
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A new approach on indexing mobile objects on the plane q

S. Sioutas a,*, K. Tsakalidis b, K. Tsichlas c, C. Makris b, Y. Manolopoulos c

a Department of Informatics, Ionian University, Corfu, Greece
b Department of Computer Engineering and Informatics, University of Patras, Greece
c Department of Informatics, Aristotle University of Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Received 16 March 2008
Received in revised form 2 June 2008
Accepted 17 June 2008
Available online 26 June 2008

Keywords:
Spatiotemporal databases
Indexing
Data structures
Computational geometry

a b s t r a c t

We present a set of time-efficient approaches to index objects moving on the plane to effi-
ciently answer range queries about their future positions. Our algorithms are based on pre-
viously described solutions as well as on the employment of efficient access methods.
Finally, an experimental evaluation is included that shows the performance, scalability
and efficiency of our methods.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper focuses on the problem of indexing mobile objects in two dimensions and efficiently answering range queries
over the objects’ future locations. This problem is motivated by a set of real-life applications such as intelligent transporta-
tion systems, cellular communications, and meteorology monitoring. There are two basic approaches used to handle this
problem: to assume discrete or to assume continuous movements.

In a discrete environment the problem of dealing with a set of moving objects can be considered as equivalent to a se-
quence of database snapshots of the object positions/extents taken at time instants t1 < t2 < � � �, with each time instant
denoting the moment where a change took place. From this point of view, the indexing problems in such environments
can be dealt with by suitably extending indexing techniques from the area of temporal [37] or/and spatial databases
[16]; in [25] it is exposed how these indexing techniques can be generalized to handle efficiently queries in a discrete spa-
tiotemporal environment. A plethora of efficient access methods [3,21,29,30,35,36,40] has been proposed to confront the
case of continuous movements.

The common thrust behind these indexing structures lies in the idea of abstracting each object’s position as a continuous
function f ðtÞ of time and updating the database whenever the function parameters change; accordingly an object is modeled
as a pair consisting of its extent at a reference time (design parameter) and motion vector. One categorization of the afore-
mentioned structures is according to the family of the underlying access method used. In particular, there are approaches
based either on R-trees or on quadtrees as explained in [32–34]. On the other hand, these structures can be also partitioned
into (a) those that are based on geometric duality and represent the stored objects in the dual space [3,21,30], and (b) those
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that leave the original representation intact by indexing data in their native dimensional space [8,29,35,36,40]. The geometric
duality transformation is a tool heavily used in the computational geometry literature, which maps hyper-planes in Rd to
points and vice versa. In this paper, we present and experimentally evaluate techniques using the duality transform as in
[21,29] to efficiently index future locations of moving points on the plane.

In the next section, we present a short literature survey. In Section 3, we give a formal description of the problem. In Sec-
tions 4 and 5, we present our new solutions that compare favorably with the solutions of [21,29], the TPR� index [40] as well
as the STRIPES index [30]. In particular, Section 5 presents two alternative solutions, the first one being easily implemented
and with many practical merits. In addition, concerning the update performance the first solution is the most efficient. More-
over, with respect to the query performance the first solution outperforms STRIPES (the state of the art as of now) for realistic
lengths of the query rectangle. Our second proposed solution has theoretical interest since it uses clever but very compli-
cated access methods, the implementation of which is tedious and, thus, left for future work. Section 5 presents an extended
experimental evaluation, and Section 6 concludes the paper.

2. Literature survey – presentation of the most basic methods

In the sequel, let N denote the input size (number of stored objects), B the block size, K the output size and thus n ¼ N=B
and k ¼ K=B are the size of the input and output in blocks, respectively.

In [21], a set of indexing techniques was presented, which used the geometric duality transformation at the cost of
increasing by one the dimensionality. Hence, for the one-dimensional case they reduced the indexing problem to the
two-dimensional simplex range searching problem and they employed external memory partition trees to solve their index-
ing problem in OðnÞ space, Oðn1=2 þ kÞ I/Os query time and Oðlog nÞ I/Os update time.

Partition trees, though having a guaranteed worst-case performance, are generally considered non-practical since they
entail large hidden factors. Thus, in [21] two more structures were presented, one based on k-d-trees and a more complex
one based on Bþ-trees; both structures used linear space and work well on the average. Moreover, they extended their results
in the two-dimensional case for two distinct versions of the problem; first, the objects were allowed to move on a network of
one-dimensional routes, and, second, the objects were allowed to move arbitrary. The first version reduced to a number of
one-dimensional subproblems that use the previously described structures, whereas the second is equivalent (through geo-
metric duality) to simplex range queries in R3, which can be solved in Oðn2=3 þ kÞ I/Os with the use of external memory par-
tition trees.

In [1], the above results were further refined. A new version of partition tree was introduced to handle the indexing prob-
lem in the plane in OðnÞ space, Oðn1=2 þ kÞ query time, and OðlogBnÞ expected amortized update time; the results could apply
in higher-dimensional spaces as well, degrading only the update time (it became Oðlog2

BnÞ I/Os). If it is assumed that the que-
ries arrive in chronological order, then the query time can be further reduced to Oðlog2

Bn=logBlogBnÞ I/Os; this is achieved by
employing the kinetic data structures framework at external range trees. Moreover, by combining multiversion kinetic data
structures with partition trees, they developed an indexing scheme with small query time for near-future queries and in-
creased time for distant in the future queries under the bound of Oðn1=2þ� þ kÞ I/Os. Finally, an indexing technique was de-
scribed for handling d-approximate queries; the query time was ðn1=2þ�=dÞ, the expected update time Oðlog2

Bn=dÞ and the
space Oðn=dÞ disk blocks.

The TPR-tree [35] in essence is an R�-tree generalization to store and access linearly moving objects. The leaves of the
structure store pairs with the position of the moving point and the moving point id, whereas internal nodes store pointers
to subtrees with associated rectangles that minimally bound all moving points or other rectangles in the subtree. The differ-
ence to the classical R�-tree lies in the fact that the bounding rectangles are time-parameterized (their coordinates are func-
tions of time). It is considered that a time-parameterized rectangle bounds all enclosed points or rectangles at all times not
earlier than current time. The algorithms for search and update operations in the TPR-tree are straightforward generaliza-
tions of the respective algorithms in the R�-tree. Moreover, the various kinds of spatiotemporal queries can be handled uni-
formly in one-, two-, and three-dimensional spaces.

The TPR-tree constituted the base structure for further developments in the area [36]. An extension to the TPR-tree was
proposed in [40], the so called TPR�-tree. The main improvement lies in the update operations, where it is shown that local
optimization criteria (at each tree node) may degrade seriously the performance of the structure and more particularly in the
use of update rules that are based on global optimization criteria. They proposed a novel probabilistic cost model to validate
the performance of a spatiotemporal index and analyze with this model the optimal performance for any data-partition
index.

Finally, the STRIPES index [30] is based on the application of the duality transformation and employs disjoint regular
space partitions (disk based quadtrees [16]); the authors claim, through the use of a series of implementations, that STRIPES
outperforms TPR�-trees for both update and query operations.

3. Definitions and problem description

We consider a database that records the position of moving objects in two dimensions on a finite terrain. We assume that
objects move with velocities bounded by ½umin; umax� starting from a specific location at a specific time instant. Objects update
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their motion information, when their speed or direction changes. The system is dynamic, i.e., objects may be deleted or new
objects may be inserted.

Let Pzðt0Þ ¼ ½x0; y0� be the initial position of object z at time t0. If object z movement is recorded from time t > t0, its posi-
tion will be PzðtÞ ¼ ½xðtÞ; yðtÞ� ¼ ½x0 þ uxðt � t0Þ; y0 þ uyðt � t0Þ�, where U ¼ ðux;uyÞ is its velocity vector.

For example, in Fig. 1 the lines depict the objects’ trajectories on the ðt; yÞ plane. We would like to answer queries of the
form: ‘‘Report the objects located inside the rectangle ½x1q ; x2q � � ½y1q

; y2q
� at the time instants between t1q and t2q (where

tnow 6 t1q 6 t2q ), given the current motion information of all objects.”

4. Indexing mobile objects in two dimensions

We decompose the 2d motion into two 1d motions on the ðt; xÞ and ðt; yÞ plane, respectively.

4.1. Indexing mobile objects in one dimension

We will try to transform the difficult problem of reporting the trajectory-lines, which are intersected by a rectangle-re-
gion, to the simpler one of reporting points, which lie inside a canonical planar polygon (4-sided) region. On this purpose, we
will use specific duality transformation methods.

4.1.1. The duality transform
In general, the duality transform maps a hyper-plane h from Rd to a point in Rd and vice versa. In this subsection, we briefly

describe how we can address the problem at hand in a more intuitive way, by using the duality transform on the 1d case.

4.1.2. Hough-X transform
One duality transform for mapping the line with equation yðtÞ ¼ ut þ a to a point in R2 is by using the dual plane, where

one axis represents the slope u of an object’s trajectory (i.e., velocity), whereas the other axis represents its intercept a. Thus
we get the dual point ðu; aÞ (this is the so called Hough-X transform [21,29]). Accordingly, the 1d query ½ðy1q

; y2q
Þ; ðt1q ; t2q Þ�

becomes a polygon in the dual space. By using a linear constraint query [17], the query in the dual Hough-X plane
(Fig. 2) is expressed as follows: if u > 0, then Q Hough-X ¼ A1 \ A2 \ A3 \ A4, where Ai is defined as follows:

A1 ¼ u P umin,
A2 ¼ u 6 umax,
A3 ¼ a P y1q

� t2q u,
A4 ¼ a 6 y2q

� t1q u.

Inequalities of the A1 and A2 areas are obvious. The inequalities for A3 and A4 can be derived as follows:
8t 2 ½t1q ; t2q � ) y1q

6 y 6 y2q
) y1q

� t2q u 6 y1q
� tu 6 a 6 y2q

� tu 6 y2q
� t1q u, since t1q 6 t 6 t2q .

If u < 0, then QHough-X ¼ B1 \ B2 \ B3 \ B4, where Bi is defined as follows:

B1 ¼ u 6 �umin,
B2 ¼ u P �umax,
B3 ¼ a P y1q

� t1q u,
B4 ¼ a 6 y2q

� t2q u.

Inequalities of the B1 and B2 areas are obvious. For B3 and B4 we are working in the same way as in the case of A3 and A4.

Y

Timet1

y1

O1O2

O3

y2

y3

y4

t3 t4 t1q t2q

y1q

y2q

O4

t2

Fig. 1. Trajectories and query in ðt; yÞ plane.
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8t 2 ½t1q ; t2q � ) y1q
6 y 6 y2q

) y1q
� t1q u 6 y1q

� tu 6 a 6 y2q
� tu 6 y2q

� t2q u, since 0 6 t1q 6 t 6 t2q and u < 0.

In Fig. 2, the line a ¼ y1q
� t1q u for u ¼ umax becomes a ¼ y1q

� t1q umax and the line a ¼ y2q
� t2q u for u ¼ umin becomes

a ¼ y2q
� t2q umin. Thus, the initial query ½ðt1q ; t2q Þ; ðy1q

; y2q
Þ� in the ðt; yÞ plane is transformed to the rectangular query

½ðumin;umaxÞ; ðy1q
� t1q umax; y2q

� t2q uminÞ� in the ðu; aÞ plane.

4.1.3. Hough-Y transform
By rewriting the equation y ¼ ut þ a as t ¼ 1

u y� a
u, we arrive to a different dual representation (the so called Hough-Y

transform in [21,29]). The point in the dual plane has coordinates ðb;wÞ, where b ¼ � a
u and w ¼ 1

u. Coordinate b is the point
where the line intersects the line y ¼ 0 in the primal space. Horizontal lines cannot be represented by using this transform.
Similarly, the Hough-X transform cannot represent vertical lines. Nevertheless, since in our setting lines have a minimum
and maximum slope (velocity is bounded by ½umin;umax�), both transforms are valid.

The query in the dual Hough-Y plane (Fig. 3) is expressed as follows. If u > 0, then QHough-Y ¼ C1 \ C2 \ C3 \ C4, where

C1 ¼ w ¼ 1
u P 1

umax
,

C2 ¼ w ¼ 1
u 6

1
umin

,
C3 ¼ w P � 1

y bþ t1q

y ,
C4 ¼ w 6 1

y bþ t2q

y .

Inequalities of the C1 and C2 areas are obvious. The inequalities for C3 and C4 can be derived as follows:
8t 2 ½t1q ; t2q � ) w ¼ � 1

y bþ t
y 6 � 1

y bþ t1q

y and w ¼ � 1
y bþ t

y 6 � 1
y bþ t2q

y . Hence, the two lines in Fig. 3 have negative slope
and for b ¼ 0 intersect the axis b in t1q and t2q , respectively. The intersection of the four regions C1;C2;C3 and C4 form the
shaded polygon query of Fig. 3.

If u < 0, then Q Hough-Y ¼ D1 \ D2 \ D3 \ D4, where

D1 ¼ w ¼ 1
u 6 � 1

umax
,

D2 ¼ w ¼ 1
u P � 1

umin
,

a

u

Umin Umax

y1q

y2q

Qhough-x

E1 hough-x

E2 hough-x

Fig. 2. Query in the Hough-X dual plane.

n

b

1/umax

Qhough-y

E1 hough-y

1/umin

t1q t2q

E2 hough-y

Fig. 3. Query on the Hough-Y dual plane.
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D3 ¼ w P � 1
y bþ t1q

y ,
D4 ¼ w 6 � 1

y bþ t2q

y .

The line w ¼ � 1
y bþ t1q

y for w ¼ 1
umin

implies that

b ¼ t1q �
y

umin
: ð1Þ

In the same way the line w ¼ � 1
y bþ t2q

y for w ¼ 1
umax

implies that

b ¼ t2q �
y

umax
: ð2Þ

However, according to the initial query and Eq. (1), we have

y1q
6 y 6 y2q

() t1q �
y2q

umin
6 b 6 t1q �

y1q

umin
: ð3Þ

Analogously, according to the initial query and Eq. (2), we have

y1q
6 y 6 y2q

() t2q �
y2q

umax
6 b 6 t2q �

y1q

umax
: ð4Þ

According to (3) and (4) the initial query ½ðt1q ; t2q Þ; ðy1q
; y2q
Þ� in ðt; yÞ plane can be transformed to the following rectangular

query in the ðb;nÞ plane:

t1q �
y2q

umin
; t2q �

y1q

umax

� �
;

1
umax

;
1

umin

� �� �
:

4.2. The basic algorithm for indexing mobile objects in two dimensions

In [21,29], motions with small velocities in the Hough-Y approach are mapped into dual points ðb;wÞ having large w coor-
dinates ðw ¼ 1=uÞ. Thus, since few objects can have small velocities, by storing the Hough-Y dual points in an index such as
an R�-tree, minimum bounded rectangles (MBRs) with large extents are introduced, and the index performance is severely
affected. On the other hand, by using a Hough-X for the small velocities’ partition, this effect is eliminated, since the Hough-X
dual transform maps an object’s motion to the ðu; aÞ dual point. The query area in Hough-X plane is enlarged by the area E,
which is easily computed as EHough-X ¼ ðE1Hough-X þ E2Hough-XÞ. By QHough-X we denote the actual area of the simplex query. Sim-
ilarly, on the dual Hough-Y plane, QHough-Y denotes the actual area of the query, and EHough-Y denotes the enlargement. Accord-
ing to these observations the solution in [21,29] proposes the choice of that transformation which minimizes the criterion:

c ¼ EHough-X

QHough-X
þ EHough-Y

QHough-Y
.

The procedure for building the index follows:

(1) Decompose the 2d motion into two 1d motions on the ðt; xÞ and ðt; yÞ planes.
(2) For each projection, build the corresponding index.

Partition the objects according to their velocity:

� Objects with small velocity are stored using the Hough-X dual transform, whereas the remaining objects are stored using
the Hough-Y dual transform.

� Motion information about the other projection is also included.

The outline of the algorithm for answering the exact 2d query follows:

(1) Decompose the query into two 1d queries, for the ðt; xÞ and ðt; yÞ projection.
(2) For each projection get the dual – simplex query.
(3) For each projection calculate the criterion c and choose the one (say p) that minimizes it.
(4) Search in projection p the Hough-X or Hough-Y partition.
(5) Perform a refinement or filtering step ‘‘on the fly”, by using the whole motion information. Thus, the result set contains

only the objects satisfying the query.

4.3. Our innovative contribution

In [21,29], QHough-X is computed by querying a 2d partition tree, whereas QHough-Y is computed by querying a Bþ-tree that
indexes the b parameters of Fig. 3. Our construction instead is based
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(1) on the use of the Lazy B-tree [19] instead of the Bþ-tree when handling queries with the Hough-Y transform, achieving
optimal update performance, and

(2) on the employment of a new index that outperforms partition trees in handling polygon queries with the Hough-X
transform.

Next we present the main characteristics of our proposed structures.

5. The access methods

In this section we present the efficient access method of Lazy B-tree, by simplifying its basic operations into legible
pseudocodes as well as a new index method for polygon queries.

5.1. Handling polygon queries when using the Hough-Y transform

As described in [21,29], polygon queries when using the Hough-Y transform can be approximated by a constant number
of 1d range queries that can be handled by a classical B-tree [14]. Our construction is based on the use of a B-tree variant,
which is called Lazy B-tree and has better dynamic performance as well as optimal I/O complexities for both searching and
update operations [19]. An orthogonal effort towards developing yet another B-tree variant under the same name has been
proposed in [24]. The Lazy B-tree of [19] is a simple but non-trivial externalization of the techniques introduced in [31]. The
following theorem provides the complexities of the Lazy B-tree:

Theorem 1. The Lazy B-Tree supports the search operation in OðlogBNÞ worst-case block transfers and update operations in Oð1Þ
worst-case block transfers, provided that the update position is given.

Proof. The Lazy B-tree is a two-level access method as depicted in Fig. 4. The first level consists of an ordinary B-tree,
whereas the second one consists of buckets of size Oðlog2NÞ, where N is approximately equal to the number of elements
stored in the access method. Each bucket consists of two list layers, L and Li, respectively, where 1 6 i 6 Oðlog NÞ, each of
which has Oðlog NÞ size. The rebalancing operations are guided by the global rebalancing lemma given in [31] (see also
[15,23]). In this scheme, each bucket is assigned a criticality indicating how close this bucket is to be fused or split. Every
OðlogBNÞ updates we choose the bucket with the largest criticality and make a rebalancing operation (fusion or split). The
update of the Lazy B-tree is performed incrementally (i.e., in a step-by-step manner) during the next OðlogBNÞ update oper-
ations and until the next rebalancing operation. The global rebalancing lemma ensures that the bucket size will never be
larger than Oðlog2NÞ. h

To realize the Lazy B-tree, the following problems must be tackled: (1) the representation of the criticalities of the buck-
ets; and (2) the representation of each bucket.

To understand how the maintenance of criticalities can be achieved, consider a set S of k objects and assume that each
object is assigned a value between 0 and log2k. In [19], it is explained how this set can be maintained so that object insertions
or deletions are accomplished within Oðlog k

B Þ block transfers, how an object value can be incremented by 1 in Oð1Þ block
transfers, and how the object with the largest element is located and removed in Oð1Þ block transfers. All bounds are
worst-case.

Consider now the representation of each bucket. Since buckets may have up to Oðlog2NÞ elements, every bucket is a two-
layered structure consisting of lists of size log N. The top layer inside a bucket is a list with size at most log N that guides the

B-tree

.  .  .

.    .    .

.  .  .List L

Disk
Block

.  .  .

.  .  .

List Li

Bucket

Fig. 4. The Lazy B-tree.
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search to the lists of the bottom layer. The lists of the bottom layer inside a bucket store at most log N elements. These lists
are dynamic external sorted lists.

The complicated technical details concerning both the maintenance of criticalities and the representation of buckets, can
be found in [19]. Trying to simplify the hidden complicated techniques presented in [19], we provide in Appendix the
description of all operations in pseudocode.

5.2. Handling polygon queries when using the Hough-X transform

Our construction is based on an interesting geometric observation that the polygon queries are a special case of the gen-
eral simplex query and hence can be handled more efficiently without resorting to partition trees.

Let us examine the polygon (4-sided) indexability of Hough-X transformation. Our crucial observation is that the query
polygon has the nice property of being divided into orthogonal objects, i.e., orthogonal triangles or rectangles, since the lines
X ¼ Umin and X ¼ Umax are parallel.

We depict schematically the three basic cases that validate our observation.

5.2.1. Case I
Fig. 5 depicts the first case where the polygon query has been transformed to four range queries employing the orthog-

onal triangles ðP1P2P5Þ; ðP2P7P8Þ; ðP4P5P6Þ; ðP3P4P7Þ and one range query for querying the rectangle ðP5P6P7P8Þ.

5.2.2. Case II
The second case is depicted in Fig. 6. In this case the polygon query has been transformed to two range queries employing

the orthogonal triangles ðP1P4P5Þ and ðP2P3P6Þ and one range query for querying the rectangle ðP2P5P4P6Þ.

a

u

Umin Umax

y1q

y2q

P1

P2

P3

P4

P5

P7 P6

P8

Fig. 5. Orthogonal triangulations: Case I.

a

u

Umin Umax

y1q

y2q P1

P2

P3

P4P5

P6

Fig. 6. Orthogonal triangulations: Case II.
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5.2.3. Case III
The third case is depicted in Fig. 7. In this case the polygon query has been transformed to two range queries employing

the orthogonal triangles ðP1P4P5Þ and ðP2P3P6Þ and one range query for querying the rectangle ðP2P1P5P6Þ.

5.3. Orthogonal 4-sided range queries: dynamic case

The problem of handling orthogonal range searching queries has been handled in [5], where an optimal solution was pre-
sented to handle general (4-sided) range queries in OððN=BÞðlogðN=BÞÞ log logBNÞ disk blocks and could answer queries in
OðlogBN þ kÞ I/O’s; the structure also supports updates in OððlogBNÞðlogðN=BÞÞ= log logBNÞ I/O’s.

5.4. Orthogonal triangle queries: static case and dynamization

Let us now consider the problem of devising an access method for handling orthogonal triangle range queries; in this
problem we have to determine all the points from a set S of N points on the plane lying inside an orthogonal triangle. Recall
that a triangle is orthogonal if two of its edges are axis-parallel. A basic ingredient of our construction will be a structure for
handling half-plane range queries, i.e., queries that ask for the reporting all the points in a set S of n points in the plane that
lie on a given side of a query line L.

A main memory static solution is presented in [10], which answers half-plane range queries in optimal Oðlog N þ KÞ time
and linear space using the notion of duality. The main steps of this algorithm are the following:

� Preprocessing
(1) Partition S into a set of convex layers:

– Define Si as the convex hull of all the points currently in S,
– Remove the vertices of Si from S,
– Increment i, repeat the process.
The time cost is OðN log NÞ, whereas the space complexity is OðNÞ, using a technique that computes convex hulls in a
dynamic environment.

(2) Augment the set of layers building vertical connections as follows: for each vertex w of layer Si, keep a pointer to the
two edges immediately above and below w. This clearly uses OðNÞ extra space.

(3) Using duality, the transformation of each vertex w into its corresponding line maps each layer into another convex
polygon. The produced mapping is organized into a point location structure, occupying OðNÞ space.

� Query processing
(1) Given a query line L transform it into its corresponding dual point PL.
(2) Apply a planar point location algorithm for the point PL in the properly organized structure. This determines the

innermost layer among the layers containing the point PL. Thus, in the dual mapping it determines the innermost
layer among the layers that L intersects. Call this layer adjacent. Using an optimal point location algorithm, this costs
Oðlog NÞ time.

(3) Using the pointers mentioned at Step 2 of the preprocessing procedure, it is easy to report one vertex lying at the
query half plane for each layer enclosing the adjacent one.

(4) Traverse each layer from each of the vertices reported across the part of the layer inside the half plane. Report the
vertices traversed.

a

u

Umin Umax

y1q

y2q

P1

P2

P3

P4

P5

P6

Fig. 7. Orthogonal triangulations: Case III.
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Clearly, these steps lead to a static algorithm for answering half-plane range queries using OðNÞ space and Oðlog N þ KÞ
query time. In general, known static simplex range searching data structures like the one presented above [10] or other vari-
ants, like the algorithms of Clarkson [12] and Matousek [26], can be dynamized easily. Agarwal et al. [2] presented efficient
dynamic algorithms for d-dimensional half-space range searching. In particular, they presented a linear access method to
answer a half-space range reporting query in time Oð N

mbd=2c log N þ KÞ, and insert or delete a point in amortized time
Oðm1þ�=NÞ, with m a given parameter, N 6 m 6 Nbd=2c.

The above static main memory constructions were extended to external memory in [1], where the first optimal
access method was presented to answer 2d half-space range queries in the worst-case, based on the geometric tech-
nique called filtering search [11]. It used OðnÞ blocks of space and answered a query with OðlogBnþ kÞ I/Os. The
dynamization of the above static solution is viable by using the external version of logarithmic method presented
in [4,6] (more details about the internal logarithmic method can be found in [7,27]). In particular, we have the
following:

Theorem 2. Let P be an external-decomposable problem on a set V of size N. Let D be a linear-space static structure for P that can
be constructed in OððN=BÞlogM=BðN=BÞÞ I/Os, such that queries can be answered in Oðlogkq

B NÞ I/Os and such that deletes can be
performed in Oðlogkd

B NÞ I/Os, where kq P 0, M the main memory capacity (for simplicity we make the very realistic assumption
that the main memory is capable of holding B2 elements). There exists a linear-space dynamic access method D0 for P that answers
queries in Oðlogkqþ1

B NÞ I/Os, and supports insertions and deletions in OðlogBN � logM=BðN=BÞ þ log2
BNÞ and OðlogBN þ logkd

B NÞ I/Os
amortized, respectively.

Proof. See [6]. h

Lemma 1. The optimal static access methods presented in [1] requires a construction time of OðNB1=3ðlog2NÞlog4=3
B nÞ I/Os.

Proof. See [1]. h

Theorem 3. The dynamic version of [1] requires OðlogBnlogBNÞ I/Os for answering half-space range queries and
OðB4=3 log Nlog4=3

B nlogBNÞ amortized I/Os for supporting insertions.

Proof. Theorem 2 implies that we have to pay an extra logarithmic overhead of OðlogBNÞ I/Os for query time. Furthermore,
the static solution does not support deletions, as a consequence its dynamization supports only insertions. The construction
time given in Lemma 1, can be rewritten as follows:

OððN=BÞB4=3log2Nlog4=3
B nÞ. According to Theorem 2, the I/O amortized complexity for the insert operation becomes:

OðB4=3log2Nlog4=3
B nlogBN þ log2

BNÞ or OðB4=3log2Nlog4=3
B nlogBN).

We will use this dynamic method to satisfy orthogonal triangle range queries on points. h

Let us now return to our initial problem, i.e., the devise of a structure suitable for handling orthogonal triangle range que-
ries. Recall, a triangle is orthogonal if two of its edges are axis-parallel. Let T be an orthogonal triangle defined by the point
ðxq; yqÞ and the line Lq that is not axis-parallel (see Fig. 8). A retrieval query for this problem can be supported efficiently by
the following 3-layered access method.

To set-up the access method (see Fig. 9), we first sort the N points according to their x-coordinates and then store the
ordered sequence in a leaf-oriented balanced binary search tree of depth Oðlog NÞ. This structure answers the query ‘‘deter-
mine the points having x-coordinates in the range ½x1; x2� by traversing the two paths to the leaves corresponding to x1; x2”.
The points stored as leaves at the subtrees of the nodes which lie between the two paths are exactly these points in the range
½x1; x2�. For each subtree, the points stored at its leaves are organized further to a second level structure according to their
y-coordinates in the same way. For each subtree of the second level structure, the points stored at its leaves are organized
further to a third level structure as in [1,10] for half-plane range queries. Thus, each orthogonal triangle range query is
performed through the following steps:

(1) In the tree storing the pointset S according to x-coordinates, traverse the path to xq. All the points having x-coordinate
in the range ½xq;1Þ are stored at the subtrees on the nodes that are right sons of a node of the search path and do not
belong to the path. There are at most Oðlog NÞ such disjoint subtrees.

(2) For every such subtree traverse the path to yq. By a similar argument as in the previous step, at most Oðlog NÞ disjoint
subtrees are located, storing points that have y-coordinate in the range ½yq;1Þ.

(3) For each subtree in Step 2, apply the half-plane range query of [1,10] to retrieve the points that lie on the side of line Lq

towards the triangle.

The correctness of the above algorithm follows from the structure used. In each of the first two steps we have to visit
Oðlog NÞ subtrees. If in Step 3 we apply the dynamic version of the external memory solution presented in [1], then our meth-
od requires Oðlog2NlogBnlogBNÞ þ KÞ I/Os for answering the query, OðNlog2NÞ disk blocks and OðB4=3log3Nlog4=3

B nlogBNÞ I/Os
for insertion operations in the amortized case.
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6. Experimental evaluation

The structure presented in [1] is complicated, not easily implemented and, thus, inefficient in practice. In particular, the
third complicated component concerning the dynamic half-plane range query in external memory entails large hidden fac-
tors and it still remains open how this solution could be practically simplified. For this reason, the solution presented in Sec-
tion 4.2 is interesting from a theoretical point of view only. On the other hand, as implied by the following experiments, the
solution presented in Section 4.1 is very efficient in practice. This section compares the query/update performance of our
solution with STRIPES (the best known solution) as well as with those ones that use Bþ-trees and TPR�-tree, respectively.
We deploy spatiotemporal data that contain insertions at a single timestamp 0. In particular, objects’ MBRs are taken from
the LA spatial dataset (128971 MBRs).1 We want to simulate a situation where all objects move in a space with dimensions
100 � 100 km. For this purpose each axis of the space is normalized to [0,100000]. For the TPR�-tree, each object is associ-
ated with a VBR (velocity bounded rectangle) such that (a) the object does not change spatial extents during its movement,
(b) the velocity value distribution is skewed (Zipf) towards 0 in range [0,50], and (c) the velocity can be either positive or
negative with equal probability. As in [8], we will use a small page size so that the number of index nodes simulates realistic
situations. Thus, for all experiments, the page size is 1 Kbyte, the key length is 8 bytes, whereas the pointer length is 4 bytes.
Thus, the maximum number of entries (hxi or hyi, respectively) in both Lazy B-trees and Bþ-trees is 1024/(8 + 4) = 85. In the
same way, the maximum number of entries (2d rectangles or hx1; y1; x2; y2i tuples) in TPR�-tree is 1024/(4 * 8 + 4) = 27. On
the other hand, the STRIPES index maps predicted positions to points in a dual transformed space and indexes this space
using a disjoint regular partitioning of space. Each of the two dual planes, are equally partitioned into four quads. This par-
titioning results in a total of 42 ¼ 16 partitions, which we call grids. The fanout of each non-leaf node is thus 16. For each
dataset, all indexes except for STRIPES have similar sizes. Specifically, for LA, each tree has four levels and around 6700 leaves
apart from STRIPES index which has a maximum height of seven and consumes about 2.4 times larger disk space. Each query
q has three parameters: qRlen; qV len, and qT len, such that (a) its MBR qR is a square, with length qRlen, uniformly generated in
the data space, (b) its VBR is qV ¼ �qV len=2; qV len=2;�qV len=2; qV len=2, and (c) its query interval is qT ¼ ½0; qT len�. The query
cost is measured as the average number of node accesses in executing a workload of 200 queries with the same parameters.
Implementations were carried out in C++ including particular libraries from SECONDARY LEDA v4.1.

6.1. Query cost comparison

We measure the performance of our technique earlier described (LBTs, in particular two Lazy B-trees, one for each pro-
jection, plus the query processing between the two answers), the traditional technique (Bþ-trees, in particular two Bþ-trees,
one for each projection, plus the query processing between the two answers) presented in [21,29] and TPR�-tree and STRIPES

X-range

Y-range

HP-index
(Half-Plane Range Query)

Fig. 9. Orthogonal triangle indexing.

qL),( qq yx

Fig. 8. The query triangle.

1 Downloaded from the Tiger website http://www.census.gov/geo/www/tiger/.
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presented in [40,30]], respectively, using the same query workload, after every 10,000 updates. Figs. 9–13 show the query
cost (for datasets generated from LA as described above) as a function of the number of updates, using workloads with dif-
ferent parameters. In figures concerning query costs our solution is almost the same efficient as the solution using Bþ-trees.
This is an immediate result of the same time complexity of searching procedures in both structures Bþ-tree and Lazy B-tree,
respectively. In particular, we have to index the appropriate b parameters in each projection and then combine the two an-
swers by detecting and filtering all the pair permutations. Obviously, the required number of block transfers depends on the
answer’s size and is exactly the same in both solutions for all conducted experiments.

Fig. 10 depicts the efficiency of our solution in comparison to that of the TPR�-tree and STRIPES. In Fig. 9 (top), where the
length of the query rectangle is 100 and as a consequence the query’s surface is equal to 10,000 m2 or 1 ha (the surface of the
whole spatial terrain is 106 ha) the LBTs method is 26.56 times faster than STRIPES and 106.25 times faster than TPR�-tree.
Our solution’s performance degrades as the query rectangle length grows from 100 to 1000. Thus, in Fig. 9(bottom) where
the spatial query’s surface is equal to 100 ha, our method is even 2.12 times faster than STRIPES and 8.01 times faster than
TPR�-tree.

When the query rectangle length or equivalently the query surface becomes extremely large (e.g. 2000, or equiva-
lently 400 ha), then the STRIPES index shows better performance (see Fig. 11). In particular, our method is 1.9 times
faster than the TPR�-tree; however, STRIPES is twice faster than our method. Apparently, while the surface of the query
rectangle grows, the answer size in each projection grow as well, thus the performance of the LBTs method that com-
bines and filters the two answers may degrade. In real GIS applications, for a vast spatial terrain of 106 ha, e.g. the road
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Fig. 10. qV len ¼ 5; qT len ¼ 50; qRlen ¼ 100 (top), qRlen ¼ 1000 (bottom).
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Fig. 11. qRlen ¼ 2000; qV len ¼ 5; qT len ¼ 50.
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Fig. 12. qV len ¼ 10; qT len ¼ 50; qRlen ¼ 400 (top), qRlen ¼ 1000 (bottom).
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network of a big town where each road square covers no more than 1 ha (or 10,000 m2) the most frequent queries con-
sider spatial query’s surface no more than 100 road squares (or 100 ha) and future time interval no larger than 100 s.
This is what we consider as realistic scenarios.

Fig. 12 depicts the performance of all methods for a growing velocity vector. In particular, in Fig. 11(top) the LBTs method is
16.5 times faster than STRIPES and 68.75 times faster than TPR�-tree. The performance of our solution degrades as the query
rectangle length grows from 400 (16 ha of query surface) to 1000 (100 ha of query surface). Even in the latter case, our method
is 2.5 times faster than STRIPES and 7.85 times faster than TPR�-tree. Obviously, the velocity factor is very important for TPR-
like solutions, but not for the other methods, for LBTs in particular, which depend exclusively on the query surface.

Fig. 13 depicts the performance of all methods in case the time interval length degrades to value 1. Even in this case (Fig.
12(top)), the LBTs method is 1.35 times faster than STRIPES and 4.03 times faster than TPR�-tree. As query rectangle length
grows from 400 to 1000, the LBTs method advantage decreases; from Fig. 12(bottom) we remark that STRIPES is 3 times fas-
ter, whereas our method has exactly the same performance with the TPR�-trees.

Fig. 14 depicts the efficiency of our solution in comparison to that of TPR�-trees and STRIPES, respectively in case the time
interval length enlarges to 100. In particular, the LBTs method is 5.37 times faster than STRIPES and 18.75 times faster than
TPR�-tree. Apparently, the query surface remains at realistic levels (16 ha).

6.1.1. Update cost comparison
Fig. 15 compares the average cost (amortized over insertions and deletions) as a function of the number of updates. The

LBTs method (Lazy B-trees for the x- and y-projections) has optimal update performance and consistently outperforms the
TPR�-tree by a wide margin as well as the STRIPES index by a narrow margin. In particular, our method requires a constant
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Fig. 13. qV len ¼ 5, qT len ¼ 1, qRlen ¼ 400 (top), qRlen ¼ 1000 (bottom).
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number of 6 block transfers (3 block transfers for each projection, for details see [19]) and this update performance is inde-
pendent of the dataset size. On the other hand, the other three solutions do not have constant update performance; instead
their performance depends on the dataset size even if as in the experiment of Fig. 15 Bþ-trees and STRIPES reach the optimal
performance of LBTs method requiring 8 and 7 block transfers, respectively (TPR�-tree requires 35 block transfers in
average).

According to our theoretical outcomes, the solution of LBTs outperforms the update performance of Bþ-trees by a loga-
rithmic factor; however, this is not depicted clearly in Fig. 15 due to small datasets. For this reason we performed additional
experiments with gigantic synthetic datasets of size N0 2 ½106;1012�. In particular, we initially have 106 mobile objects and
during the experiment we continuously insert new objects until their number became 1012. For each object, we considered a
synthetic linear function where the velocity value distribution was skewed (zipf) towards 30 in the range [30,50]. The veloc-
ity was either positive or negative with equal probability. For simplicity, all objects were stored using the Hough-Y dual
transform. This assumption is also realistic, since in practice the number of mobile objects, which are moving with very small
velocities, is negligible.

Due to the gigantic synthetic dataset we increased the page size from 1 KB to 4 KB. Since the length of each key is 8 bytes
and the length of each pointer is 4 bytes the block capacity became 341. In particular, Fig. 16 establishes that in our solution,
the number of block transfers for the update operations will remain constant even for gigantic datasets. This fact is an imme-
diate result of the time complexity of update procedures in the Lazy B-tree.
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7. Conclusions

We presented access methods for indexing mobile objects that move on the plane to efficiently answer range queries
about their future location. Concerning our first solution, it has been proved that its update performance is the most efficient
in all cases. Regarding the query performance, the superiority of our structure has been shown as far as the query rectangle
length remains in realistic levels (by far outperformance in comparison to opponent methods). If the query rectangle length
becomes extremely huge in relation to the whole terrain, then STRIPES is better than any other solution, however, only to a
small margin in comparison to our method. Finally, the second presented solution, although complicated, has been proved to
be theoretically efficient. Thus, our future plan is to simplify it into an implementable version and as a consequence a prac-
tically applicable structure.
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Appendix

For the better understanding of the pseudocodes below, see also the Fig. 17

Rebalancing Operations for prediction queries in 2-D
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queries.
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Algorithm 1: List_Search(x,E)

1: Linear Scan of list E
2: Return the block b containing the item x

Algorithm 2: List_Insert(x,E))

1: List_Search(x,E)) {Locate the corresponding block b}
2: if jbj 6 B then
3: insert x into b
4: else
5: create a new adjacent block b0

6: move half the elements of b to b0

7: endif

Algorithm 3: List_Delete(x,E))

1: List_Search(x,E)) {Locate the corresponding block b}
2: remove x from b
3: if jbj 6 B=2 then
4: Let b0 the adjacent block
5: if jbþ b0 j 6 B then
6: fuseðb; b0Þ
7: else
8: transfer some elements from b0 to b
9: endif
10: endif

Algorithm 4: List_Inc(x,Li,j)

1: if j < log k then
2: move x from Li;j to Li;jþ1

3: endif
4: if j ¼ log k then
5: move x to Liþ1;1

6: endif

Algorithm 5: Bucket_Add(Bi; L)

1: Allocate a new pointer BTLðBiÞ {from bucket Bi}
2: BTLðBiÞ ¼ L1;1 {To the head of list L}
3: Allocate a new pointer LTBðL1;1Þ {from the head of list}
4: LTBðL1;1Þ ¼ Bi {to bucket Bi}

Algorithm 6: Bucket_Remove(Bi; L)

1: free the pointer BTLðBiÞ
2: BTLðBiÞ ¼ NULL
3: free the pointer LTBðLi;jÞ {Let Li;j the list position which represents the current criticality of bucket Bi}
4: LTBðLi;jÞ ¼ NULL

Algorithm 7: Bucket_RemoveMax(L)

1: follow the MCP pointer {Let Llog k;j the corresponding list position}
2: follow the LTBðLlog k;jÞ pointer {Let Bi the corresponding bucket into which we must apply the rebalancing operations}
3: if Bi and an adjacent B0i are fused then
4: Bucket_Remove(Bi; L)
5: endif
6: if there is a transfer between Bi and its adjacent B0i then
7: compute the new criticalities of Bi and B0i , respectively
8: update the corresponding BTL and LTB pointers from and to Bi and B0i , respectively
9: endif
10: if Bi is split to Bi and B0i then
11: Bucket_Add(B0i; L)
12: endif
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Algorithm 8: Bucket_Rebalancing(Bi)

1: UðBiÞ ¼ jBi j
log2 n

2: if UðBiÞ > 1:8 then
3: split the bucket Bi into two parts of approximately equal size, Bi and B0i
4: endif
5: if UðbÞ < 0:7 then
6: if one of its adjacent buckets b0 has Uðb0ÞP 1
7: transfer elements from b0 to b
8: else
9: fuse with an adjacent bucket b0

10: endif
11: endif
12: Bucket_RemoveMax(L)

Algorithm 9: LazyTree_Insert(x; LBT)

1: search(x,B-tree) {Let Bl;1 6 l 6 k the corresponding bucket and Bl the corresponding 1st layer list}
2: Bucket_Search(x; Bl) {Let Bl;r the corresponding 2nd layer list}
3: List_Insert(x; Bl;r)
4: cðBl;nÞ ¼ 1

a log n maxf0:7log2n� jBlj; jBl j � 1:8log2ng
5: if cðBl;nÞ has been increased by one then
6: follow the BTLðBlÞ pointer {Let Li;j the corresponding list}
7: List_Inc(cðBl ;nÞ; Li;j)
8: endif
9: numberofupdates numberofupdatesþ 1
10: if numberofupdates ¼ alogBn then
11: Bucket_Rebalancing(LBT) {n is the number of total elements at the beginning of the epoch}
12: endif

Algorithm 10: LazyTree_Delete(x; LBT)

1: search(x,B-tree) {Let Bl;1 6 l 6 k the corresponding bucket and Bl the corresponding 1st layer list}
2: Bucket_Search(x; Bl) {Let Bl;r the corresponding 2nd layer list}
3: List_Delete(x; Bl;r)
4: cðBl;nÞ ¼ 1

a log n maxf0:7log2n� jBlj; jBl j � 1:8log2ng
5: if cðBl;nÞ has been increased by one then
6: follow the BTLðBlÞ pointer {Let Li;j the corresponding list}
7: List_Inc(cðBl; nÞ; Li;j)
8: endif
9: number of updates number of updatesþ 1
10: if number of updates ¼ alogBn then
11: Bucket_Rebalancing(LBT) {n is the number of total elements at the beginning of the epoch}
12: endif

Algorithm 11: LazyTree_Search(x,Bini)

1: search(x,B-tree) {Let Bl;1 6 l 6 k the corresponding bucket and Bl the corresponding 1st layer list}
2: List_Search(x;Bl) {Let Bl;r the corresponding 2nd layer list}
3: Linear Scan of list Bl;r

4: Return the corresponding block b

References

[1] P.K. Agarwal, L. Arge, J. Erickson, P.G. Franciosa, J.S. Vitter, Efficient searching with linear constraints, Journal of Computer and System Sciences 61 (2)
(2000) 194–216.

[2] P.K. Agarwal, D. Eppstein, J. Matousek, Dynamic half-space reporting, geometric optimization, and minimum spanning trees, in: Proceedings of the
33rd Annual Symposium on Foundations of Computer Science (FOCS), Pittsburgh, PA, 1992, pp. 80–89.

[3] P.K. Agarwal, L. Arge, J. Erickson, Indexing moving points, Proceedings of the 19th ACM Symposium on Principles of Database Systems (PODS), Dallas,
TX, 2000, pp. 175–186.

[4] J. Abello, P.M. Pardalos, M.G.C. Resende (Eds.), Handbook of Massive Datasets, Kluwer Academic Publishers, 2001 (Chapter 1).
[5] L. Arge, V. Samoladas, J.S. Vitter, On two-dimensional indexability and optimal range search indexing, in: Proceedings of the 18th ACM Symposium on

Principles of Database Systems (PODS), Philadelphia, PA, 1999, pp. 346–357.
[6] L. Arge, J. Vahrenhold, I/O-efficient dynamic planar point location, Computational Geometry 29 (2) (2004) 147–162.

378 S. Sioutas et al. / Data & Knowledge Engineering 67 (2008) 362–380



Author's personal copy

[7] J.L. Bentley, Decomposable searching problems, Information Processing Letters 8 (5) (1979) 244–251.
[8] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R�-tree: an efficient and robust access method for points and rectangles, in: Proceedings of the

ACM International Conference on Management of Data (SIGMOD), Atlantic City, NJ, 1990, pp. 322–331.
[10] B. Chazelle, L. Guibas, D.L. Lee, The power of geometric duality, in: Proceedings of the 24th IEEE Annual Symposium on Foundations of Computer

Science (FOCS), Tucson, AZ, 1983, pp. 217–225.
[11] B. Chazelle, Filtering search: a new approach to query answering, SIAM Journal on Computing 15 (3) (1986) 703–724.
[12] K.L. Clarkson, New applications of random sampling in computational geometry, Discrete Computational Geometry 2 (1987) 195–222.
[14] D. Comer, The ubiquitous B-tree, ACM Computing Surveys 11 (2) (1979) 121–137.
[15] P. Dietz, R. Raman, A constant update time finger search tree, Information Processing Letters 52 (3) (1994) 147–154.
[16] V. Gaede, O. Gunther, Multidimensional access methods, ACM Computing Surveys 30 (2) (1998) 170–231.
[17] J. Goldstein, R. Ramakrishnan, U. Shaft, J.B. Yu, Processing queries by linear constraints, in: Proceedings of the 16th ACM Symposium on Principles of

Database Systems (PODS), Tucson, AZ, 1997, pp. 257–267.
[19] A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas, K. Zaroliagis, ISB-tree: a new indexing scheme with efficient expected behaviour, in:

Proceedings of the 13th International Symposium on Algorithms and Computation (ISAAC), Sanya, Hainan, China, 2005, pp. 318–327.
[21] G. Kollios, D. Gunopulos, V. Tsotras, On indexing mobile objects, in: Proceedings of the 18th ACM Symposium on Principles of Database Systems

(PODS), Philadelphia, PA, 1999, pp. 261–272.
[23] S. Levcopoulos, M.H. Overmars, Balanced search tree with O(1) worst-case update time, Acta Informatica 26 (3) (1988) 269–277.
[24] Y. Manolopoulos, B-trees with Lazy parent split, Information Sciences 79 (1–2) (1994) 73–88.
[25] Y. Manolopoulos, Y. Theodoridis, V. Tsotras, Advanced Database Indexing, Kluwer Academic Publishers, 2000.
[26] J. Matousek, Reporting points in halfspaces, in: Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science (FOCS), San Juan, Puerto

Rico, 1991, pp. 207–215.
[27] M. Overmars, H. van Leeuwen, Maintenance of configurations in the plane, Journal of Computer Systems and Science 23 (1981) 166–204.
[29] D. Papadopoulos, G. Kollios, D. Gunopulos, V.J. Tsotras, Indexing mobile objects on the plane, in: Proceedings of the 13th International Workshop on

Database and Expert Systems Applications (DEXA), Aix-en-Provence, France, 2002, pp. 693–697.
[30] J. Patel, Y. Chen, V. Chakka, STRIPES: an efficient index for predicted trajectories, in: Proceedings of the ACM International Conference on Management

of Data (SIGMOD), Paris, France, 2004, pp. 637–646.
[31] R. Raman, Eliminating amortization: on data structures with guaranteed response time, Ph.D. Thesis, Technical Report TR-439, Department of

Computer Science, University of Rochester, NY, 1992.
[32] K. Raptopoulou, M. Vassilakopoulos, Y. Manolopoulos, Towards quadtree-based moving objects databases, in: Proceedings of the Eighth East-European

Conference on Advanced Databases and Information Systems (ADBIS), Budapest, Hungary, 2004, pp. 230–245.
[33] K. Raptopoulou, M. Vassilakopoulos, Y. Manolopoulos, Efficient processing of past–future spatiotemporal queries, in: Proceedings of the 21st ACM

Symposium on Applied Computing (SAC), Minitrack on Advances in Spatial and Image-based Information Systems (ASIIS), Dijon, France, 2006, pp. 68–72.
[34] K. Raptopoulou, M. Vassilakopoulos, Y. Manolopoulos, On past-time indexing of moving objects, Journal of Systems and Software 79 (8) (2006) 1079–1091.
[35] S. Saltenis, C. Jensen, S. Leutenegger, M.A. Lopez, Indexing the positions of continuously moving objects, in: Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Dallas, TX, 2000, pp. 331–342.
[36] S. Saltenis, C.S. Jensen, Indexing of moving objects for location-based services, in: Proceedings of the 18th IEEE International Conference on Data

Engineering (ICDE), San Jose, CA, 2002, pp. 463–472.
[37] B. Salzberg, V.J. Tsotras, A comparison of access methods for time-evolving data, ACM Computing Surveys 31 (2) (1999) 158–221.
[40] Y. Tao, D. Papadias, J. Sun, The TPR�-tree: an optimized spatio-temporal access method for predictive queries, in: Proceedings of the 29th International

Conference on Very Large Data Bases (VLDB), Berlin, Germany, 2003, pp. 790–801.

S. Sioutas was born in Greece, in 1975. He graduated from the Department of Computer Engineering and Informatics, School of
Engineering, University of Patras, in December 1997. He received his Ph.D. degree from the Department of Computer Engi-
neering and Informatics, in 2002.

He is now an Assistant Professor in Informatics Department of Ionian University. His research interests include Databases,
Computational Geometry, GIS, Data Structures, Advanced Information Systems, P2P Networks and Web Services. He has pub-
lished over 50 papers in various scientific journals and refereed conferences.

K. Tsakalidis was born in Greece, in 1983. He graduated from the Department of Computer Engineering and Informatics, School
of Engineering, University of Patras, in December 2006.

He is now a Ph.D. Student in Computer Science Department, University of Aarhus (Advisor: Gerth S. Brodal). His research
interests include Massive Data Algorithmics, I/O complexity, Databases and Data Structures.

S. Sioutas et al. / Data & Knowledge Engineering 67 (2008) 362–380 379



Author's personal copy

K. Tsichlas was born in Greece, in 1976. He graduated from the Department of Computer Engineering and Informatics, School of
Engineering, University of Patras, in December 1999. He received his Ph.D. degree from the Department of Computer Engi-
neering and Informatics, in 2004.

He is now a Lecturer in Informatics Department of Aristotle University. His research interests include Data Structures for Main
and Secondary Memory, Design and Analysis of Algorithms, Computational Complexity, Computational Geometry, String
Algorithmics (Bioinformatics – Music Analysis), Dynamic Graph Algorithms. He has published over 30 papers in various sci-
entific journals and refereed conferences.

C. Makris was born in Greece, in 1971. He graduated from the Department of Computer Engineering and Informatics, School of
Engineering, University of Patras, in December 1993. He received his Ph.D. degree from the Department of Computer Engi-
neering and Informatics, in 1997.

He is now an Assistant Professor in the same Department. His research interests include Data Structures, Web Algorithmics,
Computational Geometry, Data Bases and Information Retrieval. He has published over 50 papers in various scientific journals
and refereed conferences.

Y. Manolopoulos was born in Thessaloniki, Greece in 1957. He received a B.Eng. (1981) in Electrical Engineering and a Ph.D.
degree (1986) in Computer Engineering, both from the Aristotle University of Thessaloniki. Currently, he is Professor at the
Department of Informatics of the same university. He has been with the Department of Computer Science of the University of
Toronto, the Department of Computer Science of the University of Maryland at College Park and the University of Cyprus. He has
published over 200 papers in journals and conference proceedings. He is co-author of the books ‘‘Advanced Database Indexing”,
‘‘Advanced Signature Indexing for Multimedia and Web Applications” by Kluwer and of the books ‘‘R-Trees: Theory and
Applications”, ‘‘Nearest Neighbor Search: a Database Perspective” by Springer. He has co-organized several conferences (among
others ADBIS’2002, SSTD’2003, SSDBM’2004, ICEIS’2006, ADBIS’2006, EANN’2007). His research interests include Databases,
Data mining, Web Information Systems, Sensor Networks and Informetrics.

380 S. Sioutas et al. / Data & Knowledge Engineering 67 (2008) 362–380


