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Abstract. Large network analysis is a very important topic in data
mining. A significant body of work in the area studies the problem of
node similarity. One way to express node similarity is to associate with
each node the set of 1-hop neighbors and compute the Jaccard similar-
ity between these sets. This information can be used subsequently for
more complex operations like link prediction, clustering or dense sub-
graph discovery. In this work, we study algorithms to monitor the result
of a similarity join between nodes continuously, assuming a sliding win-
dow accommodating graph edges. Since the arrival of a new edge or the
expiration of an existing one may change the similarity between sev-
eral node pairs, the challenge is to maintain the similarity join result as
efficiently as possible. Our theoretical study is validated by a thorough
experimental evaluation, based on real-world as well as synthetically gen-
erated graphs, demonstrating the superiority of the proposed technique
in comparison to baseline approaches.
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1 Introduction

Graphs play an important role in modern world [1], due to their widespread use
for modeling, representing and organizing linked data. Taking into consideration
that most of the “killer” applications require a graph-based representation (e.g.,
the Web, social network management, protein interaction networks), efficient
query processing and analysis techniques are required, not only because these
graphs are massive but also because the operations that must be supported are
complex, requiring significant computational resources.

A graph G(V,E), in its simplest form, is composed of a node-set V , repre-
senting the entities (objects), and an edge-set E, representing the relationship
among the entities. Each edge eu,v ∈ E connects a pair of nodes u, v, denoting
that these nodes are directly related in a meaningful manner. For example, if
nodes represent authors, then an edge between two authors may denote that
they have collaborated in at least one paper. As another example, in a social
network application (e.g., Facebook), an edge may denote that two users are
connected by a friendship relationship.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 638–653, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Continuous Similarity Computation over Streaming Graphs 639

2v

3v

6v

5v

1v

8v

7v

4v

Fig. 1. Graph example

Motivation. A significant operation in a graph is the computation of the sim-
ilarity between nodes. The similarity between nodes u and v may be expressed
in several ways, depending on application or user requirements. For example, we
may express similarity by means of shortest paths, maximum flow, random walks
or a combination of measures. In general, similarity is expressed by a function
V ×V → [0, 1], where a value close to 0 means low similarity and a value close to 1
denotes a high similarity between a node pair. In this work, we express similarity
by means of the Jaccard similarity coefficient, which enjoys a widespread use in
diverse areas such as link prediction and recommendation [15], data cleaning [3],
near duplicate detection [19], diversity analysis [9], whereas it is one of the most
important measures for set similarity. We associate with each node u the set of
its immediate neighbors N(u) (u inclusive). Then, the similarity between nodes
u and v is computed as the fraction of their common neighborhood size over the
cardinality of their neighborhood union, i.e.:

SJ(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)| (1)

Example 1. Figure 1 depicts a small graph where |V | = 8 and |E| = 14. Based
on our similarity definition, it can be verified easily that: SJ(v1, v2) = 5/5 = 1,
SJ(v2, v6) = 1/8, SJ (v6, v8) = 4/4 = 1 and SJ(v1, v7) = 0. We observe that node
pairs that share the same set of immediate neighbors (e.g., v1 and v2) have a
similarity of 1, whereas node pairs without common neighbors have a similarity
of 0 (e.g., v1 and v7). �

An important operation which is based on pair-wise node similarities is the
similarity join. More specifically, given a set of objects, a similarity function and
a threshold ϑ, the similarity join operator reports all object pairs with a similarity
at least ϑ. The output of this operator may be used subsequently for more
complex mining tasks like clustering, dense subgraph discovery, association and
link prediction. Regarding our setting, the similarity join result set R between
graph nodes is defined as the set of node pairs < u, v > such that the Jaccard
similarity between their neighborhoods is at least ϑ. More formally:

R = {(u, v) : u ∈ V, v ∈ V, SJ(u, v) ≥ ϑ} (2)

Our Contributions. Although similarity joins have been studied before (see
for example [14]), to the best of our knowledge, there is a lack of research in
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maintaining the join result in a dynamic network, where insertions and deletions
of nodes and edges are allowed. In particular, in many modern applications, se-
quential access to the data is the only feasible direction, due to huge data volumes
or because of frequent updates. For example, the output of a network router, in
its simplest form, is usually a stream of triplets of the form < IP1, IP2, t >, de-
noting that IP1 sent a packet to IP2 at time t. Any online processing performed
on the router output must be based on sequential access, since the order of the
output is completely random, whereas the frequency of the stream prevents the
use of expensive data structures to organize the data on-the-fly. Based on this,
we assume that the graph is available in the form of a data stream [17], where
edges should be processed as they are presented to the algorithm.

More specifically, we study two different alternatives of the streaming graph
model. In the turnstile model, the graph is presented as a sequence of edge inser-
tions and edge deletions. For example, the sequence +eu,v,+eu,x,+ex,y,−eu,x
represents a streaming graph which is constructed by inserting edges eu,v, eu,x
and ex,y (we use a plus sign in front of an insertion) and deleting the edge eu,x
(we use the minus sign in front of the edge). A special case of the turnstile
model is the sliding window model, where the last w elements are maintained
in a first-in first-out fashion. In this setting, the arrival of a new edge eu,v is
followed by the expiration of an existing edge eu′,v′ . In fact, the expired edge is
the one with the oldest timestamp. Based on this model, at any given time, the
active set of edges forms a subgraph of the streaming graph, representing the last
m interactions among the graph nodes. This simple model may be generalized
in several directions. For example, in some cases there is a whole set of newly
arrived edges, meaning that an equal number of edges must expire. Another
option is to have a time-based sliding window, where the window maintains the
interactions that took place in the last h hours. To keep the presentation and
the algorithms simple, we base our work on count-based sliding windows, where
at any given time, exactly w edges are maintained in memory, whereas arrivals
and expirations refer to single edges.

The main goal of this paper is to study efficient algorithms for continuous
similarity monitoring of the nodes of an evolving graph, which is presented in
the form of a stream of edges. In particular, our contributions are as follows:

– To the best of our knowledge, this is the first work that studies continuous
similarity computation over streaming graphs using sliding windows. Taking
into consideration that node similarity is the base for more complex tasks,
the results of our study can be used for clustering or community discovery
over streaming graphs.

– We propose efficient algorithms to maintain the similarity join result both
when insertions and deletions of edges are arbitrary and when they follow
a sliding window scenario, thus, enabling the use of our techniques in any
dynamic network. The proposed algorithm uses effective pruning techniques
to avoid the recomputation of Jaccard similarity wherever this is possible.
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– We offer a thorough experimental evaluation based on large real-world as well
as synthetically generated graphs, showing that the proposed algorithms offer
significant performance improvement in comparison to baseline approaches.

Roadmap. The rest of the article is organized as follows. Section 2 presents
some research contributions that are highly related to our work. Algorithms for
continuous similarity computation over streaming graphs are given in Section 3.
Performance evaluation results based on real-world as well as synthetic networks
are offered in Section 4. Finally, Section 5 concludes our work.

2 Related Work

The issues studied in this paper, lie in the intersection between graph mining [1]
and data streams [11,17]. Mining streaming graphs is challenging, mainly due
to the data massiveness and also because of the inherent difficulty in solving
complex graph problems in the streaming model of computation [8,20].

Node similarity in graphs plays an important role in graph mining because
it is often the base for supporting more complex operations such as clustering
and community detection [10]. To express the similarity between graph nodes,
a meaningful similarity measure is required. One such measure is the Jaccard
similarity, which has been applied successfully in areas such as duplicate detec-
tion [6,19], link prediction [15], similarity evaluation in wikipedia [4], triangle
counting in massive graphs [5] and diversity analysis in documents [9].

Based on the importance of the Jaccard similarity, in this work we focus on
the application of this measure to detect node pairs of a dynamic network, with
a high degree of similarity. In particular, network dynamics are controlled by
a sliding window of a fixed size w, which maintains the most recent edges of
the streaming graph. Our work is inspired by previous research approaches to
process complex queries over sliding window data streams. The work in [16]
studies the problem of top-k query processing over a multidimensional data
stream for any monotone ranking function. In a similar manner, [13] proposes
efficient algorithms for top-k dominating queries whereas [12] focuses on outlier
mining over general metric streams. Those works focus on multidimensional or
metric streams.

Although there is a significant body of work dealing with processing over
streaming graphs [8,20,2], none of the existing works handles similarity com-
putation over a streaming graph using sliding windows. A research topic that
is closely related to similarity computation is triangle counting. Algorithms for
counting triangles in streaming graphs have been reported in [5] where the semi-
streaming model is used, in [7] where sampling is used. Those works aim at
reducing the space requirements and thus the solutions they provide are ap-
proximate. Moreover, since those techniques are based on either minhashing or
sampling, they cannot support deletions efficiently.

An important challenge is that apart from the fact that, in contrast to rela-
tional join processing, the insertion/deletion of an edge affects the similarity of
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other node pairs in the graph, the result set is composed of two types of node
pairs: i) node pairs joined by an edge and ii) non-adjacent node pairs. This fea-
ture is unique in graphs and requires attention because edge pruning cannot be
performed easily.

3 Continuous Similarity Computation

3.1 Preliminaries

In this section, we present some fundamental concepts related to continuous Jac-
card similarity computation in a streaming environment. Formally, the problem
we attack is the following:

Problem Definition. Given a streaming graph G and a count-based sliding
window of size w, monitor all node pairs vi, vj such that SJ(vi, vj) ≥ ϑ, where
ϑ ∈ [0, 1] is a user-defined similarity threshold.

To facilitate efficient processing, the graph is organized by an adjacency list
representation, where each node points to its immediate neighbors. Since in a
streaming environment insertions and deletions of edges are very frequent, node
information is stored in a hashmap for fast lookups. This allows us to locate
each node in O(1) expected time. Likewise, the result set R which contains the
node pairs having similarity larger than the threshold ϑ, is also organized by
a hashtable. This way, checking if a node pair is in the result set involves a
lookup in the hashtable using as key a combination of the node identifiers. The
indexing schemes used by our techniques are shown in Figure 2. Notice that,
R may contain node pairs that either are not joined by an edge or are direct
neighbors. This means that some node pairs in R correspond to adjacency list
entries and some do not. For example, the entries of R shown shaded in Figure
2 correspond to disjoint node pairs, whereas the rest correspond to node pairs
connected by an edge of G.

An important issue in the data organization is the way the set of neighbors
N(v) of a node v is arranged, since this has a direct impact on the efficiency of the
Jaccard similarity computation. To provide the best possible solution we have
to take into account that: i) insertions and deletions in N(v) must be handled
efficiently and ii) the Jaccard similarity computation between two nodes must
be also computed efficiently. We distinguish among the following cases, assuming
that currently, |N(v)| = k:

Unordered List (UL). The set of neighbors N(v) is organized as a simple
unordered list. This offers O(1) worst case time for inserting a new neighbor
in N(v), but requires linear cost to find or delete a neighbor. For Jaccard
computation, if both nodes have k neighbors, then in O(k) expected time
we can compute the intersection and the union of the neighborhoods using
hashing.
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Ordered List (OL). If both lists are ordered, then the computation of the
intersection and the union can be completed in O(k) worst case. Likewise,
insertions and deletions also require linear cost in the worst case.

Binary Search Tree (BST). With a BST, insertions and deletions are han-
dled in O(log n) worst case, whereas intersections and union operations are
executed in linear O(k) time worst case.

Hash Table (HT). In this scheme, instead of having an unordered list, the set
of neighbors is organized in a hashtable. This provides O(1) expected cost
for insertions and deletions, and also O(k) expected cost for computing the
intersection and the union.

Based on the previous discussion, HT is the most promising technique for Jaccard
similarity computation, and this is also validated by the experimental results we
report in Section 4.

3.2 Algorithmics

In this section, we study algorithmic techniques toward continuous Jaccard sim-
ilarity computation over a streaming graph. Initially, we provide a baseline ap-
proach to solve the problem, followed by an efficient algorithm that can handle
insertions and deletions of edges. Finally, we propose a more sophisticated algo-
rithm which is more appropriate for the sliding-window case.

Definition 1. The set of affected pairs of an edge eu,v, denoted as SAP (eu,v)
or simply SAP (u, v), is the set of node pairs whose Jaccard similarity is affected
by the arrival or the expiration of the edge eu,v.

Based on the previous definition, the similarity of a node pair contained in
SAP (eu,v) may be increased or decreased, according to the structure of the
graph. The following lemma explains which pairs are contained in SAP (eu,v)
and how their similarity is affected.
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Fig. 2. Indexing techniques employed
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Fig. 3. Example graph used in the proof of Lemma 1

Lemma 1. Let eu,v be an inserted/deleted edge and u, v the associated nodes.
The similarities that are affected by this insertion/deletion are those defined by:
i) the pair (u,v), ii) u and all neighbors of u, iii) u and all neighbors of v, iv) v
and all neighbors of v and v) v and all neighbors of u.

Proof. We focus on the case where the edge e is inserted, because the deletion is
handled symmetrically. Therefore, let e be a new edge joining the nodes x and y
as it is indicated in Figure 3. Based on the definition of the Jaccard similarity,
SAP (x, y) contains only the pairs mentioned above, since by using contradiction,
it is impossible that the similarity of a node pair not belonging to one of these
cases will change due to the insertion of e. Next we show how the similarities of
the node pairs contained in SAP (x, y) are modified.

The similarity between x and y is increased, since now y becomes a direct
neighbor of x and x becomes a direct neighbor of y. Consequently, the set
N(x) ∩ N(y) gets two new members, x and y, resulting in an increase of the
value of SJ (x, y). Next, we examine what is the impact of inserting e to the
similarity between x and each of its direct neighbors, denoted as xi. There are
two cases to examine here: in the first case, y is not a neighbor of xi (this is
the case for x2 and x3), whereas in the second case, y is a neighbor of xi (e.g.,
when xi is x1). In the first case, the value of SJ(x, xi) decreases, because only
the denominator increases, whereas the nominator remains unchanged. In the
second case, SJ(x, xi) increases, because the nominator increases by one and the
denominator remains the same. Similar arguments can be stated for the other
node pairs contained in SAP (x, y). ��

The Baseline Algorithm (Base). The simplest algorithm to solve the con-
tinuous similarity problem is directly derived by utilizing the result of Lemma 1.
This baseline algorithm, denoted as Base, computes the Jaccard similarity for
all node pairs contained in SAP (x, y), where x and y are the nodes associated to
an edge e which is either inserted or deleted. Each time a new similarity SJ (u, v)
is computed, the value is compared to ϑ, and if SJ(u, v) ≥ ϑ, then the pair (u, v)
is inserted into the result set R. Node pairs that are contained in R and their
updated similarity is less than ϑ are simply evicted from R.

It is evident, that the cost of this approach is highly dependent on the number
of Jaccard similarity computations executed. To reduce this number, we first
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Algorithm 1. Base

Input: G: the graph, e: the new or expiring edge between x and y, R: result set
Output: updated result set R

1: determine the set SAP (x, y);
2: for each node pair (u, v) ∈ SAP (x, y)
3: compute UBJ (u, v)
4: if (UBJ (u, v) < ϑ)
5: if ((u, v) ∈ R) R ← R − {(u, v)};
6: else
7: recompute SJ(u, v);
8: if (SJ (u, v) ≥ ϑ)
9: if ((u, v) /∈ R) R ← R + {(u, v)}; /* insert (u, v) into R */
10: else
11: if ((u, v) ∈ R) R ← R − {(u, v)}; /* remove (u, v) from R */
12: return;

enforce an upper bound, and if the node pair still survives the test, only then
the Jaccard similarity is computed. In particular, given two nodes u and v, their
Jaccard similarity satisfies the following inequality:

SJ(u, v) ≤ UBJ(u, v) =
min(|N(u)|, |N(v)|)
max(|N(u)|, |N(v)|) (3)

The outline of Base is given in Algorithm 1. The upper bound test is per-
formed at Line 4, and the Jaccard computation is executed at Line 7. Although
the use of the upper bound reduces the number of Jaccard similarity computa-
tions, more sophisticated techniques are required to decrease the cost further.

The Counter-Based Algorithm (Counter). The main drawback of Base
is that there is a significant number of Jaccard similarity computations, leading
to performance deterioration. To overcome this limitation, the next algorithm
(Counter) is based on keeping separate counters for the cardinality of the
intersection (nominator) and the cardinality of the union (denominator), thus
reducing the cost of computing Jaccard similarities significantly.

The key idea of the Counter algorithm is that when a new edge e joining x
and y is inserted, we compute the value SJ(x, y) and we maintain two separate
counters C∩ and C∪ for the cardinality of the intersection and the union of the
neighborhoods respectively, i.e. C∩(x, y) = |N(x)∩N(y)| and C∪(x, y) = |N(x)∪
N(y)|. Thus, whenever there is a need to recompute the value of SJ(x, y), we
need only adjust the values of C∩(x, y) and C∪(x, y) and just perform the division
C∩(x, y)/C∪(x, y). In addition, intersection and union counters are maintained
for node pairs that are not connected by an edge but are included in the result
set R. Subsequent recomputations of the Jaccard similarity are executed fast,
avoiding unnecessary set-oriented operations among the neighborhoods. In the
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Algorithm 2. Counter

Input: G: the graph, e: the new edge between x and y, R: result set
Output: updated result set R

1: determine the set SAP (x, y);
2: for each node pair (u, v) ∈ SAP (x, y)
3: if ((u, v) ∈ R)
4: update counters C∩(u, v) and C∪(u, v) for (u, v);
5: if (C∩(u, v)/C∪(u, v) < ϑ)
6: R← R− {(u, v)};
7: else if ((u, v) ∈ E) /* edge (u, v) exists */
8: update counters C∩(u, v) and C∪(u, v) for (u, v);
9: if (C∩(u, v)/C∪(u, v) ≥ ϑ)
10: R← R+ {(u, v)};
11: else
12: compute UBJ (u, v)
13: if (UBJ (u, v) ≥ ϑ)
14: compute SJ (u, v);
15: if (SJ(u, v) ≥ ϑ) R← R + {(u, v)};
16: return;

sequel, we examine only the insertion case, since deletions are handled in a
similar manner.

Let e be a new edge that is inserted inG, linking nodes x and y.Counter first
checks if the pair (x, y) is already in the result set R. If yes, then definitely there
exist counters for the intersection and the union that have been set previously.
Therefore, the new value of SJ(x, y) is computed easily. The outline of Counter
is given in Algorithm 2. Notice that, before the computation of the Jaccard
similarity in Line 12, the algorithm first checks if the node pair is in R or the
corresponding edge exists in E. Then, the intersection and union counters are
updated based on the cases reported in Lemma 1. To avoid confusion, we use the
term set-based Jaccard computation to refer to the Jaccard computation when
there are no precomputed counters, and use the term counter-based Jaccard
computation otherwise.

The Slide-Oriented Algorithm (Slide). Although Counter is more effi-
cient than Base, it is designed to support insertion and deletion of arbitrary
edges. However, our goal is to support continuous evaluation over a sliding win-
dow of size w. In this case, we know exactly the expiration time of an edge,
since edges arrive and depart in a FIFO fashion. This means that additional
optimizations can be applied toward the design of an algorithm which is more
appropriate for the sliding-window case.

In this section, we provide the details of the Slide algorithm, which has
been designed for the sliding-window scenario. The key idea of Slide is that
if we could determine the time instance when a node pair (u, v) will enter the



Continuous Similarity Computation over Streaming Graphs 647

result set R, then we could decide if (u, v) is promising or not. It turns out that
such a prediction is possible, resulting in an effective mechanism to determine
node pairs that can be eliminated safely. More specifically, when a new edge is
inserted, we make an optimistic prediction, determining the closer time instance
that the nodes associated with the edge can be included in the result set R.
The prediction is optimistic, in the sense that the estimated time instance is
computed assuming the best possible scenario for this edge. In addition, as we
show in the sequel, this estimation produces only false positives and never false
dismissals.

Lemma 2. Let e be a newly arrived edge joining nodes x and y. Let t∗(x, y)
denote the closer time instance into the future in order for (x, y) to enter the
result set R. Then, it holds that:

t∗(x, y) = tnow +min{C∗
∩(e)− C∩(e), C∪(e)− C∗

∪(e)} (4)

where tnow is the current time, C∩(e) and C∪(e) are the values of intersection
and union counters computed upon examination of e, and C∗

∩(e) and C∗
∪(e) are

the values of intersection and union counters when e is expected to be inserted
into R.

Proof. Assume that e joins the nodes x and y and it is checked at the current
time tnow. Let also C∩(e) and C∪(e) denote the values of the intersection and
union counters for e at time tnow. We assume that the node pair (x, y) will enter
the result set R at some time in the future, and let t∗(x, y) denote this par-
ticular time instance. We are looking for the smallest possible value of t∗(x, y).
If C∗

∩(e) and C∗
∪(e) are the values of the intersection and union counters when

(x, y) enters R, then clearly we have that: C∗∩(e)/C∗∪(e) ≥ ϑ. Based on the pre-
vious discussion, every time SJ (x, y) is affected, exactly one of the following five
cases is true: i) only C∩(e) increases, ii) only C∪(e) increases, iii) only C∩(e)
decreases, iv) only C∪(e) decreases, iv) both C∩(e) and C∪(e) increase or v)
both C∩(e) and C∪(e) decrease. Among the previous cases, the ones that may
lead faster to the inclusion of (x, y) into R are the first two. Indeed, the fraction
C∩(e)/C∪(e) increases faster if either the nominator increases (keeping the de-
nominator fixed) or the denominator decreases (keeping the nominator fixed).
Note, that these two events cannot happen at the same time. Consequently, to
gain the additional Δϑ similarity score required to enter R, it suffixes to wait for
min(C∗

∩(e) − C∩(e), C∪(e) − C∗
∪(e)) time instances at best, assuming the most

optimistic scenario. ��
Lemma 3. If for an edge e it holds that texp(e) < t∗(e), then it is safe to skip
the Jaccard similarity computation for this edge.

Proof. Recall that t∗(e) is the closest time instance when e will enter R, con-
sidering the most favorable scenario for e, i.e., by increasing the nominator and
decreasing the denominator as much as possible. Consequently, if the expiration
time of e is less than t∗(e), then it is impossible for e to enter the result set
R. Therefore, the Jaccard computation between the nodes joined by e may be
skipped safely. ��
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Algorithm 3. Slide

Input: G: the graph, e: the new edge between x and y, R: result set
Output: updated result set R

1: determine the set SAP (x, y);
2: for each node pair (u, v) ∈ SAP (x, y)
3: if ((u, v) ∈ R)
4: update counters C∩(u, v) and C∪(u, v) for (u, v);
5: if (C∩(u, v)/C∪(u, v) < ϑ)
6: R← R− {(u′, v′)};
7: else if ((u, v) ∈ E) /* edge (u, v) exists */
8: if (texp(u, v) < t∗(u, v))
9: reject (u, v) from further consideration;
10: else
11: update counters C∩(u, v) and C∪(u, v) for (u, v);
12: if (C∩(u, v)/C∪(u, v) ≥ ϑ)
13: R← R+ {(u, v)};
14: else
15: compute UBJ (u, v)
16: if (UBJ (u, v) ≥ ϑ)
17: compute SJ (u, v);
18: if (SJ(u, v) ≥ ϑ) R← R + {(u, v)};
19: return;

If an edge e joining nodes x and y satisfies the inequality of Lemma 3, then
there is no need to test the pair (x, y) again, and consequently there is no need to
maintain intersection and union counters, since it is guaranteed that e will never
enter R for the rest of its lifespan. The outline of Slide is given in Algorithm 3.
The expiration time pruning is applied in Lines 8 and 9.

4 Performance Evaluation

In this section, we report some representative performance results showing the
efficiency and scalability of the proposed approach. All algorithms have been
implemented in JAVA and the experiments have been conducted on an Intel
Core i5@2.7GHz machine. We study the performance of the algorithms in terms
of their runtime and their pruning capabilities, by varying the most important
parameters, such as the window size (w) and the value of the similarity threshold
(ϑ). The default values for the parameters, if not otherwise specified, are: w =
1, 000, 000 and ϑ = 0.8. The computational cost of the algorithms is given in
terms of the expected time required by an update (an insertion followed by a
deletion). This value determines the processing capabilities of the algorithms,
since it is inversely proportional to the number of updates that can be served
per time unit, which is an important measure in applications managing data
streams.
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4.1 Data Description

To study the performance of the algorithms we have used both real-world and
synthetic data sets. The real-world data sets are described briefly in Table 1 and
are freely available for download at http://snap.stanford.edu/data/index.html.

Table 1. Real-world data sets (source http://snap.stanford.edu/data/index.html)

Data #Nodes #Edges Description

Wiki-Talk 2,394,385 5,021,410 pages editing between wikipedia users

Web-BerkStan 685,230 7,600,595 web from berkeley.edu and stanford.edu

Soc-LiveJournal1 4,847,571 68,993,773 users’ connections in LiveJournal social network

The synthetic graphs have been generated by using the GenGraph tool [18].
This generator produces graphs obeying power-law degree distributions. In par-
ticular, GenGraph generates a set of n integers in the interval [dmin, dmax] obeying
a power-law distribution with exponent a. Therefore, according to the degree dis-
tribution produced, a random power-law graph is generated. The default values
for the parameters of the generator are: dmin = 0.1% of the number of vertices,
dmax = 0.8% of the number of vertices and a ∈ {1.8, 2, 2.2, 2.5}. The maximum
number of vertices has been set to 10,000.

4.2 Experimental Results for Real-Life Data

The first result involves the way Jaccard computations are computed, which is
highly related to the way adjacency lists are maintained, as it has been described
in Section 3.1. In particular, Figure 4 depicts the performance of the three studied
algorithms for the Soc-LiveJournal1 data set. As expected, the HT organization,
which relies on hashing, shows the best performance. Therefore, we apply the
HT technique in the performance evaluation discussed in the sequel.

Figures 5 and 6 demonstrate the scalability of the algorithms by varying the
windows size w. Figure 5 shows the runtime per update. All algorithms are af-
fected negatively when the number of active edges increases. However, we observe

 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.5  1  1.5  2

ru
nt

im
e 

pe
r 

up
da

te
 (

m
se

c)

window size (in millions)

SL
BST

HT

(a) Base

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  0.5  1  1.5  2

ru
nt

im
e 

pe
r 

up
da

te
 (

m
se

c)

window size (in millions)

SL
BST

HT

(b) Counter

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  0.5  1  1.5  2

ru
nt

im
e 

pe
r 

up
da

te
 (

m
se

c)

window size (in millions)

SL
BST

HT

(c) Slide

Fig. 4. Comparison of adjacency list maintenance using Soc-LiveJournal1
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Fig. 5. Runtime vs window size
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Fig. 6. Jaccard similarity computations vs window size

Table 2. Number of counter-based Jaccard computations (Soc-LiveJournal1)

threshold result set Slide Counter
ϑ R executed saved executed

0.1 294,117 308,011,791 8,913,518 316,925,309
0.3 179,213 321,129,674 16,828,460 337,958,134
0.5 98,173 333,849,425 27,991,030 361,840,455
0.7 63,171 341,328,740 36,990,891 378,319,631
0.9 304 350,187,993 45,882,785 396,070,778

that Counter and Slide are consistently more efficient than Base. This is ex-
plained by studying the number of Jaccard computations performed by each
algorithm. Figure 6 compares Base and Counter with respect to the num-
ber of similarity computations. It is evident, that the counter-based technique
employed by Counter saves a significant number of set-based similarity com-
putations, which is the predominant cost in runtime. In general, Slide is around
four times faster than Base and two times faster than Counter, despite the
fact that the upper bound pruning is enabled for all algorithms.

Next, we illustrate the impact of the similarity threshold to the performance
of the algorithms. For this, we have used our largest graph, i.e., Soc-LiveJournal1.
Table 2 shows the number of counter-based Jaccard computations executed
by Counter and Slide. Although both algorithms execute the same num-
ber of set-based Jaccard computations, Slide manages to reduce the number of
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Fig. 7. Performance vs threshold (Soc-LiveJournal1)

counter-based Jaccard computations due to the expiration time pruning tech-
nique employed. This leads to a significant performance improvement.

Figure 7(a) shows the runtime comparison between Counter and Slide al-
gorithms. We observe that the performance gap between the algorithms increases
by increasing the similarity threshold. Note that, as it is also shown in Table
2, the larger the similarity threshold the fewer node pairs manage to enter the
result set. This means that we are going to have less precomputed information
in R and therefore Slide benefits more by this situation since it can skip more
counter-based Jaccard computations.

Finally, in Figure 7(b) we report on the pruning power of the upper bound
given in Equation 3, when applied to the Slide algorithm. We clearly see that
there is a performance gain ranging between 12% and 20%, which is very impor-
tant, since the runtime per update defines the throughput (edges per time unit)
that can be processed by the algorithm.

4.3 Experimental Results for Synthetic Data

In the sequel, we report some evaluation results showing the efficiency of the
proposed approach over synthetic streaming graphs. These graphs in which the
experiments were performed are denser than the real-life graphs explored previ-
ously. In particular, as the value of parameter a (power-law exponent) decreases,
the graph generated by GenGraph [18] contains more nodes with large degree,
resulting in a graph with larger density. This means that the density of a graph
with a = 1.8 is larger than that of a graph with a = 2.2.

Figure 8 shows the performance of the algorithms, for different values of the
window size w and the power-law exponent a. Again, as in the case of real-world
data, we observe that Slide shows the best performance in terms of runtime
(Figure 8(a)) and this is also true for different values of the power-law expo-
nent (Figure 8(b)). The small performance difference of all algorithms when the
power-law exponent increases, is due to the impact of a on the graph density,
because the cardinality of the SAP of a node pair is highly dependent on the
density of the graph. The number of set-based Jaccard computations are given
in Figure 8(c). Again, the precomputed counters save a significant number of
set-based Jaccard computations, resulting in performance improvement.
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Fig. 8. Performance for synthetic data sets

5 Conclusions

Node similarity in graphs is an important operation, because it allows the execu-
tion of more complex analysis tasks such as clustering and community discovery.
In this work, we have studied algorithms for continuous evaluation of pair-wise
similarities, where the graph is accessed as a random sequence of edges in a
sliding window scenario. More specifically, given a similarity threshold ϑ, we are
interested in determining all node pairs with Jaccard similarity at least ϑ. This
problem arises frequently in data streams, and especially in streaming graphs,
where a sliding window retains the last w entity interactions.

Three algorithms have been studied and evaluated, namely Base, which is the
baseline approach, Counter an algorithm that supports insertion and deletion
of any edge and it is based on precomputed counters and finally Slide which is
designed for a streaming scenario and uses a pruning technique to ignore node
pairs that will never make it to the result set. Experimental results based on
real-world and synthetic data sets have demonstrated that Slide is consistently
more efficient that the other algorithms.

There are several interesting directions for future work, such as: i) the design of
algorithm for top-k most similar pairs, ii) the generalization of our techniques to
consider h-hop neighbors for similarity computation and iii) the use of sketch-
based techniques to enable performance boost by penalizing the accuracy of
the result. With respect to the last direction, graph-specific sketches, like the
gSketch [21] or cascading summaries [8], may be applied to allow for low-space
similarity computation.
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