
D3-Tree: A Dynamic Deterministic

Decentralized Structure

Spyros Sioutas3, Efrosini Sourla1, Kostas Tsichlas4, and Christos Zaroliagis1,2

1 Dept of Computer Eng. & Informatics, Univ. of Patras, 26504 Patras, Greece
{sourla,zaro}@ceid.upatras.gr

2 Computer Technology Institute & Press “Diophantus”, N. Kazantzaki Str.,
Patras University Campus, 26504 Patras, Greece

3 Dept of Informatics, Ionian University, 49100 Corfu, Greece
sioutas@ionio.gr

4 Dept of Informatics, Aristotle Univ. of Thessaloniki, 54124 Thessaloniki, Greece
tsichlas@csd.auth.gr

Abstract. We present D3-Tree, a dynamic deterministic structure for
data management in decentralized networks, by engineering and further
extending an existing decentralized structure. D3-Tree achieves O(logN)
worst-case search cost (N is the number of nodes in the network),O(logN)
amortized load-balancing cost, and it is highly fault-tolerant. A particu-
lar strength of D3-Tree is that it achieves O(logN) amortized search cost
under massive node failures. We conduct an extensive experimental study
verifying that D3-Tree outperforms other well-known structures and that
it achieves a significant success rate in element queries in case of massive
node failures.

1 Introduction

Decentralized systems are ubiquitous and are encountered in various forms and
structures. They are widely used for sharing resources and store very large data
sets, using systems of small computers instead of large costly servers. Typical
examples include cloud computing environments, peer-to-peer systems and the
internet. In decentralized systems, data are stored at the network nodes and the
most crucial operations are data search and data updates. A decentralized system
is typically represented by a graph, a logical overlay network, where its N nodes
correspond to the network nodes, while its edges may not correspond to existing
communication links, but to communication paths. The complexity (cost) of
an operation is measured in terms of the number of messages issued during its
execution (internal computations at nodes are considered insignificant).

With respect to its structure, the overlay supports the operations Join (of a
new node v; v communicates with an existing node u in order to be inserted into
the overlay) and Departure (of an existing node u; u leaves the overlay announc-
ing its intent to other nodes of the overlay). Moreover, the overlay implements
an indexing scheme for the stored data, supporting the operations Insert (a
new element), Delete (an existing element), Search (for an element), and Range
Query (for elements in a specific range).

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 989–1000, 2015.
DOI: 10.1007/978-3-662-48350-3�82

990 S. Sioutas et al.

Related Work. Considerable work has been done recently in order to build
efficient decentralized systems with effective distributed search and update op-
erations. In general, decentralized networks can be classified into two broad
categories: distributed hash table (DHT)-based systems and tree-based systems.
Examples of the former, which constitute the majority, include Chord, CAN,
Pastry, Symphony, Tapestry (see [7] for an overview), Pagoda [1], SHELL [9]
and P-Ring [3]. In general, DHT-based systems support exact match queries well
and use (successfully) probabilistic methods to distribute the workload among
nodes equally. Since hashing destroys the ordering on keys, DHT-based systems
typically do not possess the functionality to support straightforwardly range
queries, or more complex queries based on data ordering (e.g., nearest-neighbour
and string prefix queries). Some efforts towards addressing range queries have
been made in [4,8], getting however approximate answers and also making exact
searching highly inefficient. Pagoda [1] achieves constant node degree but has
polylogarithmic complexity for the majority of operations. SHELL [9] maintains
large routing tables of O(log2 N) space complexity, but achieves constant amor-
tized cost for the majority of operations. Both are complicated hybrid structures
and their practicality (especially concerning fault tolerant operations) is ques-
tionable. The most recent effort towards range queries is the P-Ring [3], a fully
distributed and fault-tolerant system that supports both exact match and range
queries, achieving O(logd N+k) range search performance (d is the order1 of the
ring and k is the answer size). It also provides load-balancing by maintaining a
load imbalance factor of at most 2+ ε of a stable system, for any given constant
ε > 0, and has a stabilization process for fixing inconsistencies caused by node
failures and updates, achieving an O(d · logdN) performance for load-balancing.

Tree-based systems are based on hierarchical structures. They support range
queries more naturally and efficiently as well as a wider range of operations, since
they maintain the ordering of data. On the other hand, they lack the simplicity
of DHT-based systems, and they do not always guarantee data locality and
load balancing in the whole system. Important examples of such systems include
Family Trees [7], BATON [6], BATON∗ [5] and Skip List-based schemes like
Skip Graphs (SG), NoN SG, SkipNet (SN), Bucket SG, Skip Webs, Rainbow
Skip Graphs (RSG) and Strong RSG [7] that use randomized techniques to
create and maintain the hierarchical structure. We should emphasize that w.r.t.
load-balancing, the solutions provided in the literature are either heuristics, or
provide expected bounds under certain assumptions, or amortized bounds but at
the expense of increasing the memory size per node. In particular, in BATON [6],
a decentralized overlay is provided with load-balancing based on data migration.
However, their O(logN) amortized bound is valid only subject to a probabilistic
assumption about the number of nodes taking part in the data migration process,
and thus it is in fact an amortized expected bound. Moreover, its successor
BATON∗[5], exploits the advantages of higher fanout (number of children per
node), to achieve reduced search cost of O(logm N), where m is the fanout.

1 Maximum fanout of the hierarchical structure on top of the ring. At the lowest level
of the hierarchy, each node maintains a list of its first d successors in the ring.

D3-Tree: A Dynamic Deterministic Decentralized Structure 991

However, the higher fanout leads to a higher update and load-balancing cost of
O(m · logm N). Recently, a deterministic decentralized tree structure, called D2-
Tree [2], was presented that overcomes many of the aforementioned weaknesses
of tree-based systems. In particular, D2-Tree achieves O(logN) searching cost,
amortized O(logN) update cost both for element updates and for node joins and
departures, and deterministic amortized O(logN) bound for load-balancing. Its
practicality, however, has not been tested so far.

Regarding fault tolerance, P-Ring [3] is considered highly fault-tolerant, using
the Chord’s Fault Tolerant Algorithms [11]. BATON [6] maintains vertical and
horizontal routing information not only for efficient search, but to offer a large
number of alternative paths between two nodes. In BATON∗ [5], fault tolerance
is greatly improved due to higher fanout. D2-Tree can tolerate the failure of a
few nodes, but cannot afford a massive number of O(N) node failures.

Our Contribution. In this work, we focus on hierarchical tree-based decen-
tralized systems and introduce D3-Tree (cf. Section 2), a dynamic deterministic
decentralized structure. D3-Tree is an extension of D2-Tree [2] that adopts all
of its strengths and extends it in two respects: it introduces an enhanced fault-
tolerant mechanism and it is able to answer efficiently search queries when mas-
sive node failures occur. D3-Tree achieves the same deterministic (worst-case or
amortized) bounds as D2-Tree for search, update and load-balancing operations,
and answers search queries in O(logN) amortized cost under massive node fail-
ures. A comparison of D3-Tree with state-of-the-art decentralized structures is
given in Table 1. Note that all previous structures provided only empirical evi-
dence of their capability to deal with massive node failures; no previous structure
provided a theoretical guarantee for searching in such a case.

Our second contribution is an implementation of theD3-Tree and a subsequent
comparative experimental evaluation (cf. Section 3) with itsmain competitorsBA-
TON, BATON∗, and P-Ring. Our experimental study verified the theoretical re-
sults (as well as those of theD2-Tree) and showed thatD3-Tree outperforms other
state-of-the-art hierarchical tree-based structures. Our experiments demonstrated

Table 1. Comparison of BATON, BATON∗, P-Ring, D2-Tree, and D3-Tree.

Structures Search Search with Node Updates Element Updates
massive failures (updating rout. tables) (load balancing)
Theor. Exp.

BATON O(logN) — Yes O(logN) O(logN)

BATON∗ O(logm N) — Yes O(m · logm N) O(m · logm N)

P-Ring O(logd N) — Yes ˜O(d · logd N) ˜O(d · logd N)

D2-Tree O(logN) — No ˜O(logN) ˜O(logN)

D3-Tree O(logN) ˜O(logN) Yes ˜O(logN) ˜O(logN)

N : number of nodes; m: fanout; d: order of the ring; ˜O: amortized bound; O: expected
amortized bound; Theor: theoretical bound; Exp: empirical evidence.

992 S. Sioutas et al.

thatD3-Tree has a significantly small redistribution rate (structure redistributions
after node joins or departutes), while element load-balancing is rarely necessary.
We also investigated the structure’s fault tolerance in case of massive node failures
and show that it achieves a significant success rate in element queries. Omitted de-
tails can be found in [10].

2 The D3-Tree

In this section, we present D3-Tree. A key feature is the weight-based mech-
anism (adopted from [2]), used for node redistribution after node updates and
data load-balancing after element updates. The main idea is the almost equal dis-
tribution of elements among nodes, using weights, a metric showing how uneven
is the load among nodes. The mechanism lazily updates the weight information
on nodes, so load-balancing is performed only when it is absolutely necessary.

The new features of D3-Tree are its enhanced fault-tolerant and search mech-
anisms, in case of node failures. The enhanced search operation is successful even
when a considerable number of nodes fails. D3-Tree is highly fault tolerant, since
it supports a procedure of node withdrawal when a node is found unreachable,
regardless of its position (internal node, leaf, bucket node). The success of these
two operations is due to a small number of additional links a node maintains,
through which it can reconstruct the routing table of a failed node.

2.1 The Structure

Let N be the number of nodes present in the network and let n denote the size
of data elements residing in the nodes (N � n). The structure consists of two
levels. The upper level is a Perfect Binary Tree (PBT) of height O(logN). The
leaves of this tree are representatives of the buckets that constitute the lower level
of the D3-Tree. Each bucket is a set of O(logN) nodes which are structured as
a doubly linked list.

Each node v of the D3-Tree maintains an additional set of links (described
below) to other nodes apart from the standard links which form the tree. The
first four sets are inherited from the D2-Tree, while the fifth set is a new one
that contributes in establishing a better fault-tolerance mechanism.

1. Links to its father and its children.
2. Links to its adjacent nodes based on an in-order traversal of the tree.
3. Links to nodes at the same level as v. The links are distributed in exponential

steps; the first link points to a node (if there is one) 20 positions to the left
(right), the second 21 positions to the left (right), and the i-th link 2i−1

positions to the left (right). These links constitute the routing table of v and
require O(logN) space per node.

4. Links to leftmost and rightmost leaf of its subtree. These links accelerate
the search process and contribute to the structure’s fault tolerance when a
considerable number of nodes fail.

D3-Tree: A Dynamic Deterministic Decentralized Structure 993

5. For leaf nodes only, links to the buckets of the nodes in their routing tables.
The first link points to a bucket 20 positions left (right), the second 21

positions to the left (right) and the i-th link 2i−1 positions to the left (right).
These links require O(logN) space per node and keep the structure fault
tolerant, since each bucket has multiple links to the PBT.

The next lemma [2] captures some important properties of the routing tables.

Lemma 1. (i) If a node v contains a link to node u in its routing table, then
the parent of v also contains a link to the parent of u, unless u and v have the
same father. (ii) If a node v contains a link to node u in its routing table, then
the left (right) sibling of v also contains a link to the left (right) sibling of u,
unless there are no such nodes. (iii) Every non-leaf node has two adjacent nodes
in the in-order traversal, which are leaves.

Regarding the index structure of the D3-Tree, the range of all values stored
in it is partitioned into sub-ranges each one of which is assigned to a node
of the overlay. An internal node v with range [xv, x

′
v] may have a left child

u and a right child w with ranges [xu, x
′
u] and [xw , x

′
w] respectively such that

xu < x′
u < xv < x′

v < xw < x′
w. Ranges are dynamic in the sense that they

depend on the values maintained by the node.

2.2 Node Joins and Departures

When a node z makes a join request to v, v forwards the request to an adjacent
leaf u. If v is a PBT node, the request is forwarded to the left adjacent node,
w.r.t. the in-order traversal, which is definitely a leaf (unless v is a leaf itself).
In case v is a bucket node, the request is forwarded to the bucket representative,
which is leaf. Then, node z is added to the doubly linked list of the bucket
represented by u. In node joins, we make the simplification that the new node
is clear of elements and we place it after the most loaded node of the bucket.
Thus, the load is shared and the new node stores half of the elements of the
most loaded node.

When a node v leaves the network, it is replaced by an existing node, so
as to preserve the in-order adjacency. All navigation data are copied from the
departing node v to the replacement node, along with the elements of v. If v is
an internal PBT node, then it is replaced by its right adjacent node, which is a
leaf and which in turn is replaced by the first node z in its bucket. If v is a leaf,
then it is directly replaced by z. Then v is free to depart.

After a node join or departure, the modified weight-based mechanism [2] is
activated and updates the sizes by ±1 on the path from the leaf u to the root.
Afterwards, the mechanism traverses the path from u to the root, in order to find
the first unbalanced node (if such a node exists) and performs a redistribution
in its subtree. The redistribution guarantees that if there are x nodes in total
in the y buckets of the subtree of v, then after the redistribution each bucket
maintains either �x/y� or �x/y�+ 1 nodes. The redistribution cost is O(logN)
[2], which is indeed verified by our experiments.

994 S. Sioutas et al.

The redistribution of nodes in the subtree of v starts from the rightmost
bucket b and it is performed in an in-order fashion so that elements in the nodes
are not affected. The transfer of nodes is accomplished by maintaining a link,
called dest, to the bucket representative b′ in which nodes should be put or taken
from. In case b has q extra nodes, the nodes are removed from b and are added
to b′. Finally, bucket b informs b′ to take over and the same procedure applies
again with b′ as the source bucket. The case where q nodes must be transferred
to bucket b from bucket b′ is completely symmetric.

Throughout joins and departures of nodes, the size of buckets can increase
undesirably or can decrease so much that some buckets may become empty. The
structure guarantees that each bucket contains O(logN) nodes, throughout joins
or departures of nodes, by employing two operations on the PBT, the contraction
and the extension.

2.3 Single and Range Queries

The search for an element a may be initiated from any node v at level l. If v is
a bucket node, then if its range contains a the search terminates, otherwise the
search is forwarded to the bucket representative, which is a binary node. If v is a
PBT node, then let z be the node with range of values containing a, a ∈ [xz , x

′
z]

and assume w.l.o.g. that x′
v < a. The case where xv > a is completely symmetric.

First, we perform a horizontal binary search at the level l of v using the routing
tables, searching for a node u with right sibling w (if there is such sibling) such
that x′

u < a and xw > a.
Having located nodes u and w, the horizontal search is terminated and a

vertical search is initiated. Node z will either be the common ancestor of u and
w, or it will be in the right subtree rooted at u, or in the left subtree rooted at w.
Node u contacts the rightmost leaf y of its subtree. If xy > a then an ordinary
top down search from node u will suffice to find z. Otherwise, node z is in the
bucket of y, or in its right in-order adjacent (this is also the common ancestor
of u and w), or in the subtree of w.

When z is located, if a is found in z then the search was successful, otherwise
a is not stored in the structure. The search for an element a is carried out in
O(logN) steps [2], and it is indeed verified by our experiments.

A range query [a, b] initiated at node v, invokes a search operation for element
a. Node z that contains a returns to v all elements in its range. If all elements
of u are reported then the range query is forwarded to the right adjacent node
(in-order traversal) and continues until an element larger than b is reached for
the first time.

2.4 Element Insertions and Deletions

Assume that an update operation (insertion/deletion) is initiated at node v in-
volving element a. By invoking a search operation, node u with range containing
element a is located and the update operation is performed on u.

D3-Tree: A Dynamic Deterministic Decentralized Structure 995

In order to apply the weight-based mechanism for load balancing, the element
should be inserted in a bucket node (similar to node joins) or in a leaf. If u is
an internal node of the PBT, then element a is inserted in u and then the first
element of u (note that elements into nodes are sorted) is removed from u and it
is inserted into node q, which is the last node of the bucket of the left adjacent
of u, in order to preserve the sequence of elements in the in-order traversal. This
way, the insertion has been shifted to a bucket node. The case of element deletion
is similar.

After an element update in leaf u or in its bucket, the weight-based mechanism
is activated and updates the weights by ±1 on the path from leaf u to the root.
Afterwards, the mechanism traverses the path from leaf u to the root, in order
to find the first node (if such a node exists) which is unbalanced and performs a
load-balancing in its subtree.

The load-balancing mechanism guarantees that if there are w(v) elements
in total in the subtree of v of size |v| (total number of nodes in the subtree

of v including v), then after load-balancing each node stores either
⌊
w(v)
|v|

⌋
or⌊

w(v)
|v|

⌋
+ 1 elements. The load-balancing cost is O(logN) [2], which is indeed

verified by our experiments. The load-balancing mechanism is similar to the
redistribution mechanism described above, so its description is omitted.

2.5 Fault Tolerance

Searches and updates in the D3-Tree do not tend to favour any node, and in
particular nodes near the root. However, a single node can be easily disconnected
from the overlay, when all nodes with which it is connected fail. This means that
4 failures (two adjacent nodes and two children) are enough to disconnect the
root. The most easily disconnected nodes are those which are near the root, since
their routing tables are small in size.

When a node w discovers that v is unreachable, the network initiates a node
withdrawal procedure by reconstructing the routing tables of v, in order for v
to be removed smoothly, as if v was departing. If v belongs to a bucket, it is
removed from the structure and the links of its adjacent nodes are updated.
In case v is an internal binary node, its right adjacent node u is first located,
making use of Lemma 1, in order to replace v.

If v is a leaf, then it should be replaced by the first node u in its bucket.
In the D2-Tree, if a leaf was found unreachable, contacting its bucket would be
infeasible, since the only link between v and its bucket would have been lost. This
weakness was eliminated in the D3-Tree, by maintaining multiple links towards
each bucket, distributed in exponential steps (in the same way as the horizontal
adjacency links). This way, when w is unable to contact v, it contacts directly
the first node of its bucket u and u replaces v. Regardless of node’s v position
in the structure, the elements stored in v are lost.

996 S. Sioutas et al.

2.6 Single Queries with Node Failures

In a network with node failures, an unsuccessful search for element a refers
to the cases where either z (the node with range of values containing a, i.e.,
a ∈ [xz , x

′
z]) is unreachable, or there is a path to z but the search algorithm

can not follow it to locate z due to failures of intermediate nodes. The D2-Tree
provides a preliminary fault-tolerant mechanism that succeeds only in the case
of a few node failures. That mechanism cannot deal with massive node failures
(also known as churn), i.e., its search algorithm may fail to locate a. In the
following, we present the key features of our D3-Tree efficient search algorithm
in case of massive node failures.

The search procedure is similar to the simple search described in Section 2.3.
One difference in horizontal search lies in the fact that if the most distant right
adjacent of v is unreachable, v keeps contacting its right adjacent nodes by
decreasing the step by 1, until it finds node q which is reachable.

In case x′
q < a the search continues to the right using the most distant right

adjacent of q, otherwise the search continues to the left and q contacts its most
distant left adjacent p which is in the right of v. If p is unreachable, q doesn’t
decrease the travelling step by 1, but contacts directly its nearest left adjacent
(at step = 0) and asks it to search to the left. This improvement reduces the
number of messages that are meant to fail, because of the exponential positions of
nodes in routing tables and the nature of binary horizontal search. For example,
in Fig. 1, the search starts from v0 and v8 contacts v7, since v4 has failed. No
node contacts v4 from then onwars and the number of messages is reduced by 2.

A vertical search to locate z is always initiated between two siblings u and w,
which are either both active, or one of them is unreachable, as shown in Fig. 2
where the left sibling u is active and w, the right one, is unreachable. In both
cases, first we search into the subtree of the active sibling, then we contact the
common ancestor and then, if the other sibling is unreachable, the active sibling
tries to contact its corresponding child (right child for left sibling and left child
for right sibling). When the child is found the search is forwarded to its subtree.

In general, when node u wants to contact the left (right) child of unreachable
node w, the contact is accomplished through the routing table of its own left

74 5 6 8 150 321

i = 1 i = 2
i = 3

i = 0

Simple Search Improved Search
Source Step Destination Source Step Destination

0 3 → 8 0 3 → 8
8 2 ← 4 8 2 ← 4
8 1 ← 6 8 0 ← 7
6 2 ← 2 7 2 ← 3
2 1 → 4 3 1 → 5
2 0 → 3
3 1 → 5

Unreachable

Final Destination

Fig. 1. Example of binary horizontal search with node failures

D3-Tree: A Dynamic Deterministic Decentralized Structure 997

u w

y

Root

p q

uf wf

Fig. 2. Example of vertical search between u and unreachable w

(right) child. If its child is unreachable (Fig. 2), then u contacts its father uf and
uf contacts the father of w, wf , using Lemma 1(i). Then wf , using Lemma 1(ii)
twice in succession, contacts its grandchild through its left and right adjacents
and their grandchildren.

In case initial node v is a bucket node, then if its range contains a the search
terminates, otherwise the search is forwarded to the bucket representative. If the
bucket representative has failed, the bucket contacts its other representatives
right or left, until it finds a representative that is reachable. The procedure
continues as described above for the case of a binary node.

The following lemma gives the amortized upper bound for the search cost in
case of massive failures of O(N) nodes.

Lemma 2. The amortized search cost in case of massive node failures isO(logN).

3 Experimental Study

We have built a simulator2 with a user friendly interface and a graphical repre-
sentation of the structure, to evaluate the performance of D3-Tree. To evaluate
the cost of operations, we ran experiments with different number of nodes N
from 1,000 to 10,000, in order to be directly compared to BATON, BATON∗

and P-Ring. BATON∗ is a state-of-the-art decentralized architecture and P-
Ring outperforms DHT-based structures in range queries and achieves a slightly
better load-balancing performance compared to BATON∗. For a structure of
N nodes, 1000 x N elements where inserted. We used the number of passing
messages to measure the performance of the system.

Cost of Node Joins/Departures: To measure the network performance for
the operation of node updates, in a network of N initial nodes, we performed
2N node updates. In a preliminary set of experiments with mixed operations
(joins/departures), we observed that redistributions rarely occurred, thus lead-
ing in negligible node update costs. Hence, we decided to perform only one type

2 Our simulator is a standalone desktop application, developed in Visual Studio 2010,
available in https://github.com/sourlaef/d3-tree-sim

https://github.com/sourlaef/d3-tree-sim

998 S. Sioutas et al.

(a) average messages of node updates (b) average messages of element updates

Fig. 3. Node and Element Update operations

of updates, 2N joins, that are expected to cause several redistributions. Fig. 3a
shows average case (nodes where joins occur are chosen randomly) and worst case
(joins occur only in the leftmost leaf), and in both cases the curves represent
the average amortized redistribution cost.

We observed that even for the worst case scenario, the D3-Tree node update
and redistribution mechanism achieves a better amortized redistribution cost,
compared to that of BATON, BATON∗ and P-Ring. In the average case, dur-
ing node joins, redistribution is rarely necessary (about 3% of join operations
lead to redistributions). However, in the worst case, during node joins, a great
number of nodes are accumulated into the bucket of the leftmost leaf, leaving
the other buckets unchanged. This naturally leads to more frequent and costly
redistributions (about 9% of join operations lead to redistributions).

Cost of Element Insertions/Deletions: To measure the network performance
for the operation of element updates, in a network ofN nodes and n elements, we
performed n element updates. In a preliminary set of experiments with mixed
operations (insertions/deletions), we observed that load-balancing operations
rarely occurred, thus leading in negligible node update costs. Hence, we decided
to perform only one type of updates, n insertions. Fig. 3b shows average case
(element insertions occur at nodes chosen randomly) and worst case (element
insertions occur only in the leftmost leaf), and in both cases the curves represent
the average amortized load-balancing cost.

Conducting experiments, we observed that in the average case, the D3-Tree
outperforms BATON, BATON∗ and P-Ring. However, in D3-Tree’s worst case,
the load-balancing performance is degraded compared to BATON∗ of fanout =
10 and P-Ring. In the average case, during element insertions, load-balancing
is rarely necessary (about 15% of insertions lead to load-balancing operations).
However, in worst case, a great number of element insertions take place into the
bucket of the leftmost leaf, leaving the other nodes unaffected, thus rendering the
subtree imbalanced very often. This leads to more frequent and costly operations
of load-balancing (about 50% of insertions evoke load-balancing).

Cost of Element Search with/without Node Failures. To measure the network
performance for the operation of single queries, we conducted experiments in

D3-Tree: A Dynamic Deterministic Decentralized Structure 999

which for eachN , we performed 2M (M is the number of binary nodes) searches.
The search cost is depicted in Fig. 4a. An interesting observation here was that
although the cost of search in D3-Tree doesn’t exceed 2 · logN , it is higher that
the cost of BATON, BATON∗ and P-Ring. This is due to the fact that when the
target node is a Bucket node, the search algorithm, after locating the correct
leaf, performs a serial search into its bucket to locate it.

To measure the network performance for the operation of element search with
node failures, we conducted experiments for different percentages of node fail-
ures: 10%, 20%, 30%, 50% and 75%. For each N and node failure percentage,
we performed 2M searches divided into 4 groups, each of M/2 searches. In order
to get a better estimation of the search cost, we forced a different set of nodes
to fail in each group. Fig. 4b depicts the increase in search cost when massive
node failures take place in D3-Tree, BATON, different fanouts of BATON∗ and
P-Ring. We observe that D3-Tree maintains low search cost, compared to the
other structures, even for a failure percentage ≥ 30%.

Describing the effect of the enhanced search mechanism of D3-Tree in case
of massive failures in more detail, we must note that when the node failure
percentage is small (10% to 15%), the majority of single queries that fail are the
ones whose elements belong to failed nodes. When the number of failed nodes
increases, single queries are not always successful, since the search mechanism
fails to find a path to the target node although the node is reachable. However,
even for the significant node failure percentage of 30%, our search algorithm is
85% successful, confirming thus our claim about the structure’s fault tolerance.

(a) average messages without failures (b) effect of massive failures

Fig. 4. Single Queries without/with node failures

4 Conclusions

We presented D3-Tree, a dynamic distributed deterministic structure, that turns
out to be very efficient in practice and outperforms other state-of-the-art struc-
tures. Our experimental study showed (among others) that the O(logN) amor-
tized bound for load balancing (the most costly operation) is achieved even for
the worst case scenario. Moreover, investigating the structure’s fault tolerance,
we showed that D3-Tree is highly fault tolerant, since even for a substantial

1000 S. Sioutas et al.

amount of 30% node failures it achieves a significant success rate of 85% in
element search, without increasing the search cost considerably.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) – Research Funding Programs Thales & Heracletus II, In-
vesting in knowledge society through the European Social Fund.

References

1. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: A
dynamic overlay network for routing, data management, and multicasting. In: ACM
SPAA 2004, pp. 170–179 (2004)

2. Brodal, G., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-tree: A new overlay with
deterministic bounds. Algorithmica 72(3), 860–883 (2015)

3. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram,
J.: Load balancing and range queries in P2P systems using P-Ring. ACM Trans.
Internet Technol. 10(4), Art.16, 1–16 (2011)

4. Gupta, A., Agrawal, D., Abbadi, A.E.: Approximate range selection queries in peer-
to-peer systems. In: Proc. 1st Biennial Conference on Innovative Data Systems
Research – CIDR (2003)

5. Jagadish, H.V., Ooi, B.C., Tan, K., Vu, Q.H., Zhang, R.: Speeding up search in
P2P networks with a multi-way tree structure. ACM SIGMOD 2006, 1–12 (2006)

6. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-
peer networks. In: VLDB 2005, pp. 661–672 (2005)

7. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer
(2011)

8. Sahin, O., Gupta, A., Agrawal, D., Abbadi, A.E.: A peer-to-peer framework for
caching range queries. In: ICDE 2004, pp. 165–176 (2004)

9. Scheideler, C., Schmid, S.: A distributed and oblivious heap. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009, Part II. LNCS, vol. 5556, pp. 571–582. Springer, Heidelberg (2009)

10. Sourla, E., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D3-tree: A dynamic dis-
tributed deterministic load–balancer for decentralized tree structures. Tech. Rep.
ArXiv:1503.07905, ACM CoRR (March 2015)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

	D3-Tree: A Dynamic Deterministic Decentralized Structure
	Introduction
	The D3-Tree
	The Structure
	Node Joins and Departures
	Single and Range Queries
	Element Insertions and Deletions
	Fault Tolerance
	Single Queries with Node Failures

	Experimental Study
	Conclusions

