
Synthetic metrics for evaluating runtime quality of software architectures with
complex tradeoffs

Anakreon Mentis Panagiotis Katsaros Lefteris Angelis
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{anakreon, katsaros, lef}@csd.auth.gr

Abstract—Runtime quality of software, such as availability
and throughput, depends on architectural factors and
execution environment characteristics (e.g. CPU speed,
network latency). Although the specific properties of the
underlying execution environment are unknown at design
time, the software architecture can be used to assess the
inherent impact of the adopted design decisions on runtime
quality. However, the design decisions that arise in complex
software architectures exhibit non trivial interdependences.
This work introduces an approach that discovers the most
influential factors, by exploiting the correlation structure of
the analyzed metrics via factor analysis of simulation data. A
synthetic performance metric is constructed for each group
of correlated metrics. The variability of these metrics
summarizes the combined factor effects hence it is easier to
assess the impact of the analyzed architecture decisions on
the runtime quality. The approach is applied on
experimental results obtained with the ACID Sim Tools
framework for simulating transaction processing
architectures.

Keywords-software architecture; runtime quality;
architecture design tradeoffs

I. INTRODUCTION
Software architecture is defined as “the structure or

structures of the system, which include software
components, the externally visible properties of those
components, and the relationships among them” [2]. For
the software, the implemented architecture design sets the
boundaries for its runtime quality, which is quantified by a
number of metrics, where each metric reflects a different
aspect of runtime behavior. The architecture cannot be a
basis for precise predictions of the system’s runtime
behavior, since it also depends on implementation details.
However, the architecture can support analyses that
provide some level of confidence for the main effects of its
characteristics, called factors, that affect the runtime
metrics of interest.

Software designers are aware of the factors affecting
runtime quality. However, predicting the most influential
factors is not straightforward or obvious [6]. The effect of
a single change in a factor of the software architecture is
likely to affect multiple metrics of runtime quality. For
example checkpoint is an architectural factor in a
transaction processing system that contributes in achieving
high availability, at the cost of potential deterioration of
the system’s performance. This is a typical runtime quality
tradeoff.

We propose the construction of a few synthetic metrics
that summarize the effects of architectural factors, by
taking into account the correlations between the metrics of
interest.

The approach employs a statistical analysis, which may
be applied either on simulation data or monitoring data
obtained from a prototype. This analysis discovers groups
of runtime metrics which are strongly correlated, because
they are found to be affected by the same architectural
factors. Hence, one can study the identified groups, instead
of the distinct metrics of interest. Moreover, since the few
groups obtained are uncorrelated, they can be studied
independently.

For each group of metrics, we form a single synthetic
metric, which takes into account the positive or negative
correlation of the group members. Depending on the
relative importance of the metrics of interest, it is also
possible to assign weights for the group members that
compose the derived synthetic metric.

The proposed approach is applied on simulation data
obtained by the ACID Sim Tools [1, 7], a tool suite
developed by the authors for studying the runtime quality
of transaction processing architectures.

Section II introduces the runtime design problems in
transaction processing architectures and the case
application scenario used to describe the proposed
approach. Section III presents the analysis performed for
discovering the correlation structure of the evaluated
metrics. Section IV explains the procedure for constructing
synthetic metrics and the paper concludes with a summary
on the contribution of this work and a comment on its
usability and the potential impact.

II. TRANSACTION PROCESSING ARCHITECTURES
Transactions provide system-wide Atomicity,

Consistency, Isolation and Durability (ACID) guarantees
for a set of operations that are initiated in a transactional
server as a consequence of a transaction request.

Transactional architectures involve a series of complex
design tradeoffs that make evident the need to investigate
how the different architectural factors affect the metrics
that determine the quality of service perceived by the end-
user. Early detection of potential performance problems at
the design phase is crucial, since the cost of correcting
them after the software is implemented is disproportionally
high. Typical runtime quality requirements for a successful
architecture design include:

• High number of successfully processed
(committed) transactions per time unit.

• Short response times, where response time is the
time span between issuing the transaction request
and the instant when the transaction either
commits or aborts.

• High availability, where server availability is the
ratio of time during which the server responds to
transaction requests over the total time including
server downtime, recovery and normal processing.
While performing recovery from a failure, a server
is unavailable to the clients. This implies that
recovery times after failures should be minimized.

Recovery costs are determined by the size of the log
files of the transactional server that in turn affects the I/O
cost for the rollback of transactions that abort, as well as
the use of locks in concurrency control. In essence, the size
of the log file indirectly affects also the observed number
of committed transactions per time unit.

With a quantitative evaluation technique, like the one
proposed here, it is possible to quantify the significance
and the relationships of the analyzed architecture design
factors, when the system serves workloads with different
degrees of distribution (localized to highly distributed
transactions), different mixes of read-only and update
transactions and different conditions of resource contention
(I/O bound or CPU bound system configurations).

ACID Sim Tools is an integrated toolset and open
source framework for simulating transaction processing
architectures. It is based on a minimal set of assumptions
that represent an object-based computational model (e.g.
the OMG Core Object Model [8]) and is therefore
appropriate for simulating transaction processing
architectures like the ones that comply with the Enterprise
Java Beans [4] and the OMG OTS standard [9].

A transaction invokes methods of objects that reside in
one or more servers. These methods incur computations
with specific CPU resource demands and are either read-
only or alternatively update the state of the involved
objects. For a given transaction request, the server
receiving it is called coordinator and all other involved
servers are called transaction workers.

Currently, we have implemented the basic two-phase
commit (2PC) protocol for atomic commit processing of
distributed transactions, along with two optimized variants,
namely the 2PC presume commit and the 2PC presume
abort protocols. For concurrency control, we have
implemented the strict two-phase locking protocol, as well
as the basic timestamp ordering protocol.

Our simulation framework provides metrics for
evaluation and systematic experimentation on the tradeoffs
between recovery costs and performance, when applying
different combinations of protocols and protocol
parameters. The provided metrics allow studying runtime
quality by taking into account the degree of distribution
and the degree of lock contention for the simulated
workload. Apart from the generated measurements for the
transaction workload as a whole, we have also
implemented metrics for the different groups of
transactions that exhibit a similar behavior, such as the
group of all local transactions, the group of all distributed
transactions and the different groups of transaction classes
that compete for locks on the same objects.

The implemented metrics are:
• server availability

• the ratio of committed transactions (throughput)
• mean response time for all transaction groups
• mean blocking time for all distributed transactions,

that represents the accumulated time-span between
dispatching the workers’ vote for the outcome of a
transaction and the arrival of the coordinator’s
decision, during which processing in the worker is
blocked for this particular transaction.

The proposed quantitative evaluation technique is
demonstrated by a case application scenario represented by
a synthetic transaction workload, which involves a number
of transactional objects distributed among two servers.
Table I introduces the considered object allocation and the
associated object parameters as well as their method
characteristics.

TABLE I. TRANSACTIONAL OBJECTS

Server Object State Size
(Kb) - exp-a

Method
name

CPU demands
(sec) - exp-

Read/
Write

acp1 obj1 5 meth111 0.01 R
 meth112 0.05 R
 obj2 5 meth121 0.01 R-W
 meth122 0.01 R
 meth123 0.01 R
 obj3 5 meth131 0.04 R-W
 meth132 0.01 R
 obj4 5 meth141 0.01 R-W
 meth142 0.01 R
 meth143 0.01 R
 obj5 5 meth151 0.01 R-W
 meth152 0.01 R
 meth153 0.01 R
acp2 obj6 5 meth211 0.05 R-W
 meth212 0.05 R
 obj7 5 meth221 0.05 R-W
 meth222 0.01 R
 obj8 5 meth231 0.01 R
 meth232 0.01 R
 obj9 5 meth241 0.05 R-W
 meth242 0.05 R
 obj10 5 meth251 0.05 R-W
 meth252 0.01 R
 obj11 5 meth261 0.01 R
 meth262 0.01 R
 obj12 5 meth271 0.05 R-W
 meth272 0.05 R
 obj13 5 meth281 0.05 R-W
 5 meth282 0.01 R

a. exponential distribution

CPU time demands of the object methods obey the
exponential distribution with the shown means. Table II
displays the parameter values for the assumed execution
environment. Since the aim of this evaluation is not to
analyze the effects of the specific characteristics of the
underlying execution environment, a minimal set of
system-specific parameters is taken into account. These
parameters are necessary for quantifying the evaluated
runtime quality aspects for the studied architecture.

TABLE II. EXECUTION ENVIRONMENT CHARACTERISTICS

Network latency / message: 0.06 sec

Server Disk Read Latency Disk Wtite Latency Mean Time
To Repair

acp1 4.271e-05 sec/Kb 51.252e-05 sec/Kb 4 sec
acp2 4.271e-05 sec/Kb 51.252e-05 sec/Kb 4 sec

We consider nine (9) transaction classes that are
specified as sequences of method invocations representing
the possible program paths in a transactional program. The
transaction classes and their associated characteristics are
shown in Table III.

TABLE III. TRANSACTION CLASSES

Transaction
Class Methods invoked Characteristics

tr1 meth111, meth122, meth132 local (acp1) – read only
tr2 meth111, meth222, meth112 distributed – read/write
tr3 meth112, meth211, meth121 distributed – read/write
tr4 meth242, meth252, meth232 local (acp2) – read only
tr5 meth242, meth142, meth242 distributed – read only
tr6 meth242, meth141, meth251 distributed – read/write
tr7 meth262, meth272, meth282 local (acp2) – read only
tr8 meth262, meth152, meth262 distributed – read only
tr9 meth262, meth151, meth271 distributed – read/write

We studied the variation of the aforementioned

metrics, in terms of the architectural factors and workload
parameters (MIT and MITofSF) shown in Table IV. A
checkpoint is a periodically invoked log truncation, which
removes log entries that are no longer needed for server
recovery from a failure. Frequent checkpoints result in
faster recovery, but a substantial amount of additional I/O
workload is imposed during normal operation.
Multiprogramming level (MPL) represents the maximum
number of transactions that are allowed to run concurrently
in a server. Concurrency control in the experiment adheres
to the widely used strict two-phase locking (2PL) scheme.
To avoid deadlocks, the servers maintain a timer that is
activated upon initiation of each transaction and when the
timer expires the transaction is aborted. Transaction
timeout (TT) is the time-span between the initiation of the
transaction processing and the expiration of this timer.

TABLE IV. FACTORS THAT INFLUENCE RECOVERY COSTS &
PERFORMANCE

Factors Level 1 Level 2 Level 3
Atomic commit protocol (ACP)
- all servers -

2PC PRN
Presume
Nothing

2PC PRC
Presume
Commit

2PC PRA
Presume
Abort

Multiprogramming Level (MPL)
- all servers -

2 3 4

Checkpoint intervals (CI) –
periodic (sec) for all servers

500 1300 2100

Transaction timeouts (TT) in sec
- all transaction classes -

0.9 1.1 1.3

Mean interarrival times (MIT), exp.a
- all transaction classes -

0.6 0.4

Mean interarrival time of server fail
-stop failures (MITofSF) – exp.a

18 m 5 h 51 m 12 h

a. exponential distribution

The full experiment (all possible combinations of
factor levels) includes 486 simulation runs, where the
simulated time for each run was 55h 30m. Sufficiently
long simulation runs ensure that the metrics are studied
when being in steady-state. Alternative experiment designs
with fewer simulation runs are the uniform designs that we
used in [5].

III. DISCOVERING GROUPS OF CORRELATED METRICS
In the described architecture design, the metrics of

interest are influenced by a tradeoff between recovery cost

and performance. However, the problem is complicated
due to the fact that there is no precise characterization of
the recovery cost, since it is not directly measurable and
the fact that performance is quantified by a large number
of metrics (shown in Table V), where each metric
discloses a different aspect of the runtime behavior. In
addition, the availability of the two servers (availability0,
availability1) is quantified, under the considered levels of
fault load.

TABLE V. RUNTIME QUALITY METRICS FOR THE CONSIDERED
WORKLOAD

 Throughput Mean response
time

Mean blocking
time

All distributed
transactions

tput_distr response_distr blocking_distr

All local
transactions

tput_local response_local

Group 1: tr1,
tr3

tput_confl0 response_grp0 blocking_grp0

Group 2: tr4,
tr5, tr6

tput_confl1 response_grp1 blocking_grp1

Group 3: tr7,
tr8, tr9

tput_confl2 response_grp2 blocking_grp2

Thus, the analysis, which was conducted using the

SPSS 16 statistical software, had to take into account the
measured variations in 14 quality metrics of the runtime
performance, plus two metrics that quantify the servers’
availability. This is a problem with high dimensionality
and at least one latent quality feature, i.e. the recovery cost.

The studied metrics depend on architectural factors that
exhibit non trivial interdependences, which either cannot
be quantified directly, like the recovery cost, or they are
unknown and should be discovered and subsequently
explained. Dependence of two or more metrics on the
same architectural factors induces a correlation between
them. The examination of the correlation structure of the
evaluated metrics reveals various statistically significant
correlations either positive or negative.

The reduction of problem dimensionallity is achieved
by computing new, fewer variables that contain most of
the information present in the original ones. The idea is to
create groups of highly correlated dependent variables
representing the quantified metrics.

The appropriate procedure to follow is Factor Analysis
(FA), a methodology that discovers new variables (called
factors) in the original dataset, by exploiting their
correlation structure. To avoid confusion with the term
“factor”, as it is also used for the architectural factors of
Table IV, the new variables are called from now on
“components”, a terminology consistent with the applied
statistical analysis. Each component represents a group of
correlated metrics and this grouping in effect reduces the
dimensionality of the original data. Furthermore, the new
variables resulting from such a procedure are uncorrelated
and can be studied separately with respect to the
considered architectural factors.

Factor analysis requires that the dependent variables
are normally distributed and for this reason we applied a
transformation based on the rankings of the values in each
metric. We used Blom’s transformation [3] that utilizes the
ranks ri of the values and the cumulative Normal
distribution function Φ-1(.). The formula used in this
transformation is

⎟
⎠

⎞
⎜
⎝

⎛
+
−

Φ= −
4/1
8/31

n
r

s i
i

It is important to note that the applied transformation
preserves the correlation structure of the original dataset.
For example, in Fig. 1 a strong negative correlation
between tput_local and blocking_distr is evident in the
original and in the transformed variables. Moreover, we
observe that the normalization (bottom panel) portrays
better their correlation.

On the transformed normalized dependent variables

(metrics) we performed a FA procedure based on Principle
Components with Varimax rotation. The new variables, i.e.
the component scores, were calculated by the Anderson-
Rubin Method ensuring that the variables produced have a
mean of 0, a standard deviation of 1, and are uncorrelated.

The FA resulted in 3 components that explain 88.81%
of the variance of the 16 original variables. This means
that we can have a significant reduction of the output space
in dimensions by exploiting the correlation structure of the
normally transformed outcomes.

Table VI shows the loadings of the variables on the
three components and therefore the grouping of the studied
metrics. The sign shows the direction of the detected
correlation. For example, tput_local is loaded to the same
component as blocking_distr but their loadings have
different signs due to their negative correlation. This
finding is explained by the following metric dependency:
longer blocking times for distributed transactions result in
lower throughput for local transactions. Blocked
transactions can not release the locks that have been
acquired until the decision of the coordinator arrives,
hence, local transactions are queued for one or more locks,

with a significant probability to abort, due to a transaction
timeout. Also, when the servers’ availability is low, longer
blocking times are obtained, as a consequence of the
caused delays in communicating the messages that control
the transaction execution.

TABLE VI. ROTATED COMPONENT MATRIX OBTAINED BY
PRINCIPLE COMPONENTS ANALYSIS WITH VARIMAX ROTATION

Component
Normal Scorea using Blom’s Formula

1 2 3
availability0 -0.800 0.009 0.115
availability1 -0.794 -0.002 0.106
throughput_local -0.831 0.132 0.406
throughput_distributed -0.131 -0.125 0.978
throughput_confl0 -0.166 0.098 0.955
throughput_confl1 -0.138 -0.227 0.950
throughput_confl2 -0.140 -0.239 0.947
response_local 0.031 0.724 -0.389
response_distr 0.095 0.953 -0.203
response0 -0.036 0.948 -0.205
response1 -0.017 0.975 0.122
response2 -0.013 0.989 0.040
blocking_distr 0.967 0.062 -0.054
blocking_0 0.935 0.068 -0.126
blocking_1 0.944 0.007 -0.034
blocking_2 0.948 0.038 -0.050

a. Extracted Method: Principal Component Analysis
 Rotation Method: Varimax with Kaiser Normalization

Table VII shows the groups found by the performed
statistical analysis. High values for component 1 (C_1) are
related to high values of blocking times for distributed
transactions and low values of servers’ availability and
throughput for local transactions and vice versa.
Component C_2 groups all measured response times and
C_3 groups the throughput of distributed transactions and
the different groups of lock-conflicted transactions that are
positively correlated with their variables.

TABLE VII. GROUPS OF CORRELATED QUALITY METRICS

 Total variance
explained (%) Metrics

Component 1 35.35

availability0 (-), availability1 (-),
tput_local (-),
blocking_distr (+),
blocking_grp0 (+), blocking_grp1
(+), blocking_grp2 (+)

Component 2 27.64

response_local (+),
response_distr (+),
response_grp0 (+), response_grp1
(+), response_grp2 (+)

Component 3 25.83
tput_distributed (+),
tput_confl0 (+), tput_confl1 (+),
tput_confl2 (+)

IV. CONSTRUCTION OF SYNTHETIC METRICS
The groups of strongly correlated metrics found by

Factor Analysis are:
• component C_1, a new variable that is a computed

“score”, for the variability of all metrics, mostly
affected by I/O, due to checkpoints and recovery

• component C_2 summarizes the variability of all
response time metrics and

• component C_3 summarizes the variability of
throughput metrics, that are mostly affected by
communication latencies.

Figure 1. Strong negative correlation between tput_local and

blocking_distr in the original and transformed dataset.

An outstanding problem with the computed values for
the mentioned components is that it is not possible to
intuitively interpret them, in order to assess the impact of
the metric groups on the overall system’s behavior.

For this reason, when applying similar statistical
analyses it is often desirable to construct artificial metrics
that express the quantified variability in an intuitive way,
in order to be able to interpret the metric values.

An appropriate synthetic metric for each component
should take into account the relative importance of each
group member, with respect to the quality design goals.
Besides the possibility of using relative weights for the
metrics of a component, the correlation type (positive or
negative) enforces the relation of the new synthetic metric
in terms of the member metrics.

Let us consider component C_1 in Table VII. Since the
goal is to increase throughput and the servers’ availability,
these metrics should be combined in a way such as
increase of throughput or availability increases the
synthetic metric value. On the other hand, because the

measured blocking times are inversely correlated to
availability and throughput, increase of blocking time
should result in decrease of the synthetic metric value.

Although we are often interested in studying the
runtime behavior with respect to part of the workload that
concerns a particular characteristic (e.g. distribution or
resource sharing), with a synthetic metric we summarize
information for the entire workload. Therefore, we don’t
use metrics that represent information already contained in
other metrics. In the synthetic metric constructed for
component C_2, we take into account response_local and
response_distr, but we ignore (by setting weight 0)
response_grp0, response_grp1 and response_grp2 that are
already reflected in the two utilized metrics.

The synthetic metric for component 1 of our
experiment is computed as follows:

distrblocking

tyavailabilityavailabililocaltput
component

_

)
2

10(*_
1

+

=

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. 3-d scatterplots for the three synthetic performance metrics with respect to the architectural factors.

MIT MITofSF

CI TT

ACP MPL
PRN
PRC
PRA

Since all simulated atomic commit protocols are
blocking protocols, the obtained blocking times are always
greater than 0, hence the proposed metric does not become
undefined. High values for component1 indicate improved
performance, as a consequence of the way the utilized
metrics were combined.

The synthetic metric for component2 is given by:

2
__2 distrresponselocalresponsecomponent +

=

In contrast to the previous synthetic metric this one
indicates improved performance for comparatively smaller
values, which in fact show shorter response times. The
range of component2 includes values from 0 to infinity,
where infinite time indicates transactions for which there is
no decision made by the coordinated servers. However,
due to the applied transaction timeout strategy, this
possibility is never realized.

The synthetic metric for component3 is calculated by:

3
2_1_0_3 confltputconfltputconfltputcomponent ++

=

The range of component3 includes values from 0 to 1,
where 0 indicates that there are no committed transactions
and 1 that there are no aborted transactions.

Fig. 2 shows the 3-d scatterplots obtained for the three
synthetic metrics, with respect to the six architectural
factors of Table IV.

The scatterplots show that the 3-d points with
coordinates the values of the three synthetic metrics are
clustered with respect to the architectural factors. First of
all, there is a clear grouping for the two levels of the MIT
(Fig. 2e). The groups are clearly distinguished and are
almost parallel and this pattern is preserved in all plots.
Low throughput (component3) corresponds to mean
interarrival time 0.4 sec, meaning that arrivals of
transaction requests that are more frequent than 0.6 sec in
essence deteriorate the measured throughput. The reason is
that too many transactions that run concurrently result in
increased contention for the shared resources (CPU, I/O
bandwidth and the available locks) and a significant
number of them are eventually aborted. We also observe
that when the mean interarrival time is 0.6 sec, as a
consequence of lower resource contention, response times
are improved.

Another clear clustering is apparent with respect to
transaction timeout (Fig. 2d). Short response times
(component2) correspond to TT=0.9 (green points) and
larger values of transaction timeouts result in increasingly
longer response times. This is explained by the fact that
higher timeout values result in a comparatively higher
number of committed transactions that affect the mean
response time, but these additional transactions have in
general response times that are close to the timeout value.

High values of component1 (red points) correspond to
checkpoint intervals 2100 sec, but in this case recovery
times are long and perhaps a better design option is to use
checkpoint intervals with period 1300 sec (blue points).
Fig. 2f confirms the negative effect of frequent server
failures (green points) on the measured availability and
blocking times (component1).

Finally, Fig. 2b clearly shows that when using MPL=2
(green points), response times are deteriorated, due to the

incurred queuing delays for acquiring access to the CPU.
A less risky option is the use of three threads (blue points),
because an even higher number of threads results in severe
lock contention and higher response times.

V. CONCLUSION
This work focuses on evaluating the impact of design

decisions on runtime quality aspects of software
architectures. While it is desirable to use a wide range of
metrics that provide the opportunity to study different
aspects of the runtime behavior, these metrics are usually
characterized by complex correlations that hinder the
perception of the overall system behavior.

With regard to this problem we developed an approach
that first detects the existing correlations between the
analyzed metrics and groups them in uncorrelated
components. This opens prospects to construct new
synthesized quality metrics summarizing the overall
system performance in a concise and easy to interpret
manner.

The proposed approach was demonstrated by a case
application scenario concerning a transaction processing
architecture. The obtained results are presented in 3-d
scatterplots that allow assessing the impact of the
architectural factors on the system behavior.

The most prominent prospect of our anlysis is the
possibility to be applied on performance tuning of
architecture designs that may be studied under workloads
represented by benchmarking applications. A future
research perspective is the extension of this work, in order
to exploit the obtained results in a systematic multi-
objective optimization of the system’s performance.

REFERENCES

[1] ACID Sim Tools Site, http://mathind.csd.auth.gr/acid/html/index
.html (last access: 27th of March 2009)

[2] L. Bass, P. Clements and R. Kazman, Software Architecture in
Practice, 2nd ed., SEI Series in Software Engineering, Addison-
Wesley, 2003.

[3] G. Blom, Statistical estimates and transformed beta variables, New
York: Wiley, 1958.

[4] B. Burke and R. Monson-Haefel, Enterprise Java Beans 3.0,
O’Reilly, 2006.

[5] P. Katsaros, L. Angelis and C. Lazos, “Performance and
effectiveness trade-off for checkpointing in fault-tolerant
distributed systems”, Concurrency and Computation: Practice and
Experience, vol. 19, 2007, pp. 37-63, doi: 10.1002/cpe.1059

[6] Liu, Y., Zhu, L. and Gorton, I., “Performance assessment for e-
Government services: An experience report”, Proc. 10th
International Symposium on Component Based Software
Engineering (CBSE), Springer LNCS 4608, 2007, pp. 74-89

[7] A. Mentis, P. Katsaros and L. Angelis, “ACID Sim Tools: A
simulation framework for distributed transaction processing
architectures”, Proc. 1st Int. Conf. on Simulation Tools and
Techniques (SimulationWorks Industry Track), ICST, 2008,
http://eudl.eu/?eudlQuery=SimulationWorks%202008

[8] Object Management Group, Object Management Architecture
Guide, revision 3.0, OMG Technical Committee Document ab/97-
05-05, June 1995

[9] Object Management Group, Transaction Service Specification,
version 1.3, OMG Technical Committee Document ptc/2003-03-
08, March 2003

