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a b s t r a c t

The development of workflowmanagement systems (WfMSs) for the effective and efficient management
of workflows in wide-area infrastructures has received a lot of attention in recent years. Existing WfMSs
provide tools that simplify the workflow composition and enactment actions, while they support the
execution of complex tasks on remote computational resources usually through calls to web services
(WSs). Nowadays, an increasing number of WfMSs employ pipelining during the workflow execution.
In this work, we focus on improving the performance of long-running workflows consisting of multiple
pipelined calls to remote WSs when the execution takes place in a totally decentralized manner. The
novelty of our algorithm lies in the fact that it considers the network heterogeneity, and although the
optimization problem becomes more complex, it is capable of finding an optimal solution in a short time.
Our proposal is evaluated through a real prototype deployed on PlanetLab, and the experimental results
are particularly encouraging.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The rapid spread of wide-area distributed infrastructures, such
as the Grid [1], has provided the opportunity to scientific com-
munities ranging from high-energy physics to astronomy and bi-
ology to perform computational and data-intensive experiments
that were prohibitively expensive in the past. Such experiments
are typically expressed as workflows [2]; as a result, the develop-
ment ofmechanisms that provide effective and efficient orchestra-
tion andmanagement of workflows has become essential [3]. This
needhasmotivated the development of several scientificworkflow
management systems (WfMSs), such as Taverna [4], Triana [5], Ke-
pler [6], DAGMan [7], Pegasus [8], GridFlow [9] and Swift [10].

Current WfMSs provide tools that simplify the workflow com-
position and enactment actions. Effective workflow management
capabilities, such as data provenance and user interaction, are also
supported, while fault tolerance mechanisms are employed in or-
der to identify and effectively handle failures. Furthermore,WfMSs
may provide access to remote data resources and perform complex
tasks employing remote computational resources usually through
calls to web services (WSs). Nevertheless, one of the main prob-
lems in workflow execution, especially when remote calls to WSs
are involved, is that of poor performance in terms of throughput
and response time. In this article, we focus on improving the per-
formance of long-running workflows consisting of multiple calls
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to remote WSs, which is a common scenario in e-science (e.g.,
[11,12]).

The performance ofworkflowexecution is influencedby several
factors including resource allocation, subtask scheduling, and the
manner in which the constituent services communicate. Schedul-
ing issues are particularly relevant in workflows in which chang-
ing the order ofWSs results in logically equivalent workflows with
different performance characteristics. When there are only a few
alternatives, itmay be practical for theworkflowdesigners toman-
ually construct the optimal workflow. This is in line with the main
concept of existing data integration platforms over the web, such
as Yahoo Pipes [13] and DAMIA [14]. Both of them enable a Web
2.0 approach to compose data-intensive queries over distributed
data sources, like RSS/Atom feeds and XML files, and provide user-
friendly tools for workflow composition; however, users have to
explicitly specify the query processing logic procedurally, which is
not a trivial task, especially for unskilled users. However, the num-
ber of alternative execution plans increases exponentially with the
number of services, the order of which may change. As such, ad-
vanced workflow optimization algorithms are required.

Optimizing the order of WS calls in a workflow is an important
problem that arises inmany e-science problems. An example taken
from bioinformatics is presented in [15], where, given a set of
proteins taken from 12 Bacillus bacterium species, the goal is first
to classify the secreted proteins and then to analyze them. In such a
workflow, when the order of the performed checks for identifying
the kind of a protein (e.g., lipoprotein) is modified, the workflow
efficiency changes, too.

At a conceptual level, optimizing the order of WS calls in a
workflow resembles the optimization in database query plans.
The way in which WSs communicate plays a crucial role. For
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example, if each WSs processes its whole input before the next
service starts its execution, then the optimal ordering depends
on the service cost per data item and the service selectivity, and
in [16] a very effective algorithm has been proposed to solve this
problem. However, typical e-science experiments analyze data
in the range of hundreds of megabytes to petabytes, and it is
common for each service to process data items (or tuples, following
the database terminology) independently. In this case, it is more
efficient to execute the workflow in a pipelined fashion rather
than sequentially. Pipelined execution allows multiple remote
services to process different data items simultaneously, and it can
greatly reduce the response time by increasing the throughput.
In fact, the response time in pipelined execution is determined
by the bottleneck WS, i.e., the WS that spends the most time per
input tuple, and Srivastava et al. [17] have proposed an efficient
algorithm for this problem.

A main limitation of existing WfMSs (e.g., [4]) and state-of-
the-art optimization algorithms, such as the one in [17], is that,
even when they provide support for pipelined execution, they
assume that each WS passes its results to the next WS through
an intermediary or a coordinator. In this work we propose a novel
algorithm for building linear WS plans. By linear plans, we mean
plans where the output of a service is fed to only one service, and
there is a single data resource. The main novelty of our work lies
in the fact that we cover the case in which WSs communicate
directly with each other, while the data communication costs
between the services are different, i.e., there is an heterogeneity in
data transfer costs between services. This flexibility comes at the
expense of additional complexity, given that the heterogeneous
transmission times between WSs must be taken into account. By
allowing services to communicate directly with each other, the
execution is rendered decentralized.

The main contribution of our work is twofold: (a) the proposal
of a novel WS ordering algorithm that is based on the branch-and-
bound optimization algorithm for improving the response time of
WSworkflows executed in a pipelined fashion assumingdecentral-
ized execution, and (b) the performance evaluation through real
large-scale experimentswith a view to obtaining clear insights into
the actual benefits of adopting our algorithm. The real measure-
ments are particularly encouraging, since our algorithm can im-
prove on network heterogeneity-oblivious approaches by up to an
order of magnitude.

The remainder of this article is structured as follows. Section 2
discusses the related work, while Section 3 presents a use case ex-
ample. The problem we deal with and the proposed algorithm are
presented in Section 4. The evaluation results appear in Section 5,
and Section 6 concludes the paper.

2. Related work

Our work relates to the broader areas of distributed query op-
timization, pipelined operator ordering and workflow manage-
ment. Distributed query optimization algorithms differ from their
centralized counterparts in that the communication cost must be
considered, and there is a trade-off between total work optimiza-
tion and the harder problem of response time optimization [18].
Proposals for the latter case either employ more sophisticated dy-
namic programming techniques (e.g., [19]) or resort to heuristics.

In [17], an efficient optimization algorithm is presented for op-
timizing pipelined workflows. A drawback of this algorithm is that
it assumes that the output of a service is fed to the subsequent ser-
vice indirectly through a central management component, and it
cannot be extended to cases where arbitrarily distributed services
communicate directly with each other. However, it is capable of
building execution plans where the output of a service is fed to
multiple services simultaneously when the service selectivities are
higher than 1. Our work addresses the aforementioned limitation
by proposing an efficient branch-and-bound algorithm for the lin-
ear optimal ordering of services when the services communicate
directlywith each other and the communication costs between the
services may differ. It can be deemed as an extension to [17] ac-
counting for decentralized execution, except thatwe are interested
in linear orderings only, regardless of the selectivity values.

In the area of pipelined operator ordering, the proposals in [20,
21] introduce faster algorithms that produce multiple plans to be
executed concurrently with a view to maximizing the dataflow.
Along with the definition of the set of interleaving plans, the pro-
portion of tuples routed to each plan is decided as well, in order
to maximize the aggregate processing rate. As in our case, all the
plans are linear, i.e., each WS has at most one input service and
one output. In [22], the goal is to develop solutions for the order-
ing of operators that are tailored to online, dynamic scenarios. The
aforementioned proposals refer to the problem of minimizing the
response time. The approximate algorithm in [22] applies to the
problem of minimizing the total work.

A common feature of all these algorithms is that they assume
homogeneous communication links, i.e., the data transfer costs
between any pair of services, independently of the hosts that are
deployed to, are equal, which is not the case in our work. The net-
work heterogeneity is taken into account in [23], where the aim
is to minimize the aggregate communication cost rather than the
response time, and in [24], where the aim is to share data transmis-
sion across multiple tasks. To the best of our knowledge, our pro-
posal is the first that aims at minimizing the workflow execution
(i.e., response) time when the execution is both pipelined and de-
centralized and the network heterogeneity is explicitly taken into
account.

Ourwork onworkflow optimization is orthogonal to and can be
combined with other complementary efforts related toWfMSs de-
veloped for e-science applications. A detailed discussion on mod-
ern WfMSs can be found in [25]. WfMSs can be broadly divided
into two categories: task-based systems and service-based sys-
tems. Task-based systems (e.g., [8–10]) generally focus on effi-
ciently mapping and executing abstract workflows. Mapping an
abstract workflow instance to an executable form involves detect-
ing (i) the resources that are available and can perform the com-
putations, (ii) the data that is used in the workflow, and (iii) the
necessary software. On the other hand, service-based systems
(e.g., [4,6]) generally provide interfaces to services for easy
workflow management and composition. In the aforementioned
systems, workflow optimization, when addressed, deals with
scheduling issues, rather thanwith subtask ordering, as in our case.

3. Use case example

The following example introduces a use case of the problem
that we deal with. Abstracting from implementation details, we
assume that WSs provide a high-level interface of the form WS :

X → Y , where X and Y are sets of attributes, i.e., given values for
attributes in X ,WS returns values for the attributes in Y , as shown
in the following example adapted from [17]. In the generic case,
the input tuples may have more attributes than X , while attributes
in Y are appended to the existing ones. It is considered that each
WS typically performs operations such as filtering out data items
that are not relevant to the query, transforming data items, or
appending additional information to each input tuple. The services
are pre-allocated on host machines, while they are implemented
using at least one input and one output thread, in order to ensure
pipelining. The former thread receives tuples and places them in a
tuple queue,while the latter takes tuples from thequeue, processes
themand outputs the results to a subsequent service. However, our
approach can be adopted by pull-based workflow engines as well,
with minor modifications.
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Example 1. Suppose that a companywants to obtain a list of email
addresses of potential customers, selecting only those who have a
good payment history for at least one card and a credit rating above
some threshold. The company has the right to use the following
WSs that may belong to third parties and each service is deployed
on a different host. The input data containing customer identifiers
is supplied by the user.

WS1 : SSN id(ssn, threshold) → credit rating (cr)
WS2 : SSN id (ssn) → credit card numbers (ccn)
WS3 : card number (ccn, good) → good history (gph)
WS4 : SSN id (ssn) → email addresses (ea)

There aremultiple valid orderings to perform this task, although
there is one precedence constraint: WS2 must precede WS3. The
optimization process aims at deciding on the optimal (or near-
optimal) ordering under given optimization goals. Two possible
WS linear orderings that can be formed using the above services
are C1 = WS2WS3WS1WS4 and C2 = WS1WS2WS3WS4. In the first
ordering, first, the customers having a good payment history are
initially selected (WS2,WS3), and then, the remaining customers
whose credit history is below some threshold are filtered out
(through WS1). The C2 linear plan performs the same tasks in a
reverse order. The above linear orderings have different response
time, as will be shown later. �

In order to execute such a workflow, users, independently of
their language of choice, have to select (i) the services processing
a single dataset, (ii) the location of the input data, which can be
provided by an additional service that is connected to a data re-
source, and (iii) the precedence constraints between the services.
However, users do not have to explicitly define the services’ invo-
cation order, since the latter is optimally found by the proposed
algorithm.

4. Optimal linear plan construction algorithm

4.1. Problem statement

Our goal is to build a WS invocation ordering with minimum
response time, where data is exchanged directly between services
through links having heterogeneous data communication costs. As
stated above, the response time of a query plan is controlled by
the bottleneck service. LetC = WS0WS1 . . .WSN−1 be a linear plan
of N services. Let ci be the average time needed by WSi to process
an input tuple, σi the selectivity of WSi, and ti,j the time needed to
transfer a tuple from WSi to WSj. We assume that ci, σi and ti,j are
constants and independent of the input attribute values. A service’s
selectivity is defined as the average ratio of output and input tuples.
A WS that receives as input a country name and returns a list
of neighboring cities has average selectivity above 1. Similarly, a
service that may receive the name of any city in the world and
returns airport codes only if the given city is nearby an airport
has average selectivity below 1, since, worldwide, there are fewer
airports than cities.

Then, for every input tuple to C, the average number of tuples
that a serviceWSi needs to process is given by

Ri(C) =

∏
j|WSj∈Pi(C)

σj, (1)

where Pi(C) is the set of WSs that are invoked before WSi in
the plan C. The average time per input tuple that WSi spends to
process it and to send the results to a subsequent service WSi+1 is
Ri(C)(ci + σiti,i+1). We will refer to the cost Ti,j = ci + σiti,j as the
aggregate cost of WSi with respect to WSj. Recall that the cost of
plan C is determined by the service that spends the most time per
input tuple. Thus, the bottleneck cost of a services plan C is given
by
Table 1
Processing cost and selectivity values of the services presented in Example 1.

WSi 1 2 3 4

Cost ofWSi(ci) 1 3 2 3
Selectivity ofWSi(σi) 0.2 2 0.6 3

Table 2
Communication cost values of the services presented in Example 1.

i/j 1 2 3 4

1 – 11 14 8
2 11 – 10 9
3 14 10 – 7
4 8 9 7 –

cost(C) = max
0≤i<N


Ri(C)Ti,i+1


. (2)

Wedefine tN−1,N = 0. If ti,j is equal for all service pairs, the problem
can be solved in polynomial time, as shown in [17]. Here we deal
with the generic – and more realistic – case, where ti,j values may
differ.

Example 2. We continue with Example 1. Table 1 shows the per
tuple processing costs and the selectivity values of the services
introduced in Example 1, while Table 2 shows the interservice
communication costs. Note that σ2 = 2 and σ4 = 3 mean that
every customer has, on average, two credit cards and three email
addresses, respectively. In this example, it is assumed that the cost
spent to transfer input data to a service is negligible. However, if
this hypothesis does not hold, we can realize the different data
communication costs by using a source service WS0 with zero
processing cost and σ0 = 1. That service is considered to be the
source of input data. Regarding the C1 linear ordering, the average
number of tuples that serviceWS3 needs to process for every input
tuple is R3(C1) = σ2 = 2, while the corresponding average
number of tuples in C2 is given by R3(C2) = σ1σ2 = 0.2 ∗ 2 = 0.4.
Thus, in C1, the cost spent by WS3 in order to process an input
tuple from the initial data resource and send the results to the
subsequent service, which isWS1, is given by R3(C1)(c3+σ3t3,1) =

2∗(2+0.6∗14) = 20.8. Similarly, the processing and transferring
cost that is incurred by WS3 in C2 is R3(C2)(c3 + σ3t3,4) = 0.2 ∗

2 ∗ (2 + 0.6 ∗ 7) = 2.48. Estimating the costs that are incurred
by the other services in both linear orderings, we can see that
the response time of C1 is max{23, 20.8, 3.12, 0.72} = 23, while
the response time of C2 is max{3.2, 4.6, 2.48, 0.72} = 4.6. The
bottleneck service, i.e., the one that incurs the maximum cost, is
WS2 in both plans. However, the maximum cost itself is different.
The above example shows that two different WS orderings can
differ in their response time. �

4.2. Algorithm description

The proposed algorithm is based on the branch-and-bound
optimization approach. It proceeds in two phases, namely the
expansion phase and the pruning phase. During expansion, new
WSs are appended to a partial plan C, while during the latter
phase, WSs are pruned from C with a view to exploring additional
orderings. The proposed algorithm is capable of efficiently
exploring the solution space without sacrificing the optimality of
the producedplans. To this end, in order to find anoptimal solution,
the algorithmdoes not have to build the entire linear plan, but only
a part of it. Based upon these partial plans, it decides whether a
partial plan has the potential to be part of an optimal plan or not. A
prefix plan is just a prefix of a (partial)WS plan. The term, however,
is used for partial plans (either already visited or not) that have
useful properties. For example, all linear plans having a specific
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prefix plan may be optimal, or, otherwise, partial plans with a
specific prefix are not further explored for optimality, since their
prefixes have bottleneck cost higher than the bottleneck cost of the
best plan visited so far. These issues aremade clear throughout the
rest of this section.

The decision whether to append new services or prune existing
ones from a partial plan C is guided by two cost metrics, ϵ and ϵ,
respectively. The former corresponds to the bottleneck cost of C,
and is given by Eq. (2), while the latter is the maximum possible
cost that may be incurred byWSs not currently included in C. If all
selectivities are less than 1, ϵ is given by

ϵ

= max
l,r



 ∏
j|WSj∈C

σj

 Tl,r , WSl ∉ C,WSr ∉ C
l−1∏
j=0

σj


Tl,r , WSl : last service in C,WSr ∉ C


. (3)

If there exist σi > 1, then ϵ in Eq. (3) is multiplied by the product
of all σi > 1 such thatWSi ∉ C.

The algorithm proceeds as follows. It starts with an empty plan
C, to which we append the services WSl and WSr that incur the
minimum aggregate cost Tl,r . After that, a new planC = WSlWSr is
formed having bottleneck cost Tl,r . New services may be appended
one at a time. In every iteration of the algorithm, we select the
service having theminimumaggregate costwith respect to the last
service.

The above procedure, i.e., appending newservices to the current
plan C, finishes when the condition ϵ ≤ ϵ is met. That condition
implies that the ordering of the services that are not yet included
in C does not affect its bottleneck cost. As a consequence, all plans
with prefix the partial plan C have the same bottleneck cost. So, a
candidate optimal solution S is found that consists of the current
plan C followed by the rest of the services1. The bottleneck cost ρ
of the best plan found so far S is set to ρ = ϵ.

Having found a candidate solution, we explore other plans with
potentially lower bottleneck costs. An efficient strategy is to prune
the WSs in C after the bottleneck service, including the latter. Let
C = WS0WS1 . . .WSn and WSi be the bottleneck WS of C, where
0 ≤ i ≤ n < N . Then C is pruned as follows:

C =


∅, i = 0,
WS0WS1 . . .WSi−1, 0 < i ≤ n < N.

(4)

The intuition behind Eq. (4) is as follows. WSi+1 is the WS such
that WSi has the minimum cost Ti,i+1. Thus, the cost that may be
incurred by any other WS appended toWSi will be higher than the
current bottleneck cost. It is clear that it is worthless to investigate
plans with prefixWS0 . . .WSi.

After the pruning, we append new services to the new plan
C, following the steps described above, i.e., the WS having the
minimum aggregate cost with respect to the last service in C is
appended. In order not to rebuild plans that have already been
investigated during previous iterations of the algorithm, before C
is pruned, its prefix plan up to the bottleneck WS is inserted in a
list V . Then, every time we want to append a new service WSr to
a plan C, the plan produced after the concatenation of C and WSr
must not appear in V . If any of the plans stored in V is a prefix of
this new plan CWSr , WSr is replaced by the next service.

The pruning step is also triggered when the bottleneck cost ϵ of
a partial planC is higher than or equal to the bottleneck cost of the

1 In our implementation the rest services are placed by ascending selectivity
order.
Table 3
Aggregate cost matrix T.

i \ j 1 2 3 4 5 6 7 8 9 10

1 – 46 37 42 35 36 40 39 31 29
2 34 – 25 24 29 27 28 25 31 30
3 88 70 – 85 102 73 93 91 91 75
4 65 43 55 – 59 51 48 45 65 48
5 42 44 51 46 – 43 35 42 21 36
6 106 100 92 98 106 – 80 88 104 102
7 34 30 33 28 27 26 – 39 29 31
8 38 29 37 29 34 30 45 – 28 33
9 36 47 45 49 23 41 39 33 – 35

10 37 53 44 43 41 47 48 46 39 –

Table 4
Selectivities of WSs in W .

WSi 1 2 3 4 5 6 7 8 9 10

σi 0.5 0.3 1.5 0.9 0.7 2 0.4 0.5 0.6 0.8

best service plan S found so far, i.e., ϵ ≥ ρ. It can be shown that the
bottleneck cost of a (partial) plan does not decrease if we append
other services at the end of that plan. Thus, at a specific algorithm’s
iteration, the best linear plan not yet visited has bottleneck cost at
least equal to Tl,r .WSl andWSr are the two services that (i) are not
a prefix of any of the (partial) plans visited so far and (ii) incur the
minimum per tuple processing and transferring cost when placed
at the beginning of the plan. Based on the above, it is proven that
the algorithm can safely terminate when the less expensive pair
of WSs that are not a prefix of any plan already visited incurs a
cost at least as high as the bottleneck cost of the currently best
solution [26].

To summarize, the proposed algorithm consists of the following
simple steps. Starting with an empty plan C and an empty optimal
linear plan S with infinity bottleneck cost, in every iteration of the
algorithm, the parameters ϵ and ϵ are computed. If the bottleneck
cost ϵ of C is lower than ϵ, then a new service is appended to C
as described above. If the bottleneck cost ϵ of the current plan C
is higher than or equal to the bottleneck cost ρ of the best plan
found so far S, thenC is pruned using Eq. (4). Finally, whenever the
condition ϵ ≤ ϵ is met, a new solution is found. The last solution
is the optimal one. The detailed description of the algorithm, along
with the proofs of correctness and optimality, can be found in [26].
In [26], it is also shown how precedence constraints between
services (i.e., some servicesmust always execute before others) can
be considered through trivial extensions.

The reason for adopting a branch-and-bound-style algorithm
and not a linear programming one, as in [17], is that the problem
that we deal with is NP-hard (see [27] for the proof), in contrast
to the problem introduced in [17]. Thus, a linear programming
formulation is insufficient to provide an optimal solution.

4.3. An example

Let W = {WS1, . . . ,WS10} be a set of 10 services with corre-
sponding aggregate costs and selectivities shown in Tables 3 and
4, respectively. Fig. 1 shows the partial plans at the end of each
iteration.

Initially, the plansC and S are empty, and the bottleneck cost of
S is set to∞. The algorithm starts by identifying theWS pairwhich
incurs the minimum bottleneck cost. The corresponding WSs are
WS5 and WS9. After that, C = WS5WS9. In the second iteration,
since ϵ = 21 < ϵ = σ5 × σ9 × σ3 × σ6 × T4,1 = 81.9
and ϵ < ρ = ∞, a new WS is appended to C, the one having
the minimum aggregate cost with respect to WS9; that service is
WS8. In the third iteration, since ϵ = 23.1 < ϵ = σ5 × σ9 ×

σ8 × σ3 × σ6 × T4,1 = 40.95, the service WS2 is appended to



E. Tsamoura et al. / Future Generation Computer Systems 27 (2011) 341–347 345
Fig. 1. An example of the proposed algorithm.

C, forming the partial plan C = WS5WS9WS8WS2. Now, since
ϵ = 23.1 > ϵ = σ5 ×σ9 ×σ8 ×σ2 ×σ3 ×σ6 × T4,1 = 12.285, and
ϵ < ρ = ∞, a solution is found. Thus, S is set toC, ρ = 23.1 andC
is pruned using Eq. (4). After the pruning C = WS5 (the bottleneck
WS is WS9). The termination condition is not triggered given that
there exists a two-service prefix that has not been investigated and
its cost is lower than ρ: T9,5 = 23.

In the fifth iteration,2 since ϵ = 0 < ϵ = 136.5 and ϵ =

0 < ρ = 23.1, a new WS is appended to C = WS5; that is
WS7. In the sixth iteration, the partial plan is set to C = ∅, as
ϵ = 35 > ρ = 23.1 and the bottleneck WS is the first one, i.e.,
WS5. As a result, any other plan starting with WS5 can be safely
ignored.

Since the plan C is empty, the algorithm searches for the WS
pair with the minimum aggregate cost. In our example, this pair
consists of WS9 and WS5. Note that the requirement none of the
plans stored in V to have prefix the plan WS9WS5 is met. In
iterations 8–10, new WSs are appended to C, forming the partial
plan C = WS9WS5WS7WS6WS8. In the eleventh iteration, a new
solution is found, since ϵ = 23 > ϵ = 16.38 and ϵ < ρ = 23.1.
Thus, S = WS9WS5WS7WS6WS8, the bottleneck service is WS9,
and ρ is set to 23. After the pruning C = ∅, and the algorithm
safely ignore plans starting with WS9. This causes the algorithm
to terminate, since the cost of the less expensive WS pair except
those beginning withWS5 orWS9, which isWS2WS4, is higher than

2 The bottleneck cost of a single-service plan is 0.
ρ: T2,4 = 24 > ρ = 23. So the algorithm terminates, after having
essentially explored all the 10! orderings in just 11 iterations.

5. Evaluation

In the current section,we experimentally evaluate the proposed
algorithm, which will be referred to as the Optimal Linear Plan
Constructor (OLPC), using the real-world distributed infrastructure
of PlanetLab-EU [28]. The evaluation is conducted to investigate,
first, the algorithm’s performance, and second, the algorithm’s
efficiency. The performance of the algorithm is evaluated through
the comparison of the response times of a wide range of query
plans produced by OLPC and the Greedy algorithm in [17], which
performs service ordering but considers only the computation cost
and selectivity of each WS. The efficiency is measured in terms
of the absolute time needed to construct the plans and of the
number of iterations that the proposed algorithm performs. The
experiments presented hereby complement further simulation
results in [26], which show that our algorithm is very efficient.
Although simulations allow us to investigate the behavior of our
algorithm under a wide range of parameters, most of which would
not be feasible tomeasure in real-world experiments, wemust also
prove that our algorithm behaves well compared to other simpler
approaches under the specific level of network heterogeneity
encountered in world-scale experiments.

OLPC always produces the optimal serial WS plan. The experi-
ments that follow dealwith the extent towhich the response times
of the Greedy plans are higher than the response times of the OLPC
plans. This is done with the help of the response time ratio metric
ρ ′/ρ, where ρ and ρ ′ denote the response time of a plan built by
OLPC and Greedy, respectively. Recall that the response time of a
plan is given by Eq. (2). We restrict the experiments to WSs that
have selectivity no greater than 1, since, for this case, both algo-
rithms build linear plans.

Our prototype setting is as follows. The services are deployed
on 26 hosts placed in eleven European and Asian counties,
namely Greece, Italy, France, Germany, Poland, Spain, Portugal,
UK, Sweden, Israel and Thailand. On each remote host we have
installed an Apache Tomcat 6.0.9 server and the Axis engine for
(de-)serializing the SOAPmessages exchanged among the services.
The WSs are developed in Java and have an interface of the
form WSi (tuple). The input tuples consist of a tuple identifier
and a single data attribute. Each service is implemented using
two threads: a consumer one and a producer one. The consumer
thread receives input tuples from another service and places
them in a queue. The producer thread takes tuples from the
queue and sends them to the next service in the pipeline. In our
implementation,WSs communicate synchronously. Thus, a service
cannot send tuples to another one unless the destination service
sends back an acknowledgmentmessage. This message shows that
the destination service has successfully placed the previously sent
tuple in its queue. In our implementation, the service queues can
hold up to 500 tuples. Apart from that, each service has a selectivity
σi uniformly distributed between 0.3 and 1 and utilizes a random
number generator in order to decide when to drop an input tuple
or to send it to the next service in the pipelined plan. In wide-area
applications, the cost of transferring data typically dominates the
processing cost. Consequently, we consider that each WS does not
perform any operations on input data and that all tuples contain
a string of 512 kB. According to the above, each service WSi tries
to send directly an input tuple to another service in cases where
the output of the random number generator is greater than σi;
otherwise it simple drops it.

In the first set of experiments, we created ten different work-
flows with 6 random WSs each, so that WSs were not allocated
at the same host. Each workflow processes 1000 tuples of 512 kB,
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Fig. 2. Results for ten workflows with (a) 6, (b) 10 and (c) 14 services each. The left bars correspond to the estimated response time ratio ρ ′/ρ of the Greedy and the OLPC
plans after optimization, using Eq. (2), while the actual response time ratio after having executed the plans on PlanetLab correspond to the right bars.
i.e., approximately 500 MB of data. Since PlanetLab is highly dy-
namic, the communication costs are identified through profiling,
which takes place immediately before the execution of each work-
flow. During profiling, we send 15 tuples between any pair of WSs,
e.g.WSi andWSj, and we set tij equal to the median of the 15 com-
munication times.3 After that, the OLPC and Greedy algorithms are
executed in order to build WS plans. Greedy does not actually uti-
lize the communication cost information obtained through profil-
ing. Since the processing cost is not only negligible but also equal
for each service, the plans built by the Greedy algorithm are linear
orderings by increasing selectivity value; if the costs differed, then
the ordering would be by increasing cost [17].

The results are shown in Fig. 2(a).4 The figure shows (i) the esti-
mated response time ratio ρ ′/ρ of the Greedy and the OLPC plans
after optimization, using Eq. (2) (left bars); and (ii) the actual re-
sponse time ratio after having executed the plans on PlanetLab
(right bars). Two main observations can be drawn. First, these re-
sults confirm the simulation results that the performance improve-
ment can be substantial (up to an order of magnitude). Second,
theremay be non-negligible differences between the estimated re-
sponse times and the actual response times. These differences are
mainly attributed to the runtime variations of the communication
cost values. In other words, the communication costs that were es-
timated through profiling have changed during the execution of
the plans on PlanetLab. This calls for adaptive optimization algo-
rithms,whichweplan to investigate in futurework. Greedy ismore
robust to such changes, since it ignores communication costs.

In cases where the response time deviations between the
Greedy and the OLPC plans are high, the bottleneck services of the
Greedy plans communicatewith their descendants through expen-
sive links; for example, the bottleneck service and its immediate
one are deployed on PlanetLab hosts located in different conti-
nents. For example, in the fifth workflow, the bottleneck service
of the plan built by Greedy is deployed on a host in Israel, while its
descendant is deployed in Greece.

The same experiment was repeated for workflows with 10 and
14WSs. The results are shown in Fig. 2(b) and 2(c), respectively. In
general, the response time deviations between the two algorithms
increase as the number of services increases; the main reason is
that the probability to choose hosts placed in different continents
becomes higher.

The number of iterations that were performed by the proposed
algorithm in order to reach a solution for the different experiments

3 We have observed that the WSs installed on the aforementioned PlanetLab
hosts (de-)serialize a SOAP message in less than 0.5 s, which is added to the
communication cost.
4 First, we verified that Eq. (2) can capture the actual response time.
Table 5
Number of iterations performed by OLPC.

Workflow type \ id 1 2 3 4 5 6 7 8 9 10 avg

6 WSs 10 13 3 2 5 17 3 3 3 39 9.8
10 WSs 5 4 6 3 8 12 9 15 3 4 6.9
14 WSs 3 19 7 4 3 6 5 5 8 4 6.4

are presented in Table 5. The number of iterations grows slowly
with the number of services. In addition, the mean execution time
of the proposed algorithmper plan is only 0.3 s on amachinewith a
dual core 2 GHz processor with 2GB RAM, which can be deemed as
negligible. These results constitute a strong proof of the efficiency
of the algorithm. In the future, we plan to investigate the average
case complexity of the algorithm analytically.

6. Conclusions

In this work, we deal with the optimization of decentralized
workflows consisting of calls to remote services. More specifi-
cally, we present an algorithm for finding the optimal ordering of
pipelined services when the services communicate directly with
each other through links characterized by different transmission
times. While different orderings produce similar results, their re-
sponse times may differ significantly. The optimization goal is to
detect the ordering thatminimizes the query response time,which,
due to parallelism, depends on the bottleneck service. Our algo-
rithm is capable of finding the optimal ordering, and it is of high
practical significance since it is fast. We also present experiments
using a world-scale infrastructure, which provide strong insights
into the actual performance benefits of the proposed algorithm.
Themain conclusion is that, in real cases, our algorithm can lead to
considerable performance benefits compared to approaches that
do not consider the network heterogeneity.

Our work can be extended in several ways. Two of the most
promising avenues for further research are, first, to support run-
time adaptations to changes in the environment, and, second,
to investigate nonlinear orderings, even if there is a single data
resource.
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