the scene-observer is a sequence of num_timeslots multicolored images that
can be saved in the disk. For each pixel in the observer’s window, the algorithm checks if
there is any sub-object covering the pixel. In this case, the sub-object color is recorded in
the output. If sub-objects of different objects cover the same pixel of the observer’s
window, then the color of the object, which can pass over any other of the involved objects,
appears in the output image.

Since the number of colors, num_colors, supported by the time-evolving scene is defined
by the user, each pixel of the observer’s window needs log,(num_colors) bits in the
resulting file. Thus, if necessary, the user may subsequently transform each image to
grayscale or black and white.

4.7. The main routine

The main part of the algorithm is illustrated in figure 2. The input of the algorithm (lines 1—
2) consists of the values and statistical distributions of all the parameters and variables that
appear in table 1 and table 2, respectively. During the scene initialization phase (lines 3-5)
at time slot t = 0, a user-defined number of live_objects ‘‘live’’ objects is created and
located in the workspace. The initialization of the observer’s window and the output of the
first snapshot image of the time-evolving scene follow.

During the main loop phase (lines 8-16), new object instances are generated. If the
deletion time slot of an object has already been reached and the surface of each of its sub-
objects is less than 1 square unit, the object is deleted from the scene. A random number of
new objects at each time slot is also created and placed in the workspace (line 14). The
random number of new objects follows a predefined statistical distribution, such as the
ones discussed in Subsection 4.2. Finally, the observer’s window is located at another
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line ROUTINE main( )

BEGIN
1 The user must define all the parameters of Table 1:
2 The user must select the statistical distributions of all variables of Table 2;
3 The time slot being processed is t = 0;
4 FOR each one of the live_objects “live” objects at time slot 1 DO
5 Initialize the new object and place it in the waorkspace;
6 Initialize the scene-observer and place it over the workspace;
7 Output the first snapshot image (time slot 1) of the time-evolving scene:

8 WHILE t < num_timeslots DO

BEGIN
9 The time slot being processed is t =+ 1
10 FOR each one of the live_objects “live” objects at time slot t DO
BEGIN
11 Update the instance of the time-evolving object in the workspace;
12 IF the deletion time slot of the object has already occurred and
the surface of each sub-object has became less than | square unit THEN
13 Delete this object and update the number of live_objects “live™ objects
in the workspace, for the time slot r;
END
14 Create a random number of new objects from the domain value [0, max_num_objs — live_objects),
initialize and place them in the workspace;
15 Update the position of the scene-observer;
16 Output the snapshot image of the time-evolving scene for the time slot 7;
End

END OF ROUTINE main( )

Figure 2. The main routine of G-TERD.

position over the workspace and the output function prints the snapshot image of the
current state of the continuously changing scene.

5. A visualization tool

In order to make G-TERD available to the user for experimentation purposes, a Web site
has been created, which allows downloading the MS-DOS executable file of the generator,
the user documentation and the source code in C language. The Web site is at http://
delab.csd.au,th.gr/stdbs/g-terd.html and provides, also, a visualization tool that runs under
MS-Windows.

The executable file of G-TERD allows creating time-evolving data sets based on both
the user-defined parameters of table 1 and the statistical distributions described in
Subsection 4.2. The user may use these data sets as input to the visualization tool.
Different parameter values and statistical models may produce time-evolving regional
data set distributions with different characteristics, corresponding thus to different classes
of STDB applications. The visualization tool permits to both visualize the synthetic data
sets and simplify the definition of the user-defined parameters.

The visualization tool is based on Gnuplot 3.7 and it is easily installed. It is offered with
sample data sets from different settings of the user-defined parameters and the random
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variables obeying specific distributions. Thus, by using the sample data sets as tutorial, the
user can immediately get an impression whether G-TERD may be suitable for his/her
applications. The reason for adopting Gnuplot as a basis is that it supports all the different
MS-Windows platforms and it does not require on-line Internet connection to be executed
as happens to other similar tools [8], [19]. Besides, through Gnuplot the experimenters can
easily visualize the generated data with no need for specific Web browsers and support for
specific Java versions, as also happens with other tools [4], [8], [18], [20]. However, the
development of an interactive Web-based environment, to both generate and visualize
time-evolving synthetic regional data, is an activity in progress.

6. Test runs

In the following, we give an example of the use of the new generator for time-evolving
regional data sets, by simulating several realistic scenarios. The scenarios correspond to
different definitions of the parameters of table 1 and the statistical distributions that appear
in table 2. The percentage of static and moving objects, their moving direction, the
statistical model that should be followed, the number of new objects per time slot and the
movements of the scene-observer, are only some of the parameters that lead to in
completely different application examples.

For all scenarios, the side length of the scene-observer’s window is set at 1024 units, the
maximum number of live objects per time slot is 70 and the lifetime of the evolution is 101
time slots (T = [0, 101]). The snapshots illustrated in figures 377 correspond to time slots
t=10, 30, 50, 70, 90 and 100 for each scenario. The random number of new sub-objects
per time slot and their deletion time slot are Uniform within their domain value. The same
holds for the speed, the color and the period of time that must elapse before the next
computation of an attribute such as the speed, zoom, etc. Finally, the change of the size and
shape of the objects/sub-objects are controlled by the zoom and rotation-angle values per
time slot, which are generated by the Triangular distribution. Table 3 depicts all the non-
fixed user-defined parameters of the presented scenarios in this section. Note that, in order
to make the snapshot more appropriate for black and white printing devices, only six dark
colors have been allowed. There is no such color restriction in the Web version of G-
TERD.

Note, also that in our experimentation, G-TERD required in average some seconds for
the generation of a 1,024 x 1,024 image snapshot of each synthetic data set. Generally, the
running-time of the generator is affected by the parameter settings of the user. The
parameters that act decisively on the running-time are the workspace size, the time
domain, the average number of new objects and sub-objects per time slot, and their
average deletion time slot.

The first scenario in figure 3 illustrates static objects that are uniformly distributed in a
workspace of 2,000 x 2,000 units. The speed domain value is [10,10] for each axis.
Therefore, the scene-observer shifts over the workspace surface at a constant speed and
diagonal orientation, from south-west to north-east. The objects are all created at the initial
time slot, whereas in the sequel the creation of a new object is not allowed, since the
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Figure 3. Static objects and a scene-observer moving from south-west to north-east. The workspace is
2000 x 2000 units and the length of the side of the observer’s window is 1024 units.

distribution of new objects per time slot was Normal with mean ¢ = 0 and mean square
deviation ¢ = 0. No objects are deleted during the scene lifetime, since the distribution of
their deletion time was also Normal with mean ¢ = 100 and mean square deviation ¢ = 0.

The influence of the statistical distributions at the resulting data sets is demonstrated
more clearly in the scenarios presented in figures 4 and 5. Both illustrate the initially
normal distribution of moving objects, which are generated near the workspace center.
The objects are moving, zooming in and out and rotating randomly. The randomness of the
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Figure 4. Moving objects that are generated by the workspace center and the deletion time distribution is
N(u = 10,0 = 90, min = creation time of each object + 1, max = num_timeslots — 1).

speed, zoom and rotation-angle values results from the definition of their domain which
allows positive and negative values with the same probability. The lifetime of the objects
in the scenario of figure 4 is much smaller to the corresponding lifetime in the scenario of
figure 5. This is a result of the Normal distribution obeyed by the variable of the object
deletion time, which has mean u = 10 and mean square deviation ¢ = 90, while in the
other scenario it has ¢ = 90 and ¢ = 10.

The scene-observer’s window covers the whole workspace. Thus, initially the scene-
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Figure 5. Moving objects that are generated by the workspace center and the deletion time distribution is
N(u=90,0 = 10, min = creation time of each object + 1, max = num_timeslots — 1).

observer may only zoom in. In order to make the evolution of moving objects more evident
to the user, the scene-observer is forced to be static.

In figure 6, a fourth scenario is presented, where moving objects appear from the
workspace bottom. The orientation of the objects on y-axis is South to North, since the
domain of the speed for the y-axis is [0, 20] and only positive values can be generated. The
speed on the x-axis is random and uniformly distributed in the domain [—10, 10]. Many
new objects are created at each time slot and they remain alive for a long time period.
Therefore the objects have sufficient time to cross the whole workspace. When they arrive
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Figure 6. Moving objects that appear at the bottom and cross the workspace.

at the upper edge, G-TERD prevents them from leaving the workspace and thus they are
scattered over the entire upper part of the workspace, until their deletion time comes.
The last scenario is a complex scenario and figure 7 depicts some of its snapshots. This
scenario is based on two sub-scenarios and merges their data sets. The first sub-scenario
produces static objects that live for the whole scene lifetime. It is similar to the scenario of
figure 3 with the difference that the scene observer is static. The second sub-scenario
produces moving objects that are generated along the y-axis and cross the workspace but
each at a different speed. The non-fixed input parameters are similar to the corresponding
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Figure 7. A complex scenario that combines two sub-scenarios.

inputs of the fourth scenario. There are only two differences. The first one is that the
orientation of the moving objects is west to east and not south to north as it was in the
fourth scenario. The second difference is that the distributions of the initial coordinates of
the generated objects are N(u = 0,6 = 0) on the x-axis and Uniform on the y-axis. In its
current implementation, G-TERD allows the user to compose up to ten different individual
scenarios and it can conjunct them by merging the resulting data sets.
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Table 3. The non-fixed input parameters of the presented scenarios.
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Parameter Scenario 1 Scenarios 2 and 3 Scenario 4
X_max,Y _max 2000, 2000 1024, 1024 1024, 1024
max_num_subobjs 100 35 70
live_objs at t =0 70 0 0
num_colors 16 16 1
subobj_side_max 100 70 70
percent_objs_static 100 0 0
percent_objs_slow 0 50 50
percent_objs_fast 0 50 50

[speed_min, speed_max) 0,10] on x-axis  [—10, 10] on x-axis [-10, 10] on x-axis
0,10

on each axis %1 ,10] on y-axis  [—10, 10] on y-axis [0,20] on y-axis
[zoom_min, zoom_max] [0,0] -1,1] -1,1]
[rotation_min, rotation_max] [0, 0] -L1] -L1]
t 20 20

max_duration
N(u=512,0 = 10)
on both axes

N(u=512,0 = 10) on x-axis
N(u= 0,0 =10) on y-axis
N(u=100,6 =0) N(u= 10,0 = 90) for Scen.2 N(u = 100,06 =5)

N(p =90,0 = 10) for Scen.3

Nu=3,0=1) Nup=3,0=1)

5
distribution of the center U
of generated objects on both axes

deletion time of objects

new objects per time slot ~ N(x = 0,0 =0)

7. Related work

In STDBs, the work on the generation of synthetic data is limited and only a few
pioneering papers have recently addressed the topic of spatio-temporal data generators.
However, the approach discussed in this paper is novel since all existing generators do not
consider several important aspects of continuously changing regional data.

A spatio-temporal data set generator, called Generate_Spatio_Temporal _Data (GSTD),
has been proposed in Theodoridis et al. [21]. It can generate moving points or rectangles,
and starts by distributing their centers in the workspace according to certain distributions.
After the initialization phase, there are three main parameters to control the evolution of
the objects throughout time, according to a desired distribution. These parameters are: (a)
the duration of object instances, which involves timestamp changes between consecutive
instances; (b) the shift of the objects, which involves changes of spatial locations of the
object centers; and (c) the resizing of objects, which involves changes of object sizes (only
applicable to rectangular objects).

GSTD supports three alternative approaches for the manipulation of invalid object
instances in cases where an object leaves the spatial data space. However, a limitation of
GSTD approach is that the objects are moving almost freely in the workspace without
taking into consideration the interaction between other objects, or any potential
restrictions. In particular, it could be argued that in any possible scenario, the objects
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are scattered all over the data space, or are moving in groups and the whole scene has the
appearance of an unobstructed polymorphic cloud movement.

In order to create more realistic scenarios, Pfoser and Theodoridis [15] have
extended the latter approach. They introduced an additional GSTD parameter to
control the change of direction and they used static rectangles for simulating an
infrastructure, where the scenario indicates that each moving object has to be outside of
these rectangles.

In Saglio and Moreira [18] a generator for time-evolving points and rectangles which
uses the modeling of fishing ships as a motivation is proposed. Ships are attracted by
shoals of fish, while at the same time they are repulsed by storm areas. Fishes themselves
are attracted by plankton areas. Ships are moving points, whereas shoals, plankton, and
storm areas are moving regions. Although useful for testing of access methods, the original
algorithm is highly specialized and turns out to be of limited use with respect to the
demands of other real-world applications.

Finally, in Brinkhoff [4] and, in more detail, in Brinkhoff [5] a spatio-temporal
generator for ‘‘network-based’’ moving objects is demonstrated. It combines a real
network with user-defined properties of the resulting data set. The driving application is
the field of traffic telematics and the presented generator satisfies exactly the requirements
of this field. Important concepts of the generator are the maximum speed and the
maximum edge capacity, the maximum speed of the object classes, the interaction between
objects, the different approaches for determining the starting and the destination point of a
moving object, and the re-computation of a route initiated by a reduced speed on an edge
and by external events. A framework for preparing the network, for defining functions and
parameters by the users, for data generation reporting are also presented. However, a
disadvantage of the method is that it requires significant execution time for the generation
of moving objects. Nevertheless, although the author claims that the approach allows
considering the characteristics of a wide range of applications (mostly network-based), it
is clear that many other interesting real world application examples such as meteorological
phenomena, faunal phenomena, natural catastrophes, etc. cannot be simulated by using
this tool.

On the other hand, various algorithms to generate spatio-temporal data sets have been
presented, in order to facilitate the performance comparison of different access methods.
Most of these algorithms are combinations, or specialized extensions of the previously
cited generators, or do not imply any restrictions on the movement of the spatial objects.
These approaches are not referred to any further.

Generating synthetic data sets has also been an active research field the last few years in
the area of spatial databases. Several algorithms have been proposed to generate static
spatial data (for instance, point, or rectangular), following a predefined distribution in the
workspace. In order to compare different spatial join strategies, Guenther et al. [8] have
proposed the exploitation of a spatial data generator, which produces data sets of 2-D
rectangles based on user-defined parameters, such as cardinality, rectangle size, and
coordinates’ distributions. The target is to simulate real-life data sets (e.g., biotopes,
forests, cities, and continents) by using synthetic ones. However, the suggested approach
can generate only static spatial data sets.
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8. Conclusion and future work

In this paper we investigated the issue of benchmarking STDBs. The first approach for
data generation specifically designed for applications stemming from the field of time-
evolving regional data is presented. The new generator, is called generator of time-
evolving regional data (G-TERD). The basic concepts involved in the development,
operation and use of G-TERD have been examined. These include the structure of
complex 2-D regional objects, their color, maximum speed, zoom and rotation-angle per
time slot, the influence of other moving or static objects on the speed and on the moving
direction of an object, the position and movement of the scene-observer, the statistical
distribution of each changing factor and finally, time.

G-TERD is very parametric and as the sample runs have demonstrated, it is very flexible
in the simulation of a variety of real-world scenarios. Users can specify the time domain
and the workspace extent, the maximum number of objects in the sample, their minimum
and maximum speed, zoom and rotation-angle per time slot, the percentage of static and
moving objects, the scene-observer’s window size and, finally, the number of colors
supported. Users may also decide about the statistical model of the cardinality of the new
objects and sub-objects per time slot, the deletion time slot of an object or sub-object, their
speed, zoom and rotation-angle, and finally the time period that must elapse before the
next computation of an attribute (speed, zoom, color of an object or sub-object, etc.).
Various statistical distributions are supported for that purpose.

The Web site of G-TERD provides access to the generator, its source code and some
illustrative examples. G-TERD offers a framework for creating user-defined synthetic
time-evolving regional data sets that can be used as a basic component for the
experimental comparison of different STAMs. Also, G-TERD is an open source software
[13]. The user is allowed to modify, improve or adapt the generator source code according
to specific spatio-temporal application requirements. Thus, it is easy for the user to both
examine the reliability of the underlying generalized data model and to repeat the
experiments presented in this paper, in order to verify the claimed results.

The ultimate objective of this research is to provide a complete benchmarking
environment system for quadtree-based STAMs. This general benchmarking framework is
currently under construction and includes:

e A collection of recently proposed access methods: overlapping linear quadtrees
(OLQs) [24], multiversion linear quadtree (MVLQ) [23], time-split linear quadtree
(TSLQ) [25] and other quadtree-based STAMs which are under implementation,

o G-TERD for generating synthetic data sets that cover a variety of real life
applications,

e A set of real time-evolving regional data acquired from Sequoia project that represent
meteorological views,

e A set of spatio-temporal queries, including the five temporal window queries
elaborated in Tzouramanis et al. [24], for extensive experimentation purposes,

e The visualization tool presented in Section 5 to visualize regional data sets, for
illustrative purposes,
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e A collection of all relevant output report logs from the efficient comparison of space
requirements and query execution time of all the above STAMs.

In the future, we plan enhancing G-TERD to support a greater variety of distributions,
such as skewed distributions or correlative 2-D distributions. Besides, the Web-based
interface will be developed in order to both generate and make it possible to visualize
time-evolving synthetic regional data.

Appendix

The basic C structures of G-TERD are presented in the following.

data structure obj

BEGIN
.id; // the object identification number
.endtime; // the deletion time slot of the object
.color_uniform; // aflag denoting if the object has uniform color or not
color; // the object color if obj.uniform_color=true

.color_duration; // the period of time that must elapse before

// the next computation of the .color field
.connected_parts // aflag denoting if the object has connected and

// tangential sub-objects that have to remain connected
.motion_type; // aflag denoting if the object is static,

// or in either slow or fast movement
.live_subobjs // the number of ‘“1live’’ sub-objects per time slot
.subobjs| ] // the array of the obj.live_subobj sub-objects
END

data structure subobj

BEGIN
.id; // the sub-object identification number
.endtime; // the deletion time slot of the sub-object
.loc[ 1; // the location of its center point (it is an array
// consisting by two numbers, one for each spatial axis)
.side; // the side length of the rectangular sub-object
.color; // the sub-object color
.color_duration; // the period of time that must elapse before
// the next computation of the .color field
.speed| ]; // the sub-object speed per time slot
// (it is an array consisting by two decimal numbers
// that correspond to the x- and y-axis)
.speed_duration| ]; // the period of time must elapse before
// the next computation of the .speed field
.zoom; // the zoom of the sub-object per time slot

.zoom_duration; // similar use with the .speed_duration attribute
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.rotation; // the rotation-angle of the sub-object per time slot
.rotation_duration; // similar use with the .speed_duration attribute
END

data structure observer

BEGIN

.loc[ 1; // the same as in subobj

.side; // the same as in subobj

.follow_object_id // the identification number of the object that the observer

// follows (if its value isnull, non object is followed)

.follow_object_id_duration // the period of time which must elapse before

// the next computation of the .follow_object_id field

.speed|[ ]; // the same as in subobj
.speed_duration| 1; // the same as in subobj
.zoom; // the same as in subobj
.zoom_duration; // the same as in subobj
.rotation; // the same as in subobj
.rotation_duration; // the same as in subobj

END

Notes

1. The generator Web site is: http://delab.csd.auth.gr/stdbs/g-terd.html
2. All figures in this paper appear in gray scale. Color versions can be found on the generator site.
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