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Abstract. Many modern applications in diverse fields demand the efficient manipulation of very large multidi-
mensional datasets. It is evident, that efficient and effective query processing techniques need to be developed, in
order to provide acceptable response times in query processing. In this paper, we study the processing of similarity
nearest neighbor queries in large distributed multidimensional databases, where objects are represented as vectors
in a vector space, and are distributed in a multi-computer environment. The departure from the centralized case
embodies a number of advantages and (unfortunately) a number of difficulties that need to be successfully over-
come. In this perspective, four query evaluation strategies are presented, namelyConcurrent Processing (CP),
Selective Processing (SP), Two-Phase Processing (2PP)andProbabilistic Processing (PRP). The proposed
techniques are compared analytically and experimentally, in order to discover the advantages of each one, as
well as the best cases where each one should be applied. Experimental results are presented, demonstrating the
performance of each method under different parameters values. Also, we investigate the impact of derived data
that should be maintained in order to process similarity queries efficiently.

Keywords: distributed databases, multidimensional data, similarity queries, query processing

1. Introduction

Multidimensional data appear in many modern applications in diverse fields. Geographical
Information Systems (G.I.S) require the storage and manipulation of objects in 2-d and
3-d spaces [14, 19]; Image/Video Retrieval by Similarity and Pattern Recognition require
the extraction of features from the images and the mapping of these features in a high
dimensional space, in order to speed up query processing [11, 17]; in Time Series databases,
the objects are first transformed (e.g. by means of the Fourier transform) and then some
components (these with the highest energy) are used to index the underlying set [2, 10];
documents in a Text Database can be represented as vectors (e.g. using the Latent Semantic
Indexing technique) in a high dimensional space [8]; records in traditional alphanumeric
databases can be viewed as points in a high dimensional space, assuming one dimension
for each record attribute [16].

These applications require databases that are huge in volume. Often, multiple computer
systems are used in order to support efficient and effective retrieval. In some cases, due
to the nature of the application, there is no alternative except distribution (e.g. in medical
information systems, where data corresponding to one hospital are apart from the data
regarding another hospital). The departure from the centralized case offers a number of
significant advantages such as: parallelism exploitation during query processing, distributed
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control, incremental growth, higher availability and reliability. On the other hand, data
distribution embodies a number of difficulties such as: complicated query processing and
optimization strategies, communication cost overhead, load balancing considerations in
order to avoid bottlenecks. These difficulties need to be overcome in order to support
efficient manipulation and retrieval [7, 27].

In the aforementioned applications many types of queries may be posed by users. The
most common query is to determine if a specific objectOq exists in the database. A more
difficult query, that requires a substantial amount of system resources, is the similarity query.
An objectOq is given and thek objectsOj that are closer toOq are requested. The objects
Oj , 1≤ j ≤ k, are called thenearest neighborsof Oq. Furthermore, several restrictions
may be applied. For example, we may be interested in thek nearest neighbors ofOq such
that noOj is further/closer than a specified threshold distance. Either in the simple or the
restricted case, similarity queries are extensively used and efficient processing strategies
are required.

In this paper, we study the similarity query problem in a distributed system. Several
factors should be taken into consideration, such as the type of derived data, CPU cost, I/O
cost, communication cost, degree of parallelism, throughput and acceptable response times.
In the next section we present the appropriate background in multidimensional spaces, the
motivation behind this work and the several assumptions introduced in order to approach
the problem. In Section 3 similarity query evaluation strategies for distributed systems are
presented and compared analytically with respect to the expected response time of a query.
In Section 4 the importance of derived data is stated and their impact in query processing
is investigated. The query evaluation strategies are compared experimentally in Section 5.
Section 6 contains some useful discussion on major topics and, finally, Section 7 concludes
the paper.

2. Background

2.1. Spaces

Given a number of objects (images, text documents, video clips, sounds, geometric entities)
we may define several spaces that these objects could be embedded:r Vector space. In an n-dimensional vector space each object is represented by a well

defined set ofn values, that correspond to a vector. For example, a 256-color image can
be represented as a vector in the 256-d space, using the color histogram of the image. The
similarity measure between two objectsOi and Oj , d(Oi ,Oj ) could be, for example,
the Euclidean distance between the corresponding vectors.r Metric space. There are applications (e.g. in DNA sequences) where each object can
not be represented as ann-d vector, but we can define a metricd(Oi ,Oj ) between two
objectsOi andOj such that:

1. d(Oi ,Oj ) ≥ 0 (positivity)
2. d(Oi ,Oj ) = d(Oj ,Oi ) (symmetry)
3. d(Oi ,Oj ) ≤ d(Oi ,Ok)+ d(Ok,Oj ) (triangular inequality)

It is evident that a vector space is also a metric space, but the inverse is not always true.
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r Non-metric space. In a non-metric space it is impossible not only to define ann-d
vector representation of the objects, but also to define a metric. This is because of the
intuitive meaning of similarity in some applications where is very difficult to express
similarity by means of a function between two objects. Examples can be found in the
pattern recognition literature [25].

Fortunately, many real datasets are based on the vector space model. Although there are
applications where the objects have no straight-forward vector representation, the work of
Faloutsos and Lin [11] presents a method that can be effectively applied to derive a vector
representation of a metric space. Therefore, it is reasonable to focus on vector spaces (or
multi-dimensional spaces) in order to study the similarity query problem.

2.2. Nearest neighbor queries

Definition 2.2.1. Given an objectOq, a query requesting thek objectsOj closer toOq

(w.r.t. a distance metric) than any other object in the database, is defined as ak-nearest-
neighbor query (k-NN query for short) or ak-similarity query.

Notice the difference between a similarity query and a range query. In a range query, an
objectOq is given and all objects that lie in the circle with centerOq and a specified radius
R are requested. Therefore, in the range query the distance is known whereas the number
of objects retrieved is unknown. On the other hand, in a similarity query the number of
retrieved objects is known whereas the distance is unknown. Evidently, a similarity query
can be answered by means of repetitive applications of a range query, but this can result in
unnecessary resource consumption in case we do not provide a suitable distance a priori.

Several research efforts have been performed, in order to provide efficient and effective
processing techniques for the similarity query problem: In [13] the problem of nearest
neighbor searching is studied under the optimizedk-d-tree data structure. In [5] optimal
expected time algorithms are reported for solving a number of closest point problems in
then-d space. Theoretical bounds are established and the authors show how a practitioner
can benefit from these techniques. In a more recent paper White and Jain [28] examine
the similarity query problem and propose techniques for designing variations of R-trees
andk-d-trees more suitable for high dimensions. Also, in [6] a data structure (the X-tree)
is presented that is specifically designed for high dimensional data. Experimental results
show that the structure outperforms R∗-trees [4] and TV-trees [20] by factors. In [21] we
present techniques to answer nearest neighbor queries in declustered R-trees. Arya et al. [3]
present the impact of taking into consideration boundary effects in the analysis of nearest
neighbor queries. In [22] we provide expected upper and lower bounds in the performance
of nearest neighbor queries in R-trees, by taking into consideration the fractal dimension of
the dataset. Also, in [23] algorithms for similarity search in disk arrays are presented. An
interesting approach that applies when there are multiple systems (databases) with different
similarity measures is proposed in [12]. Due to a large number of applications, there is an
ongoing research in nearest neighbor queries in high dimensional spaces, where it is much
more difficult to provide efficient processing methods than for low dimensionalities.
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Figure 1. The abstract system architecture.

2.3. Motivation and assumptions

In this subsection we present the abstract architecture of a distributed multi-dimensional
database, and discuss the basic motivation as well as the assumptions adopted. In figure 1
the abstract architecture is illustrated. The system is composed of a primary server that
operates as a coordinator for them source databases. All systems are communicating via a
network configuration.

The primary server may be a data warehouse or simply a system that is responsible
for controlling and supervising the source databases. We assume that query requests are
initiated by a user’s system and then submitted to the primary server for evaluation. Also,
the query results are gathered from the source databases to the primary server and then
are shipped back to the appropriate user’s system. Despite the fact that we perform a
distinction between primary and secondary sites, any secondary site could take responsibility
of evaluating user queries. Each source database has complete control over the objects that
it stores. Therefore, different access methods and optimization techniques may be utilized
by the different databases.

Definition 2.3.1. Given ak-NN queryQ, the response time forQ is defined as the time
elapsed from query submission to query completion.

The challenge is to determine an efficient method for NN query processing in a distributed
system. Moreover, the number of parameters is quite large and in some cases trade-offs
occur (e.g. degree of parallelism vs. number of transmitted objects). The problem we are
going to deal with in the remainder of the paper is stated as follows:

Problem Statement.Given a distributed multi-dimensional database and ak-NN queryQk,
find an efficient evaluation strategy, in order to minimize the response time ofQk and to
consume as few overall system resources as possible.
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In order to approach the problem from a theoretical point of view, several simplifying
assumptions should be introduced, resulting in a more feasible and tractable analysis. The
basic assumptions introduced are summarized below:

1. Although we do not require the source databases to be homogeneous, we will assume
that the cost to answer a given query is the same, for all source databases.

2. We assume that the similarity metric between two multi-dimensional vectors is the
Euclidean distance (L2 metric),1 and every database respects this similarity measure.

3. The data are partitioned to the source databases in such a way that no replication exists.
In other words, each object is stored in only one database.

4. If during processing we must retrieveP disk pages from a source database, the required
time is P · Tp, whereTp is the expected page access time [1].

3. Query evaluation strategies

3.1. Algorithms

Let ak-NN query,Qk, be submitted for evaluation to the primary server. Our first approach
is to examine the evaluation of the query when no derived data are available. In a following
section, we discuss what kind of derived data are necessary to improve the efficiency in
similarity query processing. We could define two extreme strategies to answer the query:

Concurrent processing—CP: Submit the query to allm source databases and collectk
objects from each one. Among them · k objects, select the bestk (those that are closer
to the query object).

Selective processing—SP:First activate one source database. Collect the bestk answers.
Send only the distances of thesek objects to the next source database and collect another
l objects, where 0≤ l ≤ k. Continue until all source databases are visited and the best
matches have been determined.

We note that the first method tries to maximize parallelism but retrieves too many objects
(m · k), whereas the second method, performs a more refined search, but no parallelism
is exploited. Therefore, we define the next method, which is a combination of the two
previous ones:

Two-phase processing—2PP:First visit f source databases and collectf · k objects.
Then, select the bestk and send thek distances to the restm− f source databases.
Finally, collect the answers and determine the final set of nearest neighbors.

Finally, we defineProbabilistic Processing (PRP)which performs an optimistic search,
pretending that each source database will contribute with almost the same number of
objects.
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Probabilistic processing—PRP: First requestk/m+ 1 objects from each source database.
Then, formulate the current set of best matches, and if there are sources that are still
relevant, visit them again and collect the final set of objects.

By requestingk/m+ 1 objects from each database, we can reject a database if the
(k/m+ 1)-th distance from the query point is larger than the bestk-th distance determined
so far.

3.2. Theoretical study

We proceed with some theoretical investigation, regarding the efficiency of the four query
evaluation strategies. The results will illustrate which strategy shows the best performance
under what parameters, which are the advantages and disadvantages of each one.

Table 1 presents the basic symbols and the corresponding definitions that are extensively
used throughout the paper. We denote withRj (k) the average query response time in
seconds, for strategyj , in order to answer ak-NN query. The total processing cost comprises
of three basic parts: CPU cost, I/O cost and communication cost. We expect that CPU cost
will have a small impact on the performance comparison of the strategies and therefore, it
is excluded from our theoretical study. However, CPU cost is included in our experimental
study presented in Section 5.

Table 1. Symbols, definitions and corresponding values.

Symbol Description Value

m number of source databases 5–30

N total number of objects 100,000–10,000,000

Nj number of objects inj -th source database N/m

D dimensionality of the vector space 2–20

Sn size of a number in bytes 4

So average size of an object in bytes 100–100,000

Sv size of aD-dimensional vector in bytes D · Sn

Sp size of a disk page in bytes 4K

Sheader size of a network packet header in bytes 24

Spmax size of a network packet in bytes (without header) 1500

Tp page read time in seconds 0.01

k number of nearest neighbors requested 1–500

Cj contribution of j -th source database

NCj net contribution of thej -th source database

Rj (k) query response time (in seconds) for strategyj

NS network speed in bytes per second 100,000–1,000,000

f visited databases in step 1 of 2PP 1
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Definition 3.2.1. We call the contributionCj of the j -th source database, the number
of objects processed and transmitted during the evaluation of ak-NN query. Obviously,
Cj ≤ k for all j , where 1≤ j ≤ m and

∑m
j=1 Cj ≥ k.

Definition 3.2.2. We call the net contributionNCj of the j -th source database, the num-
ber of objects from thej -th database that participate in the answer set of ak-NN query.
Obviously, 0≤ NCj ≤ k, for all j , where 1≤ j ≤ m and

∑m
j=1 NCj = k.

Note that the contribution of a source database depends on the visiting sequence. Evi-
dently, the net contribution of a source database is independent of the visiting sequence and
depends on the data placement and the location of the query point. Under the uniformity
and independence assumption, we expect that the net contribution of each database equals
k/m.

Definition 3.2.3. The local processing cost2 of a source database to process ak-NN query
is defined as:

Costdb =
(

INA(k)+ So

Sp
· O
)
· Tp (1)

where INA(k) refer to the number of index node accesses fork nearest neighbors, which
depends on the population of the database, the space dimensionality and the data structure
used to store and manipulate the objects,Tp is the page read time,So is the average number
of bytes per database object,Sp is the number of bytes per disk page andO is the number
of objects that are accessed. We note that the first part of the above equation is due to the
index search, whereas the second one is due to access of the objects’ detailed description.

Definition 3.2.4. The cost for transmittingB bytes using the communications network is
defined as follows:

Costtrans(B) = 1

NS
·
(

B+ B

Spmax
· Sheader

)
(2)

whereNSis the speed of the network in bytes per second,Spmax is the maximum capacity
of a network packet, andSheaderis the size of a packet header in bytes.

Based on the assumptions and the definitions given, let us proceed with a comparative
study among the four methods described in the previous paragraphs. For each strategy,
an estimation of the query response time is presented, giving an indication of the query
processing performance. In the sequel we denote withCostact the cost to activate a database,
with Costdb the processing cost in each database, and withCostresult the cost to collect the
results from a database. We assume that the network does not support multicasting. In a
different case, the derived costs will be slightly different.
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Concurrent processing
A message comprising of the query vector and the numberk of nearest neighbors requested
is submitted from the primary server to all source databases, one at a time. This costs:

Costact= Costtrans(Sv + Sn)

Since all source databases receive the query request almost at the same time, the local
processing cost equals:

Costdb =
(

INA(k)+ So

Sp
· k
)
· Tp

Finally, the primary server must collectk objects from each source database. Therefore:

Costresult= Costtrans(k · (Sn + So))

Summing up all costs we get:

RCP(k) = m · Costact+ Costdb+m · Costresult (3)

Selective processing
All source databases are activated by sending the query vector and the numberk of nearest
neighbors requested. This costs:

Costact= Costtrans(Sv + Sn)

For each subsequent source database (except the first one) the primary server must transfer
the currentk best distances:

Costact2= Costtrans(k · Sn)

because we must send thek distances of the best objects obtained so far. Let each source
databasej processCj objects. Then, the local processing cost equals:

Costdb =
(

INA(k)+ So

Sp
· Cj

)
· Tp

The transmission ofCj objects from source databasej to the primary server costs:

Costresult= Costtrans((So+ Sn) · Cj )

Summing up all costs we get:

RSP(k) = m · Costact+ (m− 1) · Costact2+
m∑

j=1

Costdb+
m∑

j=1

Costresult (4)
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Two-phase processing
First, the f source databases are activated by sending the query vector and the numberk of
nearest neighbors requested. This costs:

Costact= Costtrans(Sv + Sn)

Each of thef source databases will processk objects in parallel, requiring cost:

Costdb1=
(

INA(k)+ So

Sp
· k
)
· Tp

The transfer ofk objects from each of thef source databases require cost:

Costresult1= Costtrans(k · (So+ Sn))

The activation of the restm− f source databases require the transfer of the current bestk
distances plus the query vector:

Costact2= Costtrans(k · Sn)

Them− f source databases processC objects each. Therefore, the local processing cost
is:

Costdb2=
(

INA(k)+ So

Sp
· C
)
· Tp

The primary server must collectC objects from each source database (among them− f )
and therefore:

Costresult2= Costtrans(C · (So+ Sn))

In conclusion, the total cost for this strategy is given by:

R2PP(k) = m · Costact+ Costdb1+ f · Costresult1+ (m− f ) · Costact2

+Costdb2+(m− f ) · Costresult2 (5)

Probabilistic processing
A message comprising of the query vector and the numberk/m+ 1 of nearest neighbors
requested is submitted from the primary server to all source databases. This costs:

Costact= Costtrans(Sv + Sn)
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Since all source databases receive the query request almost at the same time, the local
processing cost equals:

Costdb =
(

INA

(
k

m+ 1

)
+ So

Sp
·
(

k

m+ 1

))
· Tp

Subsequently, the primary server must collectk/m+ 1 objects from each source database.
Therefore:

Costresult= Costtrans

((
k

m+ 1

)
· (Sn + So)

)
In the best case ofPRP (PRPbest) no further processing is required. However, in a typical
case (PRPavg) let m′ be the number of reactivated databases, where each one contributes
with Cj objects. The reactivation cost per database equals the transmission cost of the best
k distances determined so far:

Costact2= Costtrans(k · Sn)

Each of the reactivated databases will perform further processing in order to determine the
bestk matches. Therefore, the cost per database equals:

Costdb2=
(

INA(k)+ So

Sp
· Cj

)
· Tp

Finally, each reactivated database will transmitCj objects, with cost:

Costresult2= Costtrans((So+ Sn) · Cj )

Summing up we obtain:

RPRP(k) = m · Costact+ Costdb+m · Costresult+m′ · Costact2

+Costdb2+m′ · Costresult2 (6)

It is evident that the performance ofCP is quite predictable, since each source database
processes and transmits exactlyk objects. However, in order to predict the performance
of SP and2PP, further analysis is required. We need the following lemmas3 in order to
proceed.

Lemma 3.2.1. Assume that NCj = k
m for all 1≤ j ≤ m. Then the following holds:

1. The first database we access will process and transmit k objects.
2. The n-th database(where n< m) we access, will process and transmit k− n · k

m
objects in the worst case andkm objects in the best case.

3. The last(m-th) visited database will process and transmit exactlyk
m objects.
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Lemma 3.2.2. The average number of objects processed and transmitted by a source
database for a k-NN query bySP is:

ŌSP=
(

m2+ 5m− 2

4m2

)
· k

Lemma 3.2.3. The average number of objects processed and transmitted by a source
database for a k-NN query by2PP is:

Ō2PP =
(

2m f + (m− f )(m− f + 1)

2m2

)
· k

Evidently, if each database contributes with exactlyk/m objects, thePRP method needs
only one phase, since no database will be reactivated. However, in a more typical case, some
of the databases will be reactivated and further objects will be processed and transmitted.
In such a case, the expected number of objects that each reactivated database will process
is given by the following Lemma.

Lemma 3.2.4. The average number of objects processed and transmitted by a source
database for a k-NN query by the second step ofPRP is:

ŌPRP= k · (m− 1)−m

2 ·m
According to the above lemmas the average execution time for each evaluation strategy is
given by the following formulae:

RCP(k) = m · Costtrans(Sv + Sn)+
(

INA(k)+ So

Sp
· k
)
· Tp

+m · Costtrans(k · (Sn + So)) (7)

RSP(k) = m · Costtrans(Sv + Sn)+ (m− 1) · Costtrans(k · Sn)

+m ·
(

INA(k)+ So

Sp
· ŌSP

)
· Tp+m · Costtrans((So+ Sn) · ŌSP) (8)

R2PP(k) = m · Costtrans(Sv + Sn)+ 2 ·
(

INA(k)+ So

Sp
· Ō2PP

)
· Tp

+m · Costtrans(Ō2PP · (So+ Sn))+ (m− f ) · Costtrans(k · Sn) (9)

RPRP(k) = m · Costtrans(Sv + Sn)+
(

INA(k/m+ 1)+ So

Sp
· (k/m+ 1)

)
· Tp

+m · Costtrans((k/m+ 1) · (Sn + So))+ (m/2) · Costtrans(Sn · k)
+
(

INA(k)+ So

Sp
· ŌPRP

)
· Tp+ (m/2) · Costtrans(ŌPRP · (So+ Sn))

(10)
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The scenario assumed in the above analysis (scenario A) is that the detailed object
description is transmitted in addition to the distance from the query point. This is useful
when the user requires the first answers to be available as quickly as possible, even if
they do not correspond to the real nearest neighbors. As long as the size of each object
is small (e.g. 100 bytes) there is relatively little overhead for processing and transmitting
this extra information. On the other hand, for larger object sizes and large numbers of
requested neighbors, this cost becomes very significant and may dominate with respect to
the total response time. Therefore, another scenario (scenario B) that could be followed, is
to first determine the object IDs and the distances to the query point, and then to reactivate
the relevant databases in order to fetch the detailed description of only the best matches.
Evidently, the cost for this last action is the same for every strategy. We do not present
the equations for the second scenario, since are simpler versions of (7), (8), (9) and (10).
However, in the analytical and experimental evaluation we demonstrate both cases.

Equations (7), (8), (9) and (10) give the expected execution time for each strategy when
the system is lightly loaded, and therefore the waiting time is negligible. The behavior of
the methods under system load is studied using experimental evaluation (see Section 5).

3.3. Analytical comparison

Summarizing the theoretical analysis, in this subsection we present a comparative study
regarding the efficiency of the four strategies. We present some results, with respect to
the formulae of the previous subsection, in order to study the behavior of the methods
under different parameter values. The parameters modified and the corresponding values
are summarized in Table 1. We note that these results correspond to the execution of a
single query, which means that the impact of concurrent users is not taken into account.

In figure 2 the four query evaluation methods are compared, based on the analytic re-
sults. This figure includes the results for the case where the objects’ detailed description
is processed and transmitted. It is evident that thePRPbestmethod outperforms by factors
the other candidates. The response time of all methods is increased by increasing the num-
ber of nearest neighbors (see figure 2(a)). EvidentlyCP is most affected by this increase,
since every database processes and transmitsk objects. AlthoughSPtransmits the smaller
number of objects, the price paid is that no parallelism is exploited, and the response time
is increased.

By increasing the number of dimensions, the processing cost in each database increases
also. For large dimensionalities (e.g. 20) the cost to search the index becomes significant.
In figure 2(b) it is observed that methods2PPandPRPavg tend to converge, and the same
is observed for methodsCP andPRPbest. For smaller dimensionalities (<10) thePRP
methods show clearly the best performance.

The impact of the effective network speed on the performance of the methods is illustrated
in figure 2(c). For small effective network speed (large network traffic), theCP shows the
worst performance, since it transmits more objects than the other methods, and therefore
the network becomes the bottleneck.

An interesting observation (see figure 2(d)) is that the performance ofSPis affected in a
negative manner by increasing the number of databases, whereas the response time of the
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Figure 2. Performance of methods for scenario A (logarithmic scales). (a)N= 1 million, m= 10, So= 1000,
D= 2, NS= 1 MByte/sec; (b)N= 1 million, m= 10, So= 1000,k= 30, NS= 1 MByte/sec; (c)N= 1 million,
m= 10,So= 1000,k= 30,D= 10; (d)N= 1 million, k= 30,So= 1000,D= 10,NS= 1 MByte/sec; (e)m= 10,
k= 50,So= 1000,D= 10,NS= 1 MByte/sec; and (f)N= 1 million, k= 50,m= 10,D= 10,NS= 1 MByte/sec.

other methods is reduced. The cause for this behavior is thatSPdoes not exploit intraquery
parallelism.

The increase in the number of objects is depicted in figure 2(e). Evidently, all methods
are affected significantly. Finally, in figure 2(f), the response time with respect to the object
size is illustrated. The impact on object size growth is stronger forCP, since it processes
and transmits more objects than the other methods.

In figure 3 we illustrate the performance of the methods for the case where the detailed ob-
ject description is not transmitted. It is observed that the results are not modified drastically
with respect to the results in figure 2.
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Figure 3. Performance of methods for scenario B (logarithmic scales). (a)N= 1 million, m= 10, So= 1000,
D= 2, NS= 1 MByte/sec; (b)N= 1 million, m= 10, So= 1000,k= 30, NS= 1 MByte/sec; (c)N= 1 million,
m= 10, So= 1000,k= 30, D= 10; (d) N= 1 million, k= 30, So= 1000, D= 10, NS= 1 MByte/sec; and (e)
m= 10,k= 50, So= 1000,D= 10,NS= 1 MByte/sec.

The results presented in figures 2 and 3 correspond to a single user system, with no other
interference. In a general case however, many users are posing queries to the database,
resulting in network traffic and competition for the CPU in each database. For example,
although theSPmethod does not support intraquery parallelism, supports interquery paral-
lelism, because it is possible to access allm databases form different queries. On the other
hand, we expect a large performance degradation forCP method, since for large number
of concurrent users queues will grow larger in disks, CPU and the network. In the next
section we examine the impact of concurrent users, giving experimental results on a real
implementation of the query evaluation strategies over a network of workstations.



DISTRIBUTED PROCESSING OF SIMILARITY QUERIES 81

4. The impact of derived data

In the previous section, we discussed evaluation strategies assuming that no derived data are
available in the primary server. Therefore, allm source databases need to be visited in order
to determine the bestk matches to a given query object. However, in real applications, the
presence of derived data is very important, in order to avoid searching large portions of the
data space without a chance to retrieve relevant objects. Moreover, we may avoid visiting
a particular source database, if we are absolutely sure that no relevant objects can be found,
reducing network contention and saving overall system resources. Several types of derived
data can be useful, ranging from simple numerical values (e.g. the number of objects in
the database) to more sophisticated ones and difficult to obtain (e.g. an exact description of
the object distribution). In this paper, we focus on derived data information that represent
Minimum Bounding Boxes (MBB) of a set of objects. In other words, some descriptors
are used to group objects in sets, e.g. two MBBs enclosing two different sets of objects.

In order to be able to discard quickly data space portions not related to the answer set,
we require the presence of a set of MBBs stored in the primary server. For each source
databasej , the primary server maintains a number of MBBs. The smaller the overlap of
these MBBs the better the discrimination during query processing. Also, a large number of
MBBs helps the discrimination process.

To illustrate the use of MBBs for discrimination among objects, we present an example
in figure 4. Two MBBs are shown, each holding 5 points in the 2-d space. Assume that
the three nearest neighbors with respect to pointQp are required. Let the circle enclose
the best matches determined so far, namely, the points 1, 2 and 3 of MBB 1. Then we can
safely avoid the search in MBB 2, since there is no intersection with the circle.

Consider now a query point and a number of MBBs. The question posed is which MBB
are we going to visit first and how can we safely prune any portions of the data space
that are not promising. The order that we access the MBBs (and consequently the source
databases), has a major impact on the efficiency of a query processing strategy, since it
is highly correlated to the number of transmitted objects. The following lemma (which is
easily generalized for an arbitrary number of source databases) shows why a “good” visiting
order of the source databases is necessary and also explains what “good” means.

Lemma 4.1. Assume we have only two source databases SDB1 and SDB2 with net contri-
butions NC1 and NC2 respectively, for a specific k-NN query. Assume further, without loss

Figure 4. (a) Use of two MBBs for discrimination, (b) The nearest neighbor ofQp is not in MBB 1, (c) A query
point Qp enclosed by many MBBs.
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of generality, that NC1 ≤ NC2. Then, the sum of contributions, C1 + C2, is maximized if
the source databases are accessed in increasing net contribution order(i.e. SDB1 first and
SDB2 second), and is minimized if they are accessed in decreasing net contribution order
(i.e. SDB2 first and SDB1 second).

An approach used in [24] is to visit the MBBs according to theMINDIST distance.
TheMINDIST(Qp, R) distance is defined as the minimum distance between a query point
Qp and an MBBR. Therefore, a sorted list of MBBs with respect to the query point is
formulated and then we investigate each MBB, following the order. There are two main
drawbacks with this approach, illustrated in figure 4:

1. The fact that the query pointQp is closer to MBBR does not provide any guarantee that
also the nearest neighbor(s) ofQp will be found in R.

2. By definition, if a query pointQp falls inside an MBBR, thenMINDIST(Qp, R)= 0.
Therefore, in the case whereQp falls inside many MBBsR1, . . . , Rn, we are forced to
select an MBB randomly.

Despite the above drawbacks of theMINDIST approach, the method is simple and easily
implemented. In a separate section we discuss further improvement that requires additional
information. In the following lines, the query evaluation strategies are presented taking into
account the derived data information.

CP
1. Determine the relevant source databases from derived data.
2. Send the query to the relevant databases.
3. Collect all answers.
4. Determine the best k matches.

SP
1. Determine the relevant source databases from derived data.
2. Using the MINDIST metric, find the best source database to access.
3. Send the currently best distances to the database.
4. Collect answers.
5. Discard any source databases that do not require access.
6. If there is no database to access then STOP else GOTO 2.

2PP
1. Determine the relevant source databases from derived data.
2. Using the MINDIST metric, find the best f databases to access.
3. Collect answers from the f databases.
4. Determine the currently best distances.
5. Discard any source databases that do not require access.
6. If there is no database to access then STOP.
7. Assume that s databases require access currently.
8. Access the s databases and collect the new answers.
9. Determine the best k matches.
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PRP
1. Determine the relevant source databases from derived data.
2. Send the query to the r relevant databases, and collect k/r + 1 objects from each one.
3. Determine the current set of nearest neighbors.
4. Reactivate some of the databases if needed.
5. Determine the best k matches.

In all methods, we need first to determine the relevant source databases, and to discard
any databases that is impossible to contribute to the answer set. This is performed by
means of theMAXDISTmetric. TheMAXDISTbetween a point and an MBB is defined
as the distance from the point to the furthest vertex of the MBB. The following lemma
explains:

Lemma 4.2. Assume we have a setM j of MBBs for each source database j. Let Mn
ji

denote the number of objects that the MBB Mji encloses. For simplicity let Mnji be equal for
all j and i. We denote by R the distance between the query point Qp and thedk/Mn

ji e-th
MBB with respect to the MAXDIST metric, where k is the number of nearest neighbors
requested. Then, all objects that participate in the answer set of nearest neighbors lie in
the circle with center Qp and radius R.

5. Experimental study

5.1. Preliminaries

The performance evaluation of the processing strategies were carried out on a cluster
of five Silicon Graphics workstations, comprising the source databases. We used a SUN
Sparcstation-4 for the primary server. The workstations were interconnected via a
10 Mbit/sec Ethernet. Two types of processes were defined: 1) a client process running
on the primary server and 2) a server process running on each source database. The re-
sponsibility of the client process is to pose queries to the source databases, whereas the
responsibility of a server process is to serve the queries that are directed to the correspond-
ing source database. The programs were coded in the C programming language under UNIX
and the interprocess communication was based on the TCP/IP stream sockets programming
interface [26].

We assume that each source database maintains an R-tree index [4, 15] for object storage
and manipulation. Other data structures could have been used equally well. We generated
random points in the 2-d, 3-d, 5-d and 10-d spaces. We can distinguish two ways to partition
the objects to the source databases. In the first one, random assignment of objects to
databases is used. In this approach, almost all source databases must be accessed in order
to answer a similarity query. In the second one, each database is responsible for a small
portion of the data space. In this approach, few databases must be accessed during query
processing. Experiments have been conducted for the first case only, for brevity.

In order to study the performance of the methods under system load, we assume that users
are posing queries concurrently to the primary server. Also, several values of the number
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of nearest neighbors requested were used and different object sizes. For each experiment
the average response time per similarity query was calculated. Each user poses 10 queries
in total, and the queries are executed one-by-one.

5.2. Cost model evaluation

In a previous section a cost model has been derived for each query processing method. In
order for these cost models to be useful, they should accurately predict the performance
in real situations. Therefore, we start the experimental evaluation of the methods by first
comparing the analytical formulae to the actual running time of each method.

In figure 5 the theoretical and measured response time for queries are depicted for each
method. The parameters used for the evaluation are summarized below:N= 100,000,
NS= 1 MByte/sec,m= 5, D= 2, So= 1000 bytes,f = 1. The graphs are plotted in loga-
rithmic scales in order for the differences to be more clear. It is evident that the cost models
are quite accurate, since the maximum relative error is around 20%, whereas the average
relative error is around 10%. Therefore, the cost model can be used to accurately predict the
performance of a query evaluation method. This enables the use of the formulae for query
optimization purposes or for selecting the appropriate method to answer a query according
to the value of the parameters. More specifically, if one of the critical parameters (e.g. the
effective network speed) changes, then by consulting the formulae the best method for the
current settings can be selected. This gives the flexibility to the query execution engine to
select the evaluation method that is expected to give the most promising results.

Figure 5. Cost model evaluation (logarithmic scales). (a) Concurrent Processing (CP), (b) Selective Processing
(SP), (c) Two-Phase Processing (2PP), and (d) Probabilistic Processing (PRP).
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Figure 6. Measured response time for scenario A (logarithmic scales). (a) Variablek, (b) VariableD, (c) Variable
m andN, (d) VariableSo, and (e) Variable number of users.

5.3. Experimental results

In this subsection we illustrate representative results with respect to the real performance
of the query evaluation strategies. Figure 6 illustrates the results when the detailed objects’
description is processed and transmitted by the databases, whereas in figure 7 these costs
are not included. All graphs are plotted in logarithmic scales. In order to investigate the
performance of the methods under system load, we assume that users are posing queries
concurrently. Each user submits queries to the primary server one-by-one. The response
time illustrated in the graphs is the average response time per query, calculated over all
users. We note that the cost includes CPU time, since for large number of users we expect
this cost to be significant, because of waiting time.

In figure 6(a) we depict the response time with respect to the number of nearest neigh-
borsk. For this experiment we used the following parameter values:N= 250,000,D = 3,
m= 5, So = 1000, f = 1. Each database holds 50,000 objects. There are 30 users posing
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Figure 7. Measured response time for scenario B (logarithmic scales). (a) Variablek, and (b) Variable number
of users.

queries concurrently. For a small number ofk (e.g. 2,3),CP performs quite well. How-
ever, whenk increases, the performance ofCP degrades. The reason is thatCP demandsk
objects from each activated database, resulting in high resource consumption in the CPU,
the disk, and the network. An interesting observation is that althoughSPdoes not exploit
intraquery parallelism, its performance is very good in a multiuser system. However,PRP
shows the best performance.

Figure 6(b) illustrates the method performance for different number of dimensions. Each
database holds 50,000 objects. The rest of the parameters have as follows andk = 50,
m = 5, So = 1000, f = 1. There are 30 concurrent users posing queries. Evidently, all
methods are affected drastically by increasing the space dimensionality. The reason is that
CPU and disk costs are higher, due to the increased processing cost of the index in each
database.

Figure 6(c) illustrates the method performance for different number of databases, and
different number of objects. Each database holds 50,000 objects. The rest of the parameters
have as follows andk = 50, D = 10, So = 1000, f = 1. There are 30 concurrent users
posing queries.PRP demonstrates the best performance, whereas the performance ofCP
degrades. By increasing the number of databases, more network traffic is anticipated, since
CP requestsk objects from each database. Also,SPand2PPhave similar performance.

The impact of the object size is illustrated in figure 6(e). This graph was produced using
N= 250,000,k = 50, D = 10, f = 1 and assuming that there are 30 users posing queries.
EvidentlyCP is affected more, and we expect higher degradation for larger number of bytes
per object. AgainPRP andSPdemonstrate similar performance, andPRP performs the
best.

The impact of the number of concurrent users is depicted in figure 6(d). Again,N=
250,000,k = 50, D = 3, So = 1000, andf = 1. When the number of users is relatively
small (i.e.<10), the performance ofSPdegrades. This behavior is explained by taking into
account thatSPdoes not exploit intraquery parallelism. Therefore, the CPU and disk costs
in each database are added, resulting in performance degradation.CP, 2PPandPRPshow
similar performance. For a large number of concurrent users,CP is affected in a negative
manner, because of bottlenecks. The other methods demonstrate similar performance, with
PRPbeing the most efficient method.

In Figure 7 we illustrate the performance of the methods for scenario B, where the detailed
object description is not transmitted by the databases before thek best matches have been
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determined. It is interesting to note that in most casesSP does not perform well, unlike
scenario A. The network traffic is reduced, and this is in favor forCP, 2PPandPRP. The
only exception occurs for a large number of concurrent users (50) where the performance
of the methods tend to converge (see figure 7(b)).

6. Discussion

In this section we discuss some issues that are of major importance and can be considered
for improvements in the future:r Care should be taken when designing the derived data. If the number of derived data

objects is large, then the primary server may become a bottleneck due to the increased
CPU time required to process them. The reason is that a large number of MBBs helps
in better pruning during query processing but, on the other hand, increases the required
processing time. Therefore, it would be useful to maintain a separate data structure for
the derived data in order to speed up processing.r The generation of the derived data is very important. If the objects are manipulated by
the source databases using a data structure based on Minimum Bounding Boxes (e.g.
R-trees, R+-trees) then we can use an intermediate level of the tree in order to extract the
MBBs needed by the primary server (see for example [18]). On the other hand, if the
corresponding data structures are not MBB based, then the MBBs should be generated
artificially.r As explained in Section 4, theMINDIST approach can lead to a not so efficient access
order of the source databases. A number of additional reference points may help in better
ordering of the source databases. For example, a reference point may be the center of a
cluster of objects. Therefore, if a specific cluster center is closer to the query point than
other cluster centers, we have a good chance that this particular cluster will contribute
the most to the final answer set of nearest neighbors. The point here is that additional
computation is required to extract the clustering information from the source databases
and, also, to exploit this information during query processing. The fact that cluster centers
will improve processing performance stills needs to be justified through experimental
evaluation.r A major issue that affects the performance of all methods is the placement of objects to
databases. Since we allow each database to have separate and complete control over its
stored objects, insertions and deletions of objects will create high overlaps among the
data spaces of the databases. This effect results in accessing many source databases for
a single query. On the other hand, if we force centralized control (i.e. a single site is
responsible for insertions/deletions/reorganizations), then it is still an open problem to
derive optimal data placement techniques for similarity query processing.

7. Concluding remarks

We have examined the problem of multidimensional similarity query processing in a dis-
tributed system. The problem is well studied for the centralized case, and a number of very
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efficient methods have been proposed. However, in a distributed database system we have
to take into consideration the communication overhead, in addition to the CPU and I/O cost,
especially when the size of each object is not negligible. Four query evaluation strategies
were developed and studied analytically and experimentally. The efficiency of each method
depends heavily on several parameters such as the number of available source databases,
the object placement in the databases, the object volume, the space dimensionality, the
communication speed, the number of nearest neighbors requested, and the number of users
issuing queries concurrently.

Each of the studied query evaluation strategies has its advantages and disadvantages, and
the performance varies according to the parameters. Generally, methods2PPandPRPare
the most robust, whereasCP andSPare sensitive to the multiprogramming degree and the
database processing cost. However, they can be used in special cases. The developed cost
model can be used in order to predict the performance of a query evaluation method.

In the near future we plan to implement the query evaluation methods using a larger
number of workstations (>5), and also to implement and study algorithms for similarity
search in a parallel machine based on a shared-nothing or shared-memory architecture. It
would be interesting to study speed-up, size-up and scale-up issues in such an environment.

Appendix I

Here we describe the derivation for the local processing cost in a source database. This cost
is composed of two components: (i) the cost to search the index and (ii) the cost to access
the objects. From [9] the average number of R-tree node accesses (INA) for a window
query is given by the following equation:

INA(k) =
h−1∑
j=0

N

Ch− j
eff

·
D∏

i=1

(
qs+

(
Ch− j

eff

N

)1/D
)

(11)

whereN is the number of objects,h is the height of the tree,D is the dimensionality of
the space,Ceff is the average capacity of a node, andqs is the size of the window in each
dimension. The space is normalized to the unit hypercube.

In order to exploit the previous formula, we assume that the objects are uniformly dis-
tributed in the address space. Under this assumption, ifk denotes the number of objects
contained in a query volume Vol(Q), the following holds:

Vol(Q)

Vol(Space)
= k

N

Therefore, if the query volume corresponds to a hyper-rectangle, the window sizeqs

equals:qs = D
√

Vol(Q)⇒ qs = D

√
k
N .

Substituting the value ofqs in Eq. (11), we obtain a formula to estimate the expected
number of node accesses during the execution of a nearest neighbor query asking for thek
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nearest neighbors.

INA(k) =
h−1∑
j=0

N

Ch− j
eff

·
D∏

i=1

(
D

√
k

N
+
(

Ch− j
eff

N

)1/D
)

In the number of index node accesses we have to add the additional pages that need to
be retrieved in order to fetch the objects from the disk. To readk objects each having a size
of So bytes each, we need to readSo

Sp
· k disk pages. Since each access costsTp seconds,

the total local processing cost of answering a nearest neighbor query in a source database
equals:

Costlocal =
(

INA(k)+ So

Sp
· k
)
· Tp (12)

We would like to note that the above cost model does not include buffer management or
boundary effects due to high dimensionality. In these cases, other models could have been
used instead. However, we used Eq. (11) because of its simplicity, and because it can be
used to model non-uniform distributions [9].

Appendix II

Lemma 3.2.1. Assume that NCj = k
m for all 1≤ j ≤ m. Then the following holds:

1. The first database we access will process and transmit k objects.
2. The n-th database(n < m) we access, will process and transmit k− (n− 1) · k

m objects
in the worst case andkm objects in the best case.

3. The last(m-th) visited database will process and transmit exactlyk
m objects.

Proof: We examine each case separately:

1. This is straightforward, since no precomputed distances exist before the access of the
first source database.

2. We know that the net contribution of each source databasej is NCj = k/m. This means
thatk/m is the minimum number of objects that each source database will process and
transmit. To prove the upper bound, let us assume that the currently accessed database,
transmitsl > (k−(n−1)· k

m) objects. This means that we have foundl−(k−(n−1)· k
m)

objects in this database that are closer to the query point than some objects among the
(n−1)·k/m. Moreover, this fact tell us that the net contribution of one or more databases
that were accessed previously is notk/m but lower, which contradicts our assumption
that the net contribution of each source database isk/m. Therefore, the upper bound in
the number of transmitted objects for then-th accessed database isk− (n− 1) · k

m .
3. This is a special case of 2 above, settingn = m. 2
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Lemma 3.2.2. The average number of objects processed and transmitted by a source
database for a k-NN query bySP is:

ŌSP=
(

m2+ 5m− 2

4m2

)
· k

Proof: According to Lemma 3.2.1, then-th visited database source database will process
and transmitsk/m objects at best andk− (n−1) · k

m object at worst. Therefore, on average
we expect that(k− (n− 2) · k

m)/2 objects will be processed and transmitted. Taking into
consideration all source databases, we have that the average number of processed objects
per source database equals:

ŌSP= k

m
+ 1

m
·

m∑
n=2

k ·m− (n− 2) · k
2m

⇒ ŌSP= m2+ 5m− 2

4m2
· k 2

Lemma 3.2.3. The average number of objects processed and transmitted by a source
database for a k-NN query by2PP is:

Ō2PP =
(

2m f + (m− f )(m− f + 1)

2m2

)
· k

Proof: The f first accessed source databases will processk objects each, resulting in a
total of f ·k objects. The restm− f databases will process at bestk/m objects and at worst
k− f · k

m objects and on average(k− ( f − 1) · k
m)/2 objects. Taking all source databases

into consideration we get:

Ō2PP =
f · k+ (m− f ) · m·k−( f−1)·k

2m

m
⇒ Ō2PP

=
(

2m f + (m− f )(m− f + 1)

2m2

)
· k 2

Lemma 3.2.4. The average number of objects processed and transmitted by a source
database for a k-NN query by the second step ofPRP is:

ŌPRP= k · (m− 1)−m

2 ·m
Proof: In the first step, each database has transmittedk/m+ 1 objects. Therefore, at
leastk/m+ 1 best matches have been determined. In the second step, each database will
transmit at least 0 and at mostk − (k/m+ 1) objects. Therefore, the average number of
objects equalsk−(k/m+1)

2 . 2

Lemma 4.1. Assume we have only two source databases SDB1 and SDB2 with net con-
tributins NC1 and NC2 respectively, for a specific k-NN query. Assume further, without loss
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of generality, that NC1 ≤ NC2. Then, the sum of contributions, C1 + C2, is maximized if
the source databases are accessed in increasing net contribution order(i.e. SDB1 first and
SDB2 second), and is minimized if they are accessed in decreasing net contribution order
(i.e. SDB2 first and SDB1 second).

Proof: Consider that we first visitSDB1 and thenSDB2. The first database will contribute
with k objects and the second withNC2 = k − NC1 objects (according to Lemma 3.2.1).
This results in a total ofk + NC2 objects. Now, assume that we first accessSDB2 which
will processk objects, and thenSDB1 which will processNC1 = k − NC2 objects. The
total number of objects isk+NC1. Evidently,k+NC1 ≤ k+NC2 and this completes the
proof. 2

Lemma 4.2. Assume we have a setM j of MBBs for each source database j. Let Mn
ji

denote the number of objects that the MBB Mij encloses. For simplicity let Mnji be equal for
all j and i. We donte by R the distance between the query point Qp and thedk/Mn

ji eth
MBB with respect to the MAXDIST metric, where k is the number of nearest neighbors
requested. Then, all objects that participate in the answer set of nearest neighbors lie in
the circle with center Qp and radius R.

Proof: The circleC contains at leastk objects, since we select for the radius of the circle
the MAXDIST to thedk/Mn

ji e-th MBB. If there is no other object in the circle, then thek
found so far are the bestk matches. Any other objects which is closer to the query point
than any ofk objects above, must lie in the circle necessarily. 2
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Notes

1. TheL p metric between twon-d vectorsx andy is defined as:L p(x, y) = (∑n
j=1 |xj − yj |p)1/p.

2. The details can be found in Appendix I.
3. The proofs of all lemmas are presented in Appendix II.
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