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Abstract—Runtime quality of software, such as availability 
and throughput, depends on architectural factors and 
execution environment characteristics (e.g. CPU speed, 
network latency). Although the specific properties of the 
underlying execution environment are unknown at design 
time, the software architecture can be used to assess the 
inherent impact of the adopted design decisions on runtime 
quality. However, the design decisions that arise in complex 
software architectures exhibit non trivial interdependences. 
This work introduces an approach that discovers the most 
influential factors, by exploiting the correlation structure of 
the analyzed metrics via factor analysis of simulation data. A 
synthetic performance metric is constructed for each group 
of correlated metrics. The variability of these metrics 
summarizes the combined factor effects hence it is easier to 
assess the impact of the analyzed architecture decisions on 
the runtime quality. The approach is applied on 
experimental results obtained with the ACID Sim Tools 
framework for simulating transaction processing 
architectures. 
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I.  INTRODUCTION 
Software architecture is defined as “the structure or 

structures of the system, which include software 
components, the externally visible properties of those 
components, and the relationships among them” [2]. For 
the software, the implemented architecture design sets the 
boundaries for its runtime quality, which is quantified by a 
number of metrics, where each metric reflects a different 
aspect of runtime behavior. The architecture cannot be a 
basis for precise predictions of the system’s runtime 
behavior, since it also depends on implementation details. 
However, the architecture can support analyses that 
provide some level of confidence for the main effects of its 
characteristics, called factors, that affect the runtime 
metrics of interest. 

Software designers are aware of the factors affecting 
runtime quality. However, predicting the most influential 
factors is not straightforward or obvious [6]. The effect of 
a single change in a factor of the software architecture is 
likely to affect multiple metrics of runtime quality. For 
example checkpoint is an architectural factor in a 
transaction processing system that contributes in achieving 
high availability, at the cost of potential deterioration of 
the system’s performance. This is a typical runtime quality 
tradeoff. 

We propose the construction of a few synthetic metrics 
that summarize the effects of architectural factors, by 
taking into account the correlations between the metrics of 
interest. 

The approach employs a statistical analysis, which may 
be applied either on simulation data or monitoring data 
obtained from a prototype. This analysis discovers groups 
of runtime metrics which are strongly correlated, because 
they are found to be affected by the same architectural 
factors. Hence, one can study the identified groups, instead 
of the distinct metrics of interest. Moreover, since the few 
groups obtained are uncorrelated, they can be studied 
independently. 

For each group of metrics, we form a single synthetic 
metric, which takes into account the positive or negative 
correlation of the group members. Depending on the 
relative importance of the metrics of interest, it is also 
possible to assign weights for the group members that 
compose the derived synthetic metric. 

The proposed approach is applied on simulation data 
obtained by the ACID Sim Tools [1, 7], a tool suite 
developed by the authors for studying the runtime quality 
of transaction processing architectures. 

Section II introduces the runtime design problems in 
transaction processing architectures and the case 
application scenario used to describe the proposed 
approach. Section III presents the analysis performed for 
discovering the correlation structure of the evaluated 
metrics. Section IV explains the procedure for constructing 
synthetic metrics and the paper concludes with a summary 
on the contribution of this work and a comment on its 
usability and the potential impact. 

II. TRANSACTION PROCESSING ARCHITECTURES 
Transactions provide system-wide Atomicity, 

Consistency, Isolation and Durability (ACID) guarantees 
for a set of operations that are initiated in a transactional 
server as a consequence of a transaction request. 

Transactional architectures involve a series of complex 
design tradeoffs that make evident the need to investigate 
how the different architectural factors affect the metrics 
that determine the quality of service perceived by the end-
user. Early detection of potential performance problems at 
the design phase is crucial, since the cost of correcting 
them after the software is implemented is disproportionally 
high. Typical runtime quality requirements for a successful 
architecture design include: 

• High number of successfully processed 
(committed) transactions per time unit. 



• Short response times, where response time is the 
time span between issuing the transaction request 
and the instant when the transaction either 
commits or aborts. 

• High availability, where server availability is the 
ratio of time during which the server responds to 
transaction requests over the total time including 
server downtime, recovery and normal processing. 
While performing recovery from a failure, a server 
is unavailable to the clients. This implies that 
recovery times after failures should be minimized. 

Recovery costs are determined by the size of the log 
files of the transactional server that in turn affects the I/O 
cost for the rollback of transactions that abort, as well as 
the use of locks in concurrency control. In essence, the size 
of the log file indirectly affects also the observed number 
of committed transactions per time unit. 

With a quantitative evaluation technique, like the one 
proposed here, it is possible to quantify the significance 
and the relationships of the analyzed architecture design 
factors, when the system serves workloads with different 
degrees of distribution (localized to highly distributed 
transactions), different mixes of read-only and update 
transactions and different conditions of resource contention 
(I/O bound or CPU bound system configurations). 

ACID Sim Tools is an integrated toolset and open 
source framework for simulating transaction processing 
architectures. It is based on a minimal set of assumptions 
that represent an object-based computational model (e.g. 
the OMG Core Object Model [8]) and is therefore 
appropriate for simulating transaction processing 
architectures like the ones that comply with the Enterprise 
Java Beans [4] and the OMG OTS standard [9]. 

A transaction invokes methods of objects that reside in 
one or more servers. These methods incur computations 
with specific CPU resource demands and are either read-
only or alternatively update the state of the involved 
objects. For a given transaction request, the server 
receiving it is called coordinator and all other involved 
servers are called transaction workers. 

Currently, we have implemented the basic two-phase 
commit (2PC) protocol for atomic commit processing of 
distributed transactions, along with two optimized variants, 
namely the 2PC presume commit and the 2PC presume 
abort protocols. For concurrency control, we have 
implemented the strict two-phase locking protocol, as well 
as the basic timestamp ordering protocol.  

Our simulation framework provides metrics for 
evaluation and systematic experimentation on the tradeoffs 
between recovery costs and performance, when applying 
different combinations of protocols and protocol 
parameters. The provided metrics allow studying runtime 
quality by taking into account the degree of distribution 
and the degree of lock contention for the simulated 
workload. Apart from the generated measurements for the 
transaction workload as a whole, we have also 
implemented metrics for the different groups of 
transactions that exhibit a similar behavior, such as the 
group of all local transactions, the group of all distributed 
transactions and the different groups of transaction classes 
that compete for locks on the same objects.  

The implemented metrics are: 
• server availability 

• the ratio of committed transactions (throughput)  
• mean response time for all transaction groups  
• mean blocking time for all distributed transactions, 

that represents the accumulated time-span between 
dispatching the workers’ vote for the outcome of a 
transaction and the arrival of the coordinator’s 
decision, during which processing in the worker is 
blocked for this particular transaction. 

The proposed quantitative evaluation technique is 
demonstrated by a case application scenario represented by 
a synthetic transaction workload, which involves a number 
of transactional objects distributed among two servers. 
Table I introduces the considered object allocation and the 
associated object parameters as well as their method 
characteristics. 

TABLE I.  TRANSACTIONAL OBJECTS 

Server Object State Size 
(Kb) - exp-a

Method 
name 

CPU demands 
(sec) - exp- 

Read/
Write 

acp1 obj1 5 meth111 0.01 R 
   meth112 0.05 R 
 obj2 5 meth121 0.01 R-W 
   meth122 0.01 R 
   meth123 0.01 R 
 obj3 5 meth131 0.04 R-W 
   meth132 0.01 R 
 obj4 5 meth141 0.01 R-W 
   meth142 0.01 R 
   meth143 0.01 R 
 obj5 5 meth151 0.01 R-W 
   meth152 0.01 R 
   meth153 0.01 R 
acp2 obj6 5 meth211 0.05 R-W 
   meth212 0.05 R 
 obj7 5 meth221 0.05 R-W 
   meth222 0.01 R 
 obj8 5 meth231 0.01 R 
   meth232 0.01 R 
 obj9 5 meth241 0.05 R-W 
   meth242 0.05 R 
 obj10 5 meth251 0.05 R-W 
   meth252 0.01 R 
 obj11 5 meth261 0.01 R 
   meth262 0.01 R 
 obj12 5 meth271 0.05 R-W 
   meth272 0.05 R 
 obj13 5 meth281 0.05 R-W 
  5 meth282 0.01 R 

a. exponential distribution 

CPU time demands of the object methods obey the 
exponential distribution with the shown means. Table II 
displays the parameter values for the assumed execution 
environment. Since the aim of this evaluation is not to 
analyze the effects of the specific characteristics of the 
underlying execution environment, a minimal set of 
system-specific parameters is taken into account. These 
parameters are necessary for quantifying the evaluated 
runtime quality aspects for the studied architecture. 

TABLE II.  EXECUTION ENVIRONMENT CHARACTERISTICS 

Network latency / message: 0.06 sec  

Server Disk Read Latency Disk Wtite Latency Mean Time 
To Repair 

acp1 4.271e-05 sec/Kb 51.252e-05 sec/Kb 4 sec 
acp2 4.271e-05 sec/Kb 51.252e-05 sec/Kb 4 sec 
 



We consider nine (9) transaction classes that are 
specified as sequences of method invocations representing 
the possible program paths in a transactional program. The 
transaction classes and their associated characteristics are 
shown in Table III. 

TABLE III.  TRANSACTION CLASSES 

Transaction 
Class Methods invoked Characteristics 

tr1 meth111, meth122, meth132 local (acp1) – read only 
tr2 meth111, meth222, meth112 distributed – read/write 
tr3 meth112, meth211, meth121 distributed – read/write 
tr4 meth242, meth252, meth232 local (acp2) – read only 
tr5 meth242, meth142, meth242 distributed – read only 
tr6 meth242, meth141, meth251 distributed – read/write 
tr7 meth262, meth272, meth282 local (acp2) – read only 
tr8 meth262, meth152, meth262 distributed – read only 
tr9 meth262, meth151, meth271 distributed – read/write 

 
We studied the variation of the aforementioned 

metrics, in terms of the architectural factors and workload 
parameters (MIT and MITofSF) shown in Table IV. A 
checkpoint is a periodically invoked log truncation, which 
removes log entries that are no longer needed for server 
recovery from a failure. Frequent checkpoints result in 
faster recovery, but a substantial amount of additional I/O 
workload is imposed during normal operation. 
Multiprogramming level (MPL) represents the maximum 
number of transactions that are allowed to run concurrently 
in a server. Concurrency control in the experiment adheres 
to the widely used strict two-phase locking (2PL) scheme. 
To avoid deadlocks, the servers maintain a timer that is 
activated upon initiation of each transaction and when the 
timer expires the transaction is aborted. Transaction 
timeout (TT) is the time-span between the initiation of the 
transaction processing and the expiration of this timer. 

TABLE IV.  FACTORS THAT INFLUENCE RECOVERY COSTS & 
PERFORMANCE 

Factors Level 1 Level 2 Level 3 
Atomic commit protocol (ACP) 
- all servers - 

2PC PRN 
Presume  
Nothing 

2PC PRC 
Presume  
Commit  

2PC PRA 
Presume  
Abort 

Multiprogramming Level (MPL) 
- all servers - 

2 3 4 

Checkpoint intervals (CI) –  
periodic (sec) for all servers 

500 1300 2100 

Transaction timeouts (TT) in sec  
- all transaction classes - 

0.9 1.1 1.3 

Mean interarrival times (MIT), exp.a  
- all transaction classes - 

0.6 0.4  

Mean interarrival time of server fail 
-stop failures (MITofSF) – exp.a 

18 m 5 h 51 m 12 h 

a. exponential distribution 

The full experiment (all possible combinations of 
factor levels) includes 486 simulation runs, where the 
simulated time for each run was 55h 30m. Sufficiently 
long simulation runs ensure that the metrics are studied 
when being in steady-state. Alternative experiment designs 
with fewer simulation runs are the uniform designs that we 
used in [5]. 

III. DISCOVERING GROUPS OF CORRELATED METRICS 
In the described architecture design, the metrics of 

interest are influenced by a tradeoff between recovery cost 

and performance. However, the problem is complicated 
due to the fact that there is no precise characterization of 
the recovery cost, since it is not directly measurable and 
the fact that performance is  quantified by a large number 
of metrics (shown in Table V), where each metric 
discloses a different aspect of the runtime behavior. In 
addition, the availability of the two servers (availability0, 
availability1) is quantified, under the considered levels of 
fault load. 

TABLE V.  RUNTIME QUALITY METRICS FOR THE CONSIDERED 
WORKLOAD 

 Throughput Mean response 
time 

Mean blocking 
time 

All distributed 
transactions 

tput_distr  response_distr blocking_distr 

All local 
transactions 

tput_local response_local  

Group 1: tr1, 
tr3 

tput_confl0 response_grp0 blocking_grp0 

Group 2: tr4, 
tr5, tr6  

tput_confl1 response_grp1 blocking_grp1 

Group 3: tr7, 
tr8, tr9 

tput_confl2 response_grp2 blocking_grp2 

 
Thus, the analysis, which was conducted using the 

SPSS 16 statistical software, had to take into account the 
measured variations in 14 quality metrics of the runtime 
performance, plus two metrics that quantify the servers’ 
availability. This is a problem with high dimensionality 
and at least one latent quality feature, i.e. the recovery cost. 

The studied metrics depend on architectural factors that 
exhibit non trivial interdependences, which either cannot 
be quantified directly, like the recovery cost, or they are 
unknown and should be discovered and subsequently 
explained. Dependence of two or more metrics on the 
same architectural factors induces a correlation between 
them. The examination of the correlation structure of the 
evaluated metrics reveals various statistically significant 
correlations either positive or negative. 

The reduction of problem dimensionallity is achieved 
by computing new, fewer variables that contain most of 
the information present in the original ones. The idea is to 
create groups of highly correlated dependent variables 
representing the quantified metrics. 

The appropriate procedure to follow is Factor Analysis 
(FA), a methodology that discovers new variables (called 
factors) in the original dataset, by exploiting their 
correlation structure. To avoid confusion with the term 
“factor”, as it is also used for the architectural factors of 
Table IV, the new variables are called from now on 
“components”, a terminology consistent with the applied 
statistical analysis. Each component represents a group of 
correlated metrics and this grouping in effect reduces the 
dimensionality of the original data. Furthermore, the new 
variables resulting from such a procedure are uncorrelated 
and can be studied separately with respect to the 
considered architectural factors. 

Factor analysis requires that the dependent variables 
are normally distributed and for this reason we applied a 
transformation based on the rankings of the values in each 
metric. We used Blom’s transformation [3] that utilizes the 
ranks ri of the values and the cumulative Normal 
distribution function Φ-1(.). The formula used in this 
transformation is 
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It is important to note that the applied transformation 
preserves the correlation structure of the original dataset. 
For example, in Fig. 1 a strong negative correlation 
between tput_local and blocking_distr is evident in the 
original and in the transformed variables. Moreover, we 
observe that the normalization (bottom panel) portrays 
better their correlation. 

 

 
 
On the transformed normalized dependent variables 

(metrics) we performed a FA procedure based on Principle 
Components with Varimax rotation. The new variables, i.e. 
the component scores, were calculated by the Anderson-
Rubin Method ensuring that the variables produced have a 
mean of 0, a standard deviation of 1, and are uncorrelated. 

The FA resulted in 3 components that explain 88.81% 
of the variance of the 16 original variables. This means 
that we can have a significant reduction of the output space 
in dimensions by exploiting the correlation structure of the 
normally transformed outcomes. 

Table VI shows the loadings of the variables on the 
three components and therefore the grouping of the studied 
metrics. The sign shows the direction of the detected 
correlation. For example, tput_local is loaded to the same 
component as blocking_distr but their loadings have 
different signs due to their negative correlation. This 
finding is explained by the following metric dependency: 
longer blocking times for distributed transactions result in 
lower throughput for local transactions. Blocked 
transactions can not release the locks that have been 
acquired until the decision of the coordinator arrives, 
hence, local transactions are queued for one or more locks, 

with a significant probability to abort, due to a transaction 
timeout. Also, when the servers’ availability is low, longer 
blocking times are obtained, as a consequence of the 
caused delays in communicating the messages that control 
the transaction execution. 

TABLE VI.  ROTATED COMPONENT MATRIX OBTAINED BY 
PRINCIPLE COMPONENTS ANALYSIS WITH VARIMAX ROTATION 

Component 
Normal Scorea using Blom’s Formula 

1 2 3 
availability0 -0.800 0.009 0.115 
availability1 -0.794 -0.002 0.106 
throughput_local -0.831 0.132 0.406 
throughput_distributed -0.131 -0.125 0.978 
throughput_confl0 -0.166 0.098 0.955 
throughput_confl1 -0.138 -0.227 0.950 
throughput_confl2 -0.140 -0.239 0.947 
response_local 0.031 0.724 -0.389 
response_distr 0.095 0.953 -0.203 
response0 -0.036 0.948 -0.205 
response1 -0.017 0.975 0.122 
response2 -0.013 0.989 0.040 
blocking_distr 0.967 0.062 -0.054 
blocking_0 0.935 0.068 -0.126 
blocking_1 0.944 0.007 -0.034 
blocking_2 0.948 0.038 -0.050 

a. Extracted Method: Principal Component Analysis 
 Rotation Method: Varimax with Kaiser Normalization 

Table VII shows the groups found by the performed 
statistical analysis. High values for component 1 (C_1) are 
related to high values of blocking times for distributed 
transactions and low values of servers’ availability and 
throughput for local transactions and vice versa. 
Component C_2 groups all measured response times and 
C_3 groups the throughput of distributed transactions and 
the different groups of lock-conflicted transactions that are 
positively correlated with their variables. 

TABLE VII.  GROUPS OF CORRELATED QUALITY METRICS 

 Total variance 
explained (%) Metrics 

Component 1 35.35 

availability0 (-), availability1 (-),  
tput_local (-),  
blocking_distr (+),  
blocking_grp0 (+), blocking_grp1 
(+), blocking_grp2 (+) 

Component 2 27.64 

response_local (+),  
response_distr (+),  
response_grp0 (+), response_grp1 
(+), response_grp2 (+) 

Component 3 25.83 
tput_distributed (+),  
tput_confl0 (+), tput_confl1 (+), 
tput_confl2 (+) 

IV. CONSTRUCTION OF SYNTHETIC METRICS 
The groups of strongly correlated metrics found by 

Factor Analysis are: 
• component C_1, a new variable that is a computed 

“score”, for the variability of all metrics, mostly 
affected by I/O, due to checkpoints and recovery  

• component C_2 summarizes the variability of all 
response time metrics and  

• component C_3 summarizes the variability of 
throughput metrics, that are mostly affected by 
communication latencies. 

 

 
Figure 1.  Strong negative correlation between tput_local and 

blocking_distr in the original and transformed dataset. 



An outstanding problem with the computed values for 
the mentioned components is that it is not possible to 
intuitively interpret them, in order to assess the impact of 
the metric groups on the overall system’s behavior. 

For this reason, when applying similar statistical 
analyses it is often desirable to construct artificial metrics 
that express the quantified variability in an intuitive way, 
in order to be able to interpret the metric values. 

An appropriate synthetic metric for each component 
should take into account the relative importance of each 
group member, with respect to the quality design goals. 
Besides the possibility of using relative weights for the 
metrics of a component, the correlation type (positive or 
negative) enforces the relation of the new synthetic metric 
in terms of the member metrics. 

Let us consider component C_1 in Table VII. Since the 
goal is to increase throughput and the servers’ availability, 
these metrics should be combined in a way such as 
increase of throughput or availability increases the 
synthetic metric value. On the other hand, because the 

measured blocking times are inversely correlated to 
availability and throughput, increase of blocking time 
should result in decrease of the synthetic metric value. 

Although we are often interested in studying the 
runtime behavior with respect to part of the workload that 
concerns a particular characteristic (e.g. distribution or 
resource sharing), with a synthetic metric we summarize 
information for the entire workload. Therefore, we don’t 
use metrics that represent information already contained in 
other metrics. In the synthetic metric constructed for 
component C_2, we take into account response_local and 
response_distr, but we ignore (by setting weight 0) 
response_grp0, response_grp1 and response_grp2 that are 
already reflected in the two utilized metrics. 

The synthetic metric for component 1 of our 
experiment is computed as follows: 
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Figure 2. 3-d scatterplots for the three synthetic performance metrics with respect to the architectural factors. 
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Since all simulated atomic commit protocols are 
blocking protocols, the obtained blocking times are always 
greater than 0, hence the proposed metric does not become 
undefined. High values for component1 indicate improved 
performance, as a consequence of the way the utilized 
metrics were combined. 

The synthetic metric for component2 is given by:   

2
__2 distrresponselocalresponsecomponent +

=  

 

In contrast to the previous synthetic metric this one 
indicates improved performance for comparatively smaller 
values, which in fact show shorter response times. The 
range of component2 includes values from 0 to infinity, 
where infinite time indicates transactions for which there is 
no decision made by the coordinated servers. However, 
due to the applied transaction timeout strategy, this 
possibility is never realized. 

The synthetic metric for component3 is calculated by: 
 

3
2_1_0_3 confltputconfltputconfltputcomponent ++

=  

The range of component3 includes values from 0 to 1, 
where 0 indicates that there are no committed transactions 
and 1 that there are no aborted transactions. 

Fig. 2 shows the 3-d scatterplots obtained for the three 
synthetic metrics, with respect to the six architectural 
factors of Table IV. 

The scatterplots show that the 3-d points with 
coordinates the values of the three synthetic metrics are 
clustered with respect to the architectural factors. First of 
all, there is a clear grouping for the two levels of the MIT 
(Fig. 2e). The groups are clearly distinguished and are 
almost parallel and this pattern is preserved in all plots. 
Low throughput (component3) corresponds to mean 
interarrival time 0.4 sec, meaning that arrivals of 
transaction requests that are more frequent than 0.6 sec in 
essence deteriorate the measured throughput. The reason is 
that too many transactions that run concurrently result in 
increased contention for the shared resources (CPU, I/O 
bandwidth and the available locks) and a significant 
number of them are eventually aborted. We also observe 
that when the mean interarrival time is 0.6 sec, as a 
consequence of lower resource contention, response times 
are improved. 

Another clear clustering is apparent with respect to 
transaction timeout (Fig. 2d). Short response times 
(component2) correspond to TT=0.9 (green points) and 
larger values of transaction timeouts result in increasingly 
longer response times. This is explained by the fact that 
higher timeout values result in a comparatively higher 
number of committed transactions that affect the mean 
response time, but these additional transactions have in 
general response times that are close to the timeout value. 

High values of component1 (red points) correspond to 
checkpoint intervals 2100 sec, but in this case recovery 
times are long and perhaps a better design option is to use 
checkpoint intervals with period 1300 sec (blue points). 
Fig. 2f confirms the negative effect of frequent server 
failures (green points) on the measured availability and 
blocking times (component1). 

Finally, Fig. 2b clearly shows that when using MPL=2 
(green points), response times are deteriorated, due to the 

incurred queuing delays for acquiring access to the CPU. 
A less risky option is the use of three threads (blue points), 
because an even higher number of threads results in severe 
lock contention and higher response times. 

V. CONCLUSION 
This work focuses on evaluating the impact of design 

decisions on runtime quality aspects of software 
architectures. While it is desirable to use a wide range of 
metrics that provide the opportunity to study different 
aspects of the runtime behavior, these metrics are usually 
characterized by complex correlations that hinder the 
perception of the overall system behavior. 

With regard to this problem we developed an approach 
that first detects the existing correlations between the 
analyzed metrics and groups them in uncorrelated 
components. This opens prospects to construct new 
synthesized quality metrics summarizing the overall 
system performance in a concise and easy to interpret 
manner. 

The proposed approach was demonstrated by a case 
application scenario concerning a transaction processing 
architecture. The obtained results are presented in 3-d 
scatterplots that allow assessing the impact of the 
architectural factors on the system behavior. 

The most prominent prospect of our anlysis is the 
possibility to be applied on performance tuning of 
architecture designs that may be studied under workloads 
represented by benchmarking applications. A future 
research perspective is the extension of this work, in order 
to exploit the obtained results in a systematic multi-
objective optimization of the system’s performance. 
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