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Abstract. The vast majority of existing methods for ranking gene datasets,
do not include or take into account in their exported results other infor-
mation that might accompany the genes, such as specie or terms. Given
a higher order biological data set, we propose a methodology based on
multilinear algebra for ranking genes across multiple dimensions. We ap-
ply PARAFAC decomposition on a Gene Ontology dataset (GO data) for
multiple species and reveal interesting experimental results that provide
to the user more information than other consisted methods.
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1 Introduction

Several methods for ranking genes have been proposed in recent years, such
as GeneRank [8] and HITS [4] algorithm. All these methods perform ranking
across one dimension, that of the totality of the genes and generate only one list
of results. In other words they produce one list of scored genes that is consistent
to a query gene.

The problem that arises here is how we can rank biological data in which more
than one dimensions are involved. This is exactly the case that is investigated
in this paper. In particular, we study a drosophila dataset which is a tensor that
contains GO terms, species, genes and an integer number that represents the
homolog genes within the genome. The question that emerges here is to apply a
method so that genes can be ranked across terms and species at the same time.
In this way the user would understand better and elicit more information from
a higher-order representation of the genes.

The aim of such a task is to analyze genetic diversity and to use this knowl-
edge for discerning the evolutionary relationships among species (i.e. phylogeny
reconstruction), comparing different kinds of species and understanding com-
plexities of biological processes (e.g. evolution of genetic regulation).

The solution that we suggest comes from the area of multilinear algebra.
The idea that we develop in this paper is to decompose the initial tensor data
set to its own distinct dimensions and assign a score to each element. In this
way a ranked list of genes will result again, but this time will be followed by
its relevant ranked list of terms and ranked list of species at the same time.
By using PARAFAC-ALS (Alternating Least Squares) a number of factors are
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derived and each one of them is associated with a scored list of “hosts” and
a scored list of “terms”. In this paper by the word hosts we mean genes and
species, while the list of terms is produced from the GO-terms. The results from
the aforementioned method are presented and discussed to the related section
of this paper.

The remainder of the paper is organized as follows. Section 2 mentions some
previous related work. Section 3 describes the method used in this paper. The
next section introduces applications and examples that concern the proposed
method. Section 5 provides an analytical description of the data set used in
the particular study and apposes a discussion about the obtained experimental
results. Lastly, we draw some conclusions derived from this work and mention
future work that can extend the present paper.

2 Related Work

Authors in [1] describe the Singular Value Decomposition method (SVD) for
transforming genome-wide expression data from genes × arrays space to re-
duced diagonalized “eigengenes” × “eigenarrays” space, where the eigengenes
(or eigenarrays) are unique orthonormal superpositions of the genes (or arrays).
They use this mathematical framework to prove that processing and modelling
genome-wide expression data can lead to meaningful results for biology and
medicine.

In linear algebra, the singular value decomposition (SVD) is an important fac-
torization of a rectangular real or complex two-way matrix. Applications which
employ the SVD include computing the pseudoinverse, least squares fitting of
data, matrix approximation, and determining the rank, range and null space
of a matrix. On the other hand, in multilinear algebra, there does not exist
a multi-way svd that has all the properties of a matrix SVD. A matrix SVD
simultaneously computes the orthonormal row/column matrices and a rank-R
decomposition. This is generally not possible for multi-way arrays or “data-
tensors”. Instead, there exist two types of decompositions for multi-way arrays
that capture different properties of the matrix svd. One decomposition repre-
sents a tensor as sum of rank-1 tensors (Parafac), while the second computes the
othonormal spaces associated with the different axes or modes of a tensor. The
latter decomposition has been known as HOSVD.

Authors in [9] describe the use of the higher-order singular value decompo-
sition (HOSVD) method for transforming a data tensor of genes into a linear
superposition of rank-1 subtensors. By using this framework for analysis of DNA
microarray data from different studies, the authors revealed important results
about the role of several genes on cell cycle progression.

Kolda et al. proposed a method called TOPHITS which analyzes a semantic
graph that combines anchor text with the hyperlink structure of the web [5,
7]. The adjacency structure of the semantic graph is modelled by a three-way
tensor containing both hyperlink and anchor text information. Then the authors
apply the Parallel Factor (PARAFAC) decomposition, which is a higher-order
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analogue of the two-way SVD, and produce triplets of vectors with authority
and hub scores for the pages as well as topic scores for the terms. This algorithm
is an extension of the Kleinberg’s HITS algorithm [4] which uses the singular
vectors of the hyperlink matrix (a two-way tensor) to produce multiple sets of
hubs and authorities.

Several other papers use drosophila datasets and compare GO terms across
species as well [11, 10]. Since ontologies are identical, GO terms can be compared
across species. It is worth to mention here that drosophila datasets [12] have
been used in very important investigations that study experimental questions
such as aging, DNA-damage response, immune response, resistance to DDT and
embryonic development [10].

3 Methodology

As mentioned before, in this paper we use a Gene Ontology dataset that contains
GO terms, species, genes and an integer number that represents the homolog
genes within the genome, which is denoted as frequency. This particular dataset
originates from a genus of small flies called drosophila and contains 1473 genes
taken from 12 different species of it. It also contains 100 GO terms that are
associated with the genes. Since we used a tensor (multidimensional array) to
model the aforementioned data it seems inevitable to use in turn multilinear
algebra methods that operate tensors, so that we can handle and process the
data in a better way.

Here, we focus on PARAFAC (PARAllel FACtor analysis) decomposition
method that is common in multilinear algebra. PARAFAC constitutes a gener-
alization of the PCA method to higher orders [2]. In the following, scalars are
indicated by lower-case letters, bold capitals are used for two-way matrices and
italics capital letters are used for three-way arrays.

3.1 PARAFAC

Parafac is one of several decomposition methods for multi-way data. PARAFAC
will decompose a tensor of order N, where N ≥ 3 into the summation over the
outer product of N vectors (a low-rank model). If the order of a tensor is 3
(N = 3) then the size of the tensor is for example I by J by K. For instance,
given a third-order tensor X ∈ RI×J×K we wish to write it as in (1), where
aif , bjf , ckf are elements of the produced matrices A, B and C. Number F
represents the number of components of the PARAFAC decomposition [6].

Xijk =
F∑

f=1

aifbjfckf (1)
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Fig. 1. The PARAFAC method provide a 3-way decomposition that yields terms, genes
and species scores.

4 Applications and Examples

GeWare data warehouse system [3] is an application for microarray-based gene
expression analysis, which offers high flexibility with multidimensional data mod-
els. In these models data is stored in several fact tables which are associated with
multiple hierarchical dimensions holding describing annotations (e.g GO anno-
tations) on genes, samples, experiments and processing methods.

GeWare can support algorithms for preprocessing and analyzing multidi-
mensional gene datasets, e.g. to identify lists of interesting genes. The analysis
methods are coupled in a simple and powerful way of exchanging experiment
groups, gene groups and gene expression matrices.

The GeWare system has been employed in several research projects which
study for example the role of the transcription factor IL-6 on the survival of
myeloma cells and the factors influencing the binding behavior of sequences on
microarrays.

5 Experimental Results

The data set used in this paper 1 is a sparse tensor which contains GO terms,
species, genes and an integer number that represents the homolog genes within
the genome (denoted as frequency). The size of the sparse tensor is 100 GO
terms × 12 species × 1473 genes. In general, a GO term consists of a term name
(e.g. cell) and a zero-padded seven-digit identifier (or accession number) prefixed
by GO: (e.g. GO: 0005623), which is used as a unique identifier and database
cross-reference. Species are numbered at Table 1, while genes are represented
by a five-digit identifier prefixed by CG (e.g. CG31618).

1 2 3 4 5 6 7 8 9 10 11 12

dmel dsim dsec dyak dere dana dper dpse dwil dmoj dvir dgri
Table 1. Drosophila species.

1 Downloaded from http://insects.eugenes.org/species/
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By applying the PARAFAC-ALS decomposition to the initial tensor dataset
using the matlab tensor toolbox, three matrices are derived. In each one of them
the number of the columns is equal to the number of factors (set by the user)
and the number of lines is:

– equal to the number of GO terms for the first matrix
– equal to the number of species for the second matrix and
– equal to the number of genes for the third matrix.

All these matrices represent scored lists of topics and hosts, which are iden-
tified with the lists of factors. As mentioned before, in this paper by the word
hosts we mean genes and species, while the list of topics is produced from the
GO terms. The results from the aforementioned method are shown in Table 2.

Table 2 presents the parafac decomposition results for the first factor only.
It is important to mention here that parafac can compute results, like those
depicted in Table 2 for as many factors as the user needs. Here we examine the
results of the first factor, since the results as well as the explanation of the rest
of the factors is similar to the first.

PARAFAC RESULTS

————————————————–1st factor————————————————–

TOPICS GENES SPECIES

Score Term GOIDs Score Term Score Term

0.7123 nucleosome GO : 0000786 0.5770 CG31618 0.5295 1

0.7008 nucleosomeassembly GO : 0006334 0.5451 CG31613 0.3960 5

0.0185 molecularfunction GO : 0005554 0.4836 CG31617 0.3832 3

0.0180 cellularcomponent GO : 0008372 0.3130 CG31611 0.3296 12

0.0132 biologicalprocess GO : 0000004 0.1133 CG3379 0.2898 11

0.0105 monooxygenaseactivity GO : 0004497 0.0963 CG13329 0.2552 6

0.0101 microsome GO : 0005792 0.0605 CG5499 0.2276 10

0.0096 proteinubiquitination GO : 0016567 0.0383 CG5825 0.1986 7

0.0091 ubiquitin− proteinligaseactivity GO : 0004842 0.0355 CG7793 0.1692 2

0.0089 ubiquitinligasecomplex GO : 0000151 0.0352 CG3281 0.1583 9

0.0085 steroidmetabolism GO : 0008202 0.0352 CG11290 0.1133 4

0.0076 electrontransport GO : 0006118 0.0342 CG3509 0.0223 8

0.0017 peripheralnervoussystemdevelop. GO : 0007422 0.0270 CG32346

0.0017 SCFubiquitinligasecomplex GO : 0019005 0.0211 CG8625

0.0017 smoothenedsignalingpathway GO : 0007224 0.0210 CG5017

0.0014 polysaccharidemetabolism GO : 0005976 0.0210 CG4236

0.0010 proteinmodification GO : 0006464 0.0206 CG5330

0.0009 proteinmetabolism GO : 0019538 0.0206 CG12109

0.0009 transferaseactivity GO : 0016740 0.0187 CG9383

0.0008 spermatogenesis GO : 0007283 0.0184 CG3708

etc etc etc etc etc
Table 2. Ranked list of topics and hosts using the PARAFAC decomposition method.
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From Table 2 it is quite obvious that the terms “nucleosome” and “nucle-
osome assembly” are ranked first in the list of topics and all the rest follow
with great divergence. This means that the majority of genes scored on the next
column should be mainly or only associated with these two GO terms. If some-
one takes a look to the initial dataset will see that indeed all the listed genes
are associated with either both the first two topics or one of them. Exceptions
to this rule constitute the genes CG15440 and CG4299 which, apart from the
first topics, are also associated with the terms “protein metabolism” and “sper-
matogenesis”. The same applies for the list of species, in relation with the other
columns. Table 3 reveals the accuracy of the species ranking in Table 2, since
it presents the correspondent part from the initial dataset that contains the first
two genes and GO terms that are discussed in Table 2. In other words, Table 2
shows that the genes that are highly ranked on the second column are associated
with the terms that are also highly ranked on the first column. The same applies
with the third column, as well (species column) in relation with the other two
columns. In this way, ranking across all these three dimensions is achieved, which
was the target of this method. In Table 3 GO terms are indicated by their GO
IDs.

6 Conclusions

In cases of multidimensional datasets, existing methods for ranking genes in
biological databases cannot help the user analyze and extract useful information
from them. We presented a multilinear algebra based methodology which uses
the parafac decomposition to rank genes across multiple dimensions of the initial
dataset. The proposed scheme can rank GO terms, genes and species at the
same time, by providing accurate results that will help a researcher elicit more
information from a higher order representation of the data and handle them in
a better way.

7 Future Work

This paper can be extended with the insertion of additional similar methodolo-
gies to the one presented, as for example the Tucker decomposition method or
other. Results from the aforementioned methods can be compared and discussed
across species or across multiple datasets.
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