
Data & Knowledge Engineering 63 (2007) 478–502

www.elsevier.com/locate/datak
Adaptive similarity search in streaming time series
with sliding windows

Maria Kontaki, Apostolos N. Papadopoulos *, Yannis Manolopoulos

Data Engineering Research Laboratory, Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece

Received 28 July 2006; received in revised form 13 November 2006; accepted 15 March 2007
Available online 28 March 2007
Abstract

The challenge in a database of evolving time series is to provide efficient algorithms and access methods for query pro-
cessing, taking into consideration the fact that the database changes continuously as new data become available. Tradi-
tional access methods that continuously update the data are considered inappropriate, due to significant update costs.
In this paper, we use the IDC-Index (Incremental DFT Computation – Index), an efficient technique for similarity query
processing in streaming time series. The index is based on a multidimensional access method enhanced with a deferred
update policy and an incremental computation of the Discrete Fourier Transform (DFT), which is used as a feature extrac-
tion method. We focus both on range and nearest-neighbor queries, since both types are frequently used in modern appli-
cations. An important characteristic of the proposed approach is its ability to adapt to the update frequency of the data
streams. By using a simple heuristic approach, we manage to keep the update frequency at a specified level to guarantee
efficiency. In order to investigate the efficiency of the proposed method, experiments have been performed for range queries
and k-nearest-neighbor queries on real-life data sets. The proposed method manages to reduce the number of false alarms
examined, achieving high answers vs. candidates ratio. Moreover, the results have shown that the new techniques exhibit
consistently better performance in comparison to previously proposed approaches.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Streaming time series, Similarity search; Sliding window; Performance evaluation
1. Introduction

Nowadays, a significant number of applications require the manipulation of data streams [6,2,7,17,8,10].
Examples of these applications are online stock analysis, computer network monitoring, network traffic man-
agement, earthquake prediction. The major common characteristic of the above applications is that they are
all time-critical. Therefore, the Database Management System (DBMS) must be equipped by effective and
efficient tools for data stream processing, towards acceptable performance during insert, update and query
0169-023X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2007.03.002

* Corresponding author.
E-mail addresses: kontaki@delab.csd.auth.gr (M. Kontaki), apostol@delab.csd.auth.gr (A.N. Papadopoulos), manolopo@delab.

csd.auth.gr (Y. Manolopoulos).

mailto:kontaki@delab.csd.auth.gr
mailto:apostol@delab.csd.auth.gr
mailto:manolopo@delab.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 479
operations. Due to the highly dynamic nature of data streams, random access is prohibitive. Therefore, each
data stream is possible to be read only once (or a limited number of times). This feature poses additional dif-
ficulties for query processing, since the data can only be accessed in arrival order, and therefore data streams
are not compatible with traditional query processing approaches used in Online Transaction Processing
(OLTP) and Online Analytical Processing (OLAP) systems, and therefore additional tools are required.

An important query type that has been studied thoroughly in database literature is the similarity query.
Given a query object Q the similarity query asks for all objects Ox that are similar to Q to a sufficient degree.
Similarity queries have been studied for multidimensional objects, images, video, time series and other non-
traditional data types. In data streams the problem is more challenging since the query object, the data or both
may change over time. The similarity between two objects is expressed by means of a distance metric dist (e.g.,
Euclidean, Manhattan). Basically, there are three similarity query types that have been extensively used in the
literature:

• similarity range query: given a query object q, a set of objects A and a distance e retrieve all objects a 2A
such that distðq; aÞ 6 e.

• similarity k-nearest-neighbor query: given a query object q, a set of objects A and an integer k retrieve k

database objects ai 2Að1 6 i 6 jAjÞ such that for any other object aj 2Að1 6 j 6 jAj and j 6¼ iÞ
distðq; aiÞ 6 distðq; ajÞ.

• similarity join query: given two sets of objects A and B and a distance e retrieve pairs ða; bÞ with a 2A and
b 2 B such that distða; bÞ 6 e.

In this paper, we study similarity e-range and k-nearest-neighbor queries in streaming time series, where
both the query sequence and the data sequences change over time. The length of a streaming time series
can be very large, since new values are continuously appended. Therefore, the similarity of two time series
is expressed by means of the last values of each stream (e.g., 128, 256, 1024 values), using a sliding window
approach. Each stream can be represented as a vector in a high-dimensional space. Dimensionality reduction
techniques (e.g., Discrete Fourier Transform, Karhunen–Loeve Transform) can be used in order to reduce the
number of dimensions, allowing efficient multidimensional access methods to be utilized. However, each vec-
tor changes over time since new values are continuously appended. The naive approach is to delete the old
feature vector by updating the access method, to re-apply the dimensionality reduction technique to the
new vector, and finally, to store the resulting feature vector in the access method. This process is very costly
both in Central Processing Unit (CPU) time and number of disk accesses and therefore, it is inappropriate in
our case. We develop a novel method in order to process similarity queries in data streams with sliding win-
dows. The basic characteristics of the proposed approach are summarized as follows:

• Streaming queries over streaming data are supported.
• R-tree-based [21,5] access methods are utilized, which are well-studied in the literature and they have

already been incorporated in commercial database management systems.
• The feature extraction method works in an incremental manner, enabling considerable savings in CPU time

during the feature extraction process.
• Index updates are either avoided or performed in a bottom-up manner, which results in improved perfor-

mance. Moreover, the update ratio is controllable and can be altered according to the current system
workload.

• Storage requirements are significantly less in comparison to existing techniques, and therefore in-memory
maintenance of access methods is feasible.

• The total running time is significantly less than existing approaches, which is a favorable property in data
stream applications.

The rest of the work is organized as follows. In the next section, we give the appropriate background, the
related work and the motivation behind the proposed research. Section 3 studies in detail the proposed
method for similarity query processing. Section 4 presents performance evaluation results based on real-life
data sets. Finally, Section 5 concludes the work and shortly discusses future research in the area.

480 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
2. Background, related work and contribution

A streaming time-series S is a sequence of real values s1; s2; . . ., where new values are continuously
appended as time progresses. Formally a streaming time series S consists of a set of (tuple, timestamp) pairs.
The ordering that tuples become available induced by the timestamps. For example, a temperature sensor
which monitors the environmental temperature every five minutes, produces a streaming time-series of tem-
perature values. As another example, consider a car equipped with a Global Positioning System (GPS) device
and a communication module, which transmits its position to a server every ten minutes. A streaming time-
series of two-dimensional points (the x and y coordinates of its position) is produced. Note that, in a streaming
time-series data values are ordered with respect to the arrival time. New values are appended at the end of the
series.

Similarity queries in streaming time series have been studied in [11] where whole-match queries are inves-
tigated by using the Euclidean distance as the similarity measure. A prediction-based approach is used for
query processing. The distances between the query and each data stream are calculated using the predicted
values. When the actual values of the query are available, the upper and lower bound of the prediction error
are calculated and the candidate set is formed using the predicted distances. Then, false alarms are discarded.
The same authors have proposed two different approaches, based on pre-fetching [12,13]. Both the aforemen-
tioned research efforts examine the case of whole-match queries, where the data set is composed of static time
series and the query is dynamic (changes over time).

A class of algorithms for stream processing focuses on the recent past of data streams by applying a sliding
window on the data stream [4,11,15,17,23]. In this way, only the last W values of each streaming time series is
considered for query processing, whereas older values are considered obsolete and they are not taken into
account. As it is illustrated in Fig. 1, streams that are non-similar for a window of length W (left), may be
similar if the window is shifted in the time axis (right).

In [17] the authors present a method for query processing in streaming time series where both the query
object and the data are dynamic. The VA-stream and VAþ-stream access methods have been proposed, which
are variations of the vector approximation file (VA-file) [22]. These structures are able to generate a summa-
rization of the data and enable the incremental update of the structure every time a new value arrives. This
method is our competitor since both queries and data are dynamic. We give a brief description and we discuss
some implementation issues of this method later in the paper.

The design of efficient index structures with respect to the number of updates has attracted the interest of
the researchers. The authors in [14] have proposed a variation of the R*-tree. A auxiliary data structure is used
which provides additional access path to the R*-tree. Moreover, the reinsertion of objects in the index struc-
ture is not applied to the root but to internal nodes. In [16] the authors have proposed a variation of the
R*-tree which is designed towards more efficient indexing in the presence of frequent updates. Two auxiliary
data structures are used in addition to the R*-tree: (i) a hash table which maps object identifiers to leaf nodes
and (ii) a summary data structure which is used to obtain access to the internal tree nodes. These approaches

stream 1

stream 2

W W

W

non-similar streams similar streams

W

t

t t

t

Fig. 1. Similarity using a sliding window of length W.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 481
are not applicable in streaming data because their main focus is to accelerate the update procedure rather than
to reduce the number of updates. In the streaming case, the control of the update frequency of the index is
necessary to avoid system degradation.

In [15], we have proposed an indexing scheme and a query processing mechanism for similarity range
query processing on streaming time series, using the sliding window approach. The proposed approach
(IDC-Index) outperforms the VAþ-stream method during range queries, whereas the overall performance
for queries and updates has been shown to be better. In this article, we extend the work studied in [15]
in the following ways:

• In addition to range queries, k-NN queries are considered.
• A technique is proposed which adapts the index update rate according to application requirements.
• A bottom-up approach for index updates is adopted in order to accelerate update operations.
• Several optimizations to the original IDC-Index are proposed, towards more efficient query processing.

3. Proposed approach

A stream is denoted by the symbol Sx and a finite time series by the symbol Sx½i : j�, where i is the first time
instance of the time series and j is the last. The number of values of a time series is therefore j � i + 1 and
corresponds to a window of length W. SxðiÞ is the ith value of the time series.

In our study, the Euclidean distance between two finite time series is used as the similarity measure. The
distance between two streaming time series Sx and Sy is defined by the Euclidean distance between the last
W values of Sx and Sy, denoted by DEðSx; SyÞ. Table 1 summarizes the basic symbols and definitions used
throughout the study.

Let us assume the existence of n streaming time series, each updated over time. To determine similar
streaming time series, we use only the last W values of each one and update these values when a new value
becomes available. Given a query streaming time series the challenge is to determine similar time series as
the data evolve with time.

The naive approach is the Sequential Scan (SS). In each update, the distances between the query streaming
time series and each data streaming time series are computed. Then similar streaming time series are reported.
The streaming environment poses new challenges to the applications as unbounded memory requisites, high
input rates and fast response times. Therefore more sophisticated approaches are necessary to speed up the
similarity process.

Feature extraction and dimensionality reduction are well known and established techniques that have been
proposed in order to simplify complicated problems. The similarity measure is applied on the extracted fea-
tures. Moreover, an indexing method is used to prune time series and therefore to avoid distance computations.
Table 1
Basic notations used throughout the study

Symbol Description

S, T, Sx, Sy Streaming time series
Sq Query streaming time series
S½i : j� A finite time series between time instances i and j

SðiÞ The ith value of the time series
DFT ðSÞ, DFT ðSxÞ The DFT of streaming time series S, Sx

DFTiðSÞ The ith DFT coefficient of S

DEðSx; SyÞ Euclidean distance between streaming time series Sx and Sy

Du Update threshold value
Dq Query expansion value
k Number of nearest neighbors requested
dk The kth best distance
e Radius of circular range query
W Sliding window length
U Desirable update frequency

482 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
In static environments, the overall procedure for similarity queries includes the following steps: (a) feature
extraction is applied on time series, (b) the extracted features are inserted in an index structure, (c) feature
extraction is applied on the query time series, (d) the index is used to retrieve candidate time series respecting
a user-defined threshold and (e) the distances between query and candidates time series are computed in a post
processing step to discard false alarms.

Following the above scheme, in this paper we used the DFT coefficients as features and R*-tree based
indexes. To satisfy the limitations posed by the streaming environment, (a) we introduced an incremental com-
putation of DFT in order to avoid costly DFT computation, and (b) we introduced different deferred update
policies in order to avoid the degradation of the system due to the usage of the index structure and the high
number of updates.

Fig. 2 depicts the architecture of the system. The last W values of each stream are stored in the disk. The
DFT coefficients of each stream are inserted into the index. At the leaf level of the index a link associates the
DFT coefficients with the stream. Additionally each stream maintains a link to the leaf where the correspond-
ing DFT coefficients are stored. When a value becomes available the window of the stream is updated, the
features of the stream are extracted incrementally and the new DFT coefficients replace the old ones using
the link ‘‘stream to leaf’’. Then the deferred update policy decides if the index will be update. If yes, a bot-
tom-up adjustment is performed from the leaf up to the root of the tree if necessary. The query is applied
to the index to retrieve candidates streaming time series using the link ‘‘leaf to stream’’. Then in a post pro-
cessing step the actual distances are computed to discard false alarms. The system architecture can be divided
into three subsections: the incremental feature extraction, the deferred update policy and the index structure.
The next sections provide details on each of them.
Fig. 2. System architecture.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 483
3.1. Incremental DFT computation

The DFT is used as the feature extraction method, which preserves the Euclidean distance between
two sequences. Real-life time series often concentrate the energy in the first few components of the
DFT. Therefore, we need less information to capture the characteristics of the original vector. Another
important feature of the DFT is that the Euclidean distance in the time domain and the Euclidean dis-
tance in the frequency domain are equal. By taking the first coefficients of the DFT vectors, the result-
ing distance between two vectors is reduced, and therefore, no false dismissals occur during range query
processing, since the distance is lower-bounded [1,9]. There is a trade-off between the number of the
DFT coefficients and the approximation of the distance in the time domain. If more DFT coefficients
are used then the number of candidates is reduced during the query processing, thus the query proce-
dure speeds up.

Normally, every time a new value for a stream arrives, the DFT vector must be recalculated by using the
last W values of the stream. This may lead to high costs since the re-computation of the DFT is quite expen-
sive. However, as the following proposition explains, the computation of the DFT can be performed incre-
mentally, avoiding re-computation, by exploiting the last calculated DFT coefficients.

Proposition 1. Let S be a streaming time series with values Sð0Þ; Sð1Þ; . . . ; SðW � 1Þ and length W. Moreover, let

DFT 0ðSÞ;DFT 1ðSÞ; . . . ;DFT W�1ðSÞ denote the DFT coefficients of S. If a new value for this stream arrives, we get

the sequence T ð1Þ, T ð2Þ; . . . ; T ðW Þ, where SðiÞ ¼ T ðiÞ for 1 6 i 6 W � 1 and T ðW Þ is the new value. The DFT

coefficients of T can be computed by the DFT coefficients of S according to the following equation:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
�DFTnðSÞ � Sð0Þ þ T ðW Þ

� �
� ej2pn=W ; ð0 6 n 6 W � 1Þ ð1Þ
Proof. See Appendix. h

Each DFT coefficient has a real and an imaginary part. An implementation issue must be solved is how we
can compute separately each part of a DFT coefficient. The following proposition explains.

Proposition 2. Let S be a streaming time series with values Sð0Þ; Sð1Þ; . . . ; SðW � 1Þ and length W. Moreover, let
DFT 0ðSÞ;DFT 1ðSÞ; . . . ;DFT W�1ðSÞ denote the DFT coefficients of S. If a new value for this stream arrives, we get

the sequence T ð1Þ; T ð2Þ; . . . ; T ðW Þ, where SðiÞ ¼ T ðiÞ for 1 6 i 6 W � 1 and T ðW Þ is the new value. The real

(DFT nðT Þreal) and the imaginary (DFT nðT Þimag) part of the DFT coefficients of T can be computed by the DFT

coefficients of S according to the following equations:
DFTnðT Þreal ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
�DFTnðSÞreal � Sð0Þ þ T ðW Þ

� �
� cos

2pn
W

� �
�DFTnðSÞimag � sin

2pn
W

� �
ð2Þ
and
DFTnðT Þimag ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
�DFTnðSÞreal � Sð0Þ þ T ðW Þ

� �
� sin

2pn
W

� �
þDFTnðSÞimag � cos

2pn
W

� �
ð3Þ
where ð0 6 n 6 W � 1Þ.

Proof. See Appendix. h

The above proposition can be used to incrementally compute the new DFT vector of a streaming time ser-
ies, taking into account the previous one, and therefore, avoiding the re-computation.

Example 1. Assume the streaming time series S: 3, 2, 1, 3 with W = 4. The second DFT coefficient of S is
DFT1ðSÞ ¼ 2þj

2 or DFT1ðSÞreal ¼1 and DFT1ðSÞimag ¼ 1
2. Moreover, assume that a new value arrives (e.g. 4)

and forms a new streaming time series T: 2, 1, 3, 4. So if for example we want to compute DFT1ðT Þ, we can use
DFT1ðSÞ. Therefore DFT1ðT Þreal ¼ 1ffiffi

4
p � ð

ffiffiffi
4
p
� 1� 3þ 4Þ � cosð2p

4 Þ � 1
2 � sinð2p

4 Þ ¼ � 1
2 and DFT1ðT Þimag ¼ 1ffiffi

4
p �

ð
ffiffiffi
4
p
� 1� 3þ 4Þ � sin 2p

4

� �
þ 1

2 � cos 2p
4

� �
¼ 3

2.

484 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
3.2. Deferred update policy

Since the number of streams may be quite large, the use of an index structure is desirable to avoid the com-
putation of the distance between the query and all the time series. We use the R*-tree as an index structure for
the DFT coefficients of the streaming data series. In our case the problem is that the DFT coefficients of a
streaming time series must be updated when a new value arrives. If we update the index every time a new value
becomes available, the overhead may be prohibitive due to additional page accesses. To avoid continuous
deletions and insertions in the R*-tree, we use a deferred update policy. A parameter Du is used to control
the updates. If the distance between the new and the old DFT vector exceeds the value of parameter Du, then
the R*-tree is updated. Otherwise, no update is performed. This technique leads to considerable savings in
CPU and I/O time. The last recorded DFT vector is stored in the last disk page of every streaming time series,
to become available when a new value arrives. The price paid is that the indexing scheme may not always
reflect the data distribution. The use of the parameter Du raises two issues: (i) whether it leads in false dismiss-
als and (ii) whether it affects the query processing efficiency. As we shall demonstrate later, with appropriate
modifications performed to the query, no false dismissals occur and moreover, the query processing efficiency
is not affected significantly.

Let S be a streaming time series. The last W values form a sequence denoted by S1½N � W þ 1 : N �,
where N is the position of the last value of the time series. When a new value for S1 is available, a
new sequence S2½N � W þ 2 : N þ 1� is formed. Assume further that DFTðS1Þ is the last recorded DFT
sequence corresponding to S1½N � W þ 1 : N �, and DFTðS2Þ is the DFT sequence corresponding to
S2½N � W þ 2 : N þ 1�, which is computed incrementally using the DFTðS1Þ. If DEðDFTðS1Þ;DFTðS2ÞÞ
6Du, then DFTðS2Þ is stored as the most recent DFT (replaces DFTðS1Þ) but it is not inserted into the
R*-tree. Assume that another value for the same stream arrives. Let S3½N � W þ 3 : N þ 2� be the new time
series and DFTðS3Þ the DFT of this sequence, which is computed incrementally using DFTðS2Þ. DFTðS3Þ
replaces DFTðS2Þ as the most recent DFT. If DEðDFTðS3Þ;DFTðS1ÞÞ 6 Du, no update is performed in the
R*-tree. On the other hand, if DEðDFTðS3Þ;DFTðS1ÞÞ > Du, then DFTðS3Þ replaces DFTðS1Þ in the tree,
so an update is performed.

In summary, we need both the last recorded DFT vector and the previously calculated DFT vector. The
first is used to decide whether an update will occur or not, and the second is used for the incremental compu-
tation of the new DFT vector. Fig. 3 describes the steps of the deferred update policy. Step 1 is the incremental
feature extraction of Fig. 2. Step 3 uses the ‘‘stream to leaf’’ link to compute the distance between the DFT
coefficients. Step 4 updates the internal nodes of the index.

3.3. IDC-index with global query expansion

The value of the update threshold Du can either be fixed or can vary according to the application require-
ments. Having a fixed Du requires statistical analysis of the streaming time series, to select a value that guar-
antees performance efficiency. However, since the characteristics of a streaming time series change over time,
selecting a fixed value for Du is very restrictive. In [15] a fixed value for Du had been used. In the next sections,
we show how we can keep Du up-to-date as streams evolve with time.
Fig. 3. Deferred update policy.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 485
3.3.1. Selecting the update threshold Du

In this section, we elaborate in this issue by adapting the update threshold according to the desirable update
frequency U posed by the specific application. The update frequency denote the maximum allowed number of
updates that must be performed to the index to guarantee efficiency. Taking into consideration that a huge
number of updates may be required as new stream values become available, the parameter U is used to com-
pensate the excessive update demand. This parameter can be set by the application, or may vary according to
the ‘‘mobility’’ of the data streams. For example, when new values arrive in a very slow rate, then the system
can afford a larger number of index updates. On the other hand, when new values arrive at a very high rate the
index update frequency should be reduced to prevent performance degradation. In the sequel we explain in
detail how to estimate the value of Du dynamically, to approximate U.

The target is to maintain the value of U as accurately as possible, based on the recent past of the streaming
time series. In this way, we can determine a convenient value for Du for the near future. In order to achieve
this, an adaptive calculation of Du is applied. The last u values arrived are used in order to determine Du. For
example, let U be 20%, which means that every 100 update requests only 20 index updates will be performed.
For the next u = 10 update requests we monitor the Euclidean distance between the last and the previous DFT
vector for the affected streaming time series. In order to achieve 20% index updates, the value of Du must be set
to 3, as it is illustrated in Fig. 4. In this way, only 2 out of 10 updates affect the index and the percentage of
20% is achieved. We use this Du for the next u = 10 values. Moreover, we monitor the next u values. Again, we
select the second minimum value as Du to achieve the desirable update frequency for the next period. This pro-
cedure is continuously repeated. An important issue that we note, is that the number u must be selected to
have a significant number of stream values for the determination of Du. To achieve this, values between
500 and 1000 have been used for the estimation of Du in our experiments.

If the value of U remains constant, then no specialized data structures are required. In the previous exam-
ple, if U = 20% and u = 10, then we need only to maintain the two smallest values. However, this is not a real-
istic scenario, since U can be increased when stream mobility is low, and decreased when mobility is high. To
support this, a minheap data structure (priority queue) is utilized. Recall, that a minheap structure stores the
minimum value at the root. This means that the minimum value is available in O(1) time. By deleting the min-
imum value, the heap is adjusted in O(logn) time (where n is the size of the heap) and the next minimum is
placed at the root. Therefore, if the xth minimum value must be determined, the heap is accessed x � 1 times,
until the xth smallest value reaches the root. In Fig. 4, we see that to guarantee 20% index updates the second
smallest value must be determined. This value is 3, and reaches the root after element 2 is deleted. Therefore,
we set Du to 3. Using the recent past stream values to predict the near future has been proven very accurate, as
it is illustrated in the performance evaluation.

Maintaining the update frequency of the IDC-Index fixed, the method avoids system degradation due to
high input rates of streams. Moreover, as we have already mentioned, we shall demonstrate that the use of
Du does not introduce false dismissals and therefore does not affect the matching quality.
a b c

Fig. 4. Determination of Du.

486 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
3.3.2. Updating the index

The traditional method to update the R*-tree index requires to locate the relevant object in the leaf node,
delete the old entry and insert the new entry using the normal insertion algorithm. However, this process is
computationally expensive and may lead to performance degradation when the stream ‘‘mobility’’ is high.

Recall that in our case, an index update will take place if the Euclidean distance between the new DFT vec-
tor and the last recorded DFT vector for a stream is greater than Du. In such a case, instead of using the tra-
ditional index update process, another method is applied which is more efficient regarding computational
costs.

Each stream maintains a link to the leaf where the corresponding DFT vector is stored. Therefore, there is
no need to search for the specific entry in a top-down manner. When a new value arrives, then the new DFT
vector for the specific stream is stored at the leaf in addition to the previously recorded one. If the Euclidean
distance between the new DFT vector and the last recorded DFT vector is less than or equal to Du, then no
more modifications are performed to the R*-tree structure. Otherwise, a bottom-up adjustment of the Mini-
mum Bounding Rectangles (MBRs) is performed, by recalculating MBRs from the leaf, up to the root of the
tree if necessary. To perform the bottom-up traversal, parent links are required which enable node visits in a
bottom-up manner (from a child node to its parent). By applying this technique, the use of the parameter Du

does not affect the query processing efficiency, since the leaves always contain up-to-date DFT vectors and
therefore the candidate set is the same either Du is used or not.

For example, assume that a new value arrives for the stream 1 of Fig. 2. The new DFT coefficients are com-
puted using the incremental feature extraction, and the ‘‘stream to leaf’’ link is used to update the DFT coef-
ficients of the leaf of the index. Then the deferred update policy decides if the index should be updated. In this
case a bottom-up adjustment of the MBRs is performed so all the MBRs of the path from the leaf to the root
to contain the new DFT coefficients. Note that the replacement of the DFT coefficients of the leaf is always
performed regardless of the decision of the deferred update policy to update the index or not.
3.3.3. Query processing issues

So far we have focused on the detailed description of the feature extraction process, the way index updates
are performed and how to adjust the update threshold Du. We proceed by describing the way query processing
is performed. Both similarity range and nearest-neighbor queries are considered, and detailed algorithms are
given. Both query processing algorithms follow a filter-refinement processing paradigm, to eliminate false
alarms which may be present due to the approximation performed by the use of DFT vectors. The architecture
outline of the query processor is depicted in Fig. 2.
3.3.4. Range query processing

In order for similarity range queries to produce the correct results, the user-defined distance e must be
expanded by a value of Dq, which is the maximum Du value seen so far. In this way, we guarantee that no false
dismissals occur.

Proposition 3. If the query radius e is expanded by Dq in the internal nodes of R*-tree, where Dq is the maximum

Du seen so far, then no false dismissals are introduced.

Proof. Assume that we have the DFT vector of the query stream DFT ðSqÞ, the MBRLR that is formed by the
last recorded DFT vectors and a stream Sx that belongs to the MBRLR. Moreover, assume that we have the
last recorded DFT vector DFTðSxÞLR of stream Sx and the current DFT vector DFTðSxÞ of stream Sx.
DEðDFTðSqÞ;DFTðSxÞÞ 6 e)
DEðDFTðSqÞ;DFTðSxÞÞ þ Dq 6 eþ Dq)
DEðDFTðSqÞ;DFTðSxÞÞ þ DEðDFTðSxÞ;DFTðSxÞLRÞ 6 eþ Dq)
DEðDFTðSqÞ;DFTðSxÞLRÞ 6 eþ Dq ðtriangular inequalityÞ)
MinDistðDFTðSqÞ;MBRLRÞ 6 eþ Dq �

Fig. 5. Outline of similarity range query processing algorithm.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 487
Proposition 3 implies that if the current DFT vector of a stream overlaps the query region, then the cor-
responding MBRLR (a MBR that is formed by the last recorded DFT coefficients) will overlap the extended
query region. Notice that Proposition 3 is applied only in the internal nodes of the R*-tree, since the leaves
always contain up-to-date DFT vectors. The outline of the similarity range query processing algorithm is illus-
trated in Fig. 5.

3.3.5. Nearest-neighbor query processing
For the nearest-neighbor queries, we use the multi-step k-NN algorithm [20]. The algorithm reduce the

number of candidates by decreasing the value of the kth nearest neighbor distance with ongoing exact eval-
uation of the candidates. To eliminate false dismissals, as in range queries, we expand the kth distance by Dq.

Proposition 4. If the kth nearest neighbor distance is expanded by Dq when searching the internal nodes of the

R*-tree, then no false dismissals are introduced.

Proof. Assume that we have the DFT vector of the query stream DFTðSqÞ, the MBRLR that is formed by the
last recorded DFT vectors and a stream Sx that belongs to the MBRLR. Moreover, assume that we have the
last recorded DFT vector DFTðSxÞLR of stream Sx and the current DFT vector DFT ðSxÞ of stream Sx. The kth
nearest neighbor distance is dk.
DEðDFTðSqÞ;DFTðSxÞÞ 6 dk) DEðDFTðSqÞ;DFTðSxÞÞ þ Dq 6 dk þ Dq

) DEðDFTðSqÞ;DFTðSxÞÞ þ DEðDFTðSxÞ;DFTðSxÞLRÞ 6 dk þ Dq

) DEðDFTðSqÞ;DFTðSxÞLRÞ 6 dk þ Dq ðtriangular inequalityÞ
)MinDistðDFTðSqÞ;MBRLRÞ 6 dk þ Dq �
Proposition 4 implies that if the current DFT vector of a stream is closer to the query point than the kth

neighbor, then the corresponding MBRLR will be inserted in the heap for further examination, if we expand
the kth nearest neighbor distance by Dq.

The k-NN query processing algorithm can be further improved, if a more sophisticated scheme is used for
the initialization of the kth NN distance dk. For example, we can visit the first k streams and compute their real
distances from the query. The maximum distance can be used for the initialization of dk, instead of 1. The
outline of the k-NN query processing algorithm is depicted in Fig. 6.
3.4. IDC-Index with local query expansion

In the IDC-Index with global query expansion, only one value for Dq is maintained for all internal nodes of
the R*-tree. Moreover, Dq cannot be reduced, in order to preserve the correctness of the algorithm. Since the
value of Dq is determined by taking the maximum value of Du seen so far, if at some time Du assumes a large

Fig. 6. Outline of similarity k-NN query processing algorithm.

488 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
value, the performance of queries will degrade. Moreover, if a few streams are characterized by intense fluc-
tuations, this will have a direct impact on Du (and hence to Dq), despite the fact that the majority of the streams
do not change their values in a sharp manner. Note that, a large value of Dq implies a larger query radius e.
This means that more index MBRs will overlap the query range, leading to increased processing cost.

For example, assume that the parameter Du is 10 and the parameter Dq is also 10. Moreover, assume that a
number of streams have intense temporary fluctuations, so the parameter Du increases to 20 to keep the update
frequency of the index stable. In the IDC-Index with global query expansion, Dq increases to 20, since it is
equal to the maximum value of Du seen so far. When the intense fluctuations are over, Du will decrease to
10 but the Dq will not be reduced in order to preserve the correctness of the algorithm.

Instead of using only one Dq for all streams, we can maintain one Dq (local Dq) for each entry of the R*-tree.
A parent entry has its local Dq set to the maximum Dq of all the entries in its subtree. By using a local Dq, a
query covers a minimum region, since the expansion of the query is as small as possible. This implies that
fewer MBRs will overlap the query range, resulting in a more efficient processing scheme.

On the other hand, the maintenance of local Dq for each entry requires some additional cost. As it is dem-
onstrated in the experimental results, the use of the local Dq is suggested only when the number of queries is
significantly larger than the number of updates in the workload.

3.4.1. Updating the index

As in the case of IDC-Index with global query expansion, the IDC-Index with local query expansion uses
the parameter Du. The process of selecting and maintaining the value of the parameter in this case is the same.
Recall that with global Dq the DFT vector of the leaf is updated every time. A full bottom-up update occurs
only when the difference between the new DFT vector and the last recorded DFT vector exceeds the Du

threshold.
In the IDC-Index with local Dq, the parameter Dq is updated every time, regardless if an update occurs or

not, in order to preserve the correctness of the query processing algorithm. The update of the local Dq is per-
formed by a bottom-up procedure. Notice that the cost to update the local Dq which is a real number is much
less than the cost to update the MBRs of the R*-tree. Therefore, significant savings in computation may be
achieved.

When an update occurs, as we update the MBRs of internal nodes, we also update the local Dq by choosing
as local Dq of the parent entry the maximum local Dq of the child node. If a new value arrives and there is no
need to update the MBRs, we update only the local Dq. First, we update the local Dq of the leaf entry. To pro-
ceed to the upper levels of the tree, the following condition must be satisfied:

Fig. 7. IDC-Index with local Dq.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 489
ððDqNEW < DqOLDÞ ^ ðDqPARENT ¼ DqOLDÞÞ _ ððDqNEW > DqOLDÞ ^ ðDqPARENT < DqNEWÞÞ

Fig. 7 shows an example to clarify the above condition. To simplify the example, we use local Dq only for

the nodes and not for the entries. It is obvious that the local Dq of a node is equal to the greater local Dq of its
entries. We first examine the case where the new local Dq is smaller than the old local Dq of a node. If the new
local Dq of node 5 is 4 then the local Dq of the father (node 2) should be reduced (because the old local Dq is
equal to local Dq of the father). The modifications proceed up to the root (node 1). If the new local Dq of the
node 4 is 2 then no modifications of the father are required since the local Dq of the father is greater than the
old local Dq and therefore depends on the local Dq of node 5. Now we examine the case where the new local Dq

is greater than the old local Dq of a node. If the new local Dq of node 5 is 6 then the local Dq of the father
should be increased. If the new local Dq of node 4 is 4 then no modifications of the father are required since
the local Dq of the father is greater than the new local Dq and therefore depends on the local Dq of node 5.

3.4.2. Query processing issues

The algorithms for both range and nearest neighbor queries in IDC-Index with local Dq are similar to Figs.
5 and 6. The difference for the range query (lines 2 and 3 of Fig. 5) is that it is not used a fixed query region r.
The query region initially is r = e, so it is expanded for each entry by the local Dq of the entry. Similarly, the
difference for the nearest neighbor query (line 6 of Fig. 6) is that the MinDist between the query and the entry
is compared with the sum of the kth nearest neighbor distance and the local Dq of the entry. Propositions 2 and
3 can be modified by replacing Dq with local Dq. Therefore, the correctness of the query algorithms is proved.

4. Performance study

4.1. The VAþ-stream approach

Before we present the experimental results, we briefly describe the VAþ-stream access method which has
been proposed in [17] as a similarity search method in streaming time series. The VAþ-stream is based on
VAþ-file [22], a structure that has been proposed as an index method to overcome the dimensionality curse
and to support efficient similarity search for non-uniform data.

Since a streaming time sequence contains a large number of values, similarity is expressed with respect to
the W last values of the streams. This is applied to the query time sequence as well. Therefore, if W = 256 then
each sequence is represented as a point in the 256-dimensional space.

The VAþ-stream divides the data space into 2b cells, where b is a user-specified parameter. The VAþ-stream
allocates different number of bits for each dimension. The sum of these bits is equal to b. Each cell is an
approximation of the data points that fall into this cell and is represented by a bit string of length b. An exam-
ple of six time sequences in the 2D space (W = 2) with b = 3 is given in Fig. 8.

Fig. 8. An example of VAþ-stream.

490 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
The data stream values considered are obtained by a sliding window which always contains the last W

stream values. In order to adjust the structure due to the newly arrived values, a bit reallocation method is
applied. Each dimension is quantized independently with its assigned bits, in order to achieve the least repro-
duction error. A drawback of this approach is that requires all the streams to have new values in order to
adjust the structure, in contrast with IDC-Index which can manipulate streams with different data collection
rate. The VAþ-stream access method can answer similarity range and nearest-neighbor queries.

The performance of this approach is highly dependent on the number of bits associated with each dimen-
sion. The VAþ-stream divides the space into 2b cells, where b is the total number of bits. Since many of these
cells are not used, to reduce the number of the cells the authors proposed a structure named CSET. This struc-
ture stores the cells in which the streams lie. The drawback of this structure is its size. To define a cell, if d

dimensions are used (i.e. the window size is d), then d integers are required. Therefore, the size of the CSET
structure is n � d integers, where n is the number of streams. We used the CSET structure described in [17].

4.2. Experimental results

In this section, we report the experimental results performed on real-life data sets. All methods are imple-
mented in C++ and experiments have been conducted on a Pentium IV system at 3 GHz, with 1 GB of main
memory running Windows XP. We have conducted a series of experiments to evaluate the performance of the
IDC-Index and its variations. We have used the VAþ-stream and the sequential scanning methods as the com-
petitors of IDC-Index. We use the labels SS for the sequential scanning algorithm, IDC-INDEX for the
scheme with a global Dq and IDC-LOCAL for the scheme with the local Dq.

As we have already mentioned, one of the major disadvantages of the VAþ-stream is that it requires all the
streams to have a new value in order to update the VA structure. On the other hand, the local IDC-Index
(IDC-Index with local Dq) can be efficiently used only in cases where a fraction of the streams is updated
in each time instance. Therefore, we divided the experiments into two categories. Experiments in which all
the streams are updated in each time instance and experiments in which a fraction of the streams is updated
in each time instance. In the first category, we compared the global IDC-Index (IDC-Index with global Dq), the
VAþ-stream and the SS and in the second category we compared the global and the local IDC-Index. All the
required data structures are maintained in main memory.

Both range and k-NN queries are considered. The VAþ-stream is proposed for k-NN queries [17], so we
modified the method to be applicable for range query processing. We have studied the performance of the
methods by varying several of the most important parameters such as the query distance e in range queries,
the value k for k-NN queries, the desirable update ratio, the buffer size, the length of the sliding window, the
number of DFT coefficients and the workload. The workload is composed of queries intermixed with updates.
An update operation includes all the updates in a specific time instance. We have measured the CPU cost per

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 491
query and per update, the number of disk accesses and the number of candidates. Moreover, we have studied
the behavior of the R*-tree and the space requirements of the data structures.

The default values for the parameters (if not otherwise specified) are: the distance e has been chosen so that
1% of the streams to be in the answer. The desirable update ratio is 0.1%. Thus only 0.1% of the streams will
be actually updated in each time instance. Among the DFT coefficients the first four and the last four are used
(eight in total) [18]. The buffer size is set to 10% of the total number of pages on the disk. The sliding window
size is set 256. The workload is another important parameter. We have chosen two different workloads: (i) a
‘‘heavy’’ workload comprising 20% queries and 80% updates, and (ii) an ‘‘light’’ workload comprising 80%
queries and 20% updates. The real-life data sets used are described below shortly:

• Stocks: contains daily stock prices obtained from http://finance.yahoo.com. In order to have an adequate
number of streams, we have generated new ones by transposing values of the real streams. The data set
consists of 50,400 time sequences, each with a length of 1500.

• Tropical Atmosphere Ocean (TAO): contains wind speed values of 65 sites on Pacific and Atlantic Ocean since
1974. The set is available by the Pacific Marine Environmental Laboratory (http://www.pmal.noaa.gov/tao),
and consists of 12,217 series, each having a length of 1000.

4.2.1. Estimation accuracy

Recall that the update ratio U defines the number of updates that will be performed in the index, with
respect to the total number of updates. For this reason the parameter Du is used. The way Du is calculated,
has been described in a previous section. Here, we demonstrate the accuracy in preserving the required update
ratio. Tables 2 and 3 illustrate the results for the STOCKS and TAO data sets, respectively. For each data set
two different workloads have been used. The first workload contains 100 range queries and 400 update oper-
ations, whereas the second workload contains 400 range queries and 100 updates. Note that all streams update
their values, which means that the number of update operations is multiplied by the number of streams to
obtain the total number of updates.

The first column contains the desired update ratio. The column labeled ‘‘Estimated’’ contains the estimated
number of index updates that should be performed to guarantee the desired update ratio. The column labeled
‘‘Real’’ shows the number of updates that actually took place. It is evident that the number of updates per-
formed is very close to the predicted value. This means that the estimation of Du manages to maintain the
desired update ratio very accurately.

4.2.2. Performance of range similarity queries

In this section, we show the experimental results obtained from range queries for the first category where all
streams are updated in each time instance. In the first experiment, we show the performance of the three meth-
ods with respect to the distance e. Figs. 9 and 10 illustrate the results for the STOCKS and the TAO data set,
respectively. Both workloads have been used but here we present only the most representative results since the
behavior of the methods is expected. In Fig. 9, the ‘‘light’’ workload is used while in 10 the ‘‘heavy’’ workload
Table 2
Estimation accuracy for STOCKS data set

Workload/Update ratio 100 queries–400 updates 400 queries–100 updates

Estimated Real Estimated Real

0.05 12,079 12,078 4519 4514
0.1 21,159 21,160 6039 6038
1 201,695 201,708 50,498 50,526
5 1,007,999 1,007,991 252,014 252,009

10 2,015,969 2,015,949 503,999 503,993
20 4,031,924 4,031,888 1,007,984 1,007,914
50 10,079,801 10,079,624 2,519,951 2,519,790

100 20,159,600 20,159,600 5,039,900 5,039,900

http://finance.yahoo.com
http://www.pmal.noaa.gov/tao

Table 3
Estimation accuracy for TAO data set

Workload/update ratio 100 queries–400 updates 400 queries–100 updates

Estimated Real Estimated Real

0.05 4442 4445 2610 2680
0.1 5885 5889 2221 2233
1 48,963 48,958 12,315 12,317
5 24,4339 24,4328 61,099 61,099

10 488,649 488,654 122,169 122,172
20 977,284 977,284 244,324 244,325
50 2,443,201 2,443,205 610,801 610,802

100 4,886,400 4,886,400 1,221,600 1,221,600

0.1

1

10

100

1000

30 40 50 60 70 80 90 100

T
ot

al
 C

P
U

e

Total CPU vs. e of e-range query

IDC-INDEX
VA+-STREAM

SS

100

1000

10000

100000

1e+006

1e+007

30 40 50 60 70 80 90 100

T
ot

al
 D

is
k

A
cc

es
se

s

e

Total Disk Accesses vs. e of e-range query

IDC-INDEX
VA+-STREAM

SS

Fig. 9. CPU time (left) and disk accesses (right) vs. e for STOCKS data set (‘‘light’’ workload).

0.1

1

10

100

1000

14 16 18 20 22 24 26 28

T
ot

al
 C

P
U

e

Total CPU vs. e of e-range query

IDC-INDEX
VA+-STREAM

SS

1000

10000

100000

1e+006

14 16 18 20 22 24 26 28

T
ot

al
 D

is
k

A
cc

es
se

s

e

Total Disk Accesses vs. e of e-range query

IDC-INDEX
VA+-STREAM

SS

Fig. 10. CPU time (left) and disk accesses (right) vs. e for TAO data set (‘‘heavy’’ workload).

492 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
is used. Both CPU cost and disk accesses are given in each experiment. The CPU cost is given in seconds. The
y-axis is in logarithmic scale.

The IDC-Index outperforms the other two methods. Notice that the CPU cost of SS is less than that of
the IDC-Index when the number of queries is low. This is expected since the SS does not require any index
updates. We emphasize that the problem is disk-dominated so the number of disk accesses determines the
total performance of a method. As e increases, the difference between the three methods is decreased

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 493
because the number of streams that are contained in the final answer increases rapidly. Moreover in the
‘‘light’’ workload the gap between IDC-Index and VAþ-stream is greater because IDC-Index processes que-
ries faster than VAþ-stream since IDC-Index introduces less false dismissals as we will show later in the
experiments.

Fig. 11 illustrates the performance of the methods with respect to variable workload. The IDC-Index is
steadily more efficient than VAþ-stream and SS. Again the CPU cost of SS is less than that of the IDC-Index
when the number of queries is low. As we mentioned above this is expected since the SS does not use an index
structure. The gain from the disk accesses surpasses the CPU cost. IDC-Index outperforms VAþ-stream espe-
cially when the number of queries is high. That is because, as already mentioned in the previous experiment,
IDC-Index achieves better hit ratio than VAþ-stream. This impacts in the number of disk accesses, thus the
difference between IDC-Index and both the other two methods increases. Recall that the y-axis is in logarith-
mic scale.

The number of DFT coefficients has an important impact on the performance. As the number of DFT coef-
ficients increases, distance preservation is improved and therefore, less false alarms are introduced. Fig. 12
shows the hit ratio with respect to the number of the DFT coefficients both for STOCKS and TAO data sets.
For the STOCKS data set the hit ratio of the IDC-Index is much better than that of the VAþ-stream because
the stocks values match with the DFT properties. On the contrary, to achieve a good hit ratio for the TAO
data set, more DFT coefficients are required. A reasonable question is how the number of coefficients influ-
ences the CPU cost. Fig. 13 depicts the CPU cost and the disk accesses for the TAO data set. The gain from
0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90

T
ot

al
 C

P
U

Percentage of Queries

Total CPU vs. Workload

IDC-INDEX
VA+-STREAM

SS

1000

10000

100000

1e+006

1e+007

10 20 30 40 50 60 70 80 90

T
ot

al
 D

is
k

A
cc

es
se

s

Percentage of Queries

Total Disk Accesses vs. Workload

IDC-INDEX
VA+-STREAM

SS

Fig. 11. CPU time (left) and disk accesses (right) vs. workload for TAO data set.

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10

A
ns

w
er

s
/ C

an
di

da
te

s
ra

tio

Number of Coefficients

Answers / Candidates ratio vs. Number of Coefficients

IDC-INDEX
VA+-STREAM

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10

A
ns

w
er

s
/ C

an
di

da
te

s
ra

tio

Number of Coefficients

Answers / Candidates ratio vs. Number of Coefficients

IDC-INDEX
VA+-STREAM

Fig. 12. Hit ratio vs. number of DFT Coefficients for STOCKS (left) and TAO (right) data sets.

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

T
ot

al
 C

P
U

Number of Coefficients

Total CPU vs. Number of Coefficients

IDC-INDEX
VA+-STREAM

SS

1000

10000

100000

1e+006

1 2 3 4 5 6 7 8 9 10

T
ot

al
 D

is
k

A
cc

es
se

s

Number of Coefficients

Total Disk Accesses vs. Number of Coefficients

IDC-INDEX
VA+-STREAM

SS

Fig. 13. CPU time (left) and disk accesses (right) vs. number of DFT coefficients for TAO data set.

494 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
the reduction of the disk accesses is more than the overhead imposed by the CPU. For example, in Fig. 13 the
difference between the use of two and eight coefficients, is about 8 seconds for the CPU and 100,000 for the
number of disk accesses. Thus it is better to use an adequate number of DFT coefficients sacrificing low CPU
cost. Achieving a good hit ratio is important because hit ratio impacts the query efficiency and thus the overall
method.

We also studied the behavior of the method with respect to specified update ratio. As the update ratio
increases, the update cost is increased and the query cost is reduced. That is because the parameters Du and
Dq have small value therefore the R*-tree is more up-to-date so the tree traversal is restricted in less nodes
(recall that the query is expanded by Dq). We chose a very low update ratio for the experiments because,
Fig. 14 shows, the gain for the query is not significant. Moreover the update ratio does not affect the number
of candidates since the leaves of the index have always the current DFT coefficients so the number of disk
accesses is not affected by the specified update ratio.

An advantage of the IDC-Index is that it can handle different window sizes. Fig. 15 illustrates the CPU cost
and the number of disk accesses with respect to window size. The IDC-Index is again more efficient than the
other two methods. The CPU cost for the IDC-Index is almost unaffected from the window size since the num-
ber of DFT coefficients is fixed. It is expected that the number of disk accesses will increase as the window size
is increased since the pruning ability of R*-tree is reduced. The other two methods are affected from the win-
dow size since they perform operations in each dimension. Therefore as the number of dimensions increases
the CPU cost is increased.
0.1

1

10

100

1000

0 20 40 60 80 100

Q
ue

ry
 C

P
U

specified Update Ratio

Query CPU vs. specified Update Ratio

IDC-INDEX
VA+-STREAM

Fig. 14. CPU time vs update ratio (U) for TAO data set.

0.1

1

10

100

1000

50 100 150 200 250 300 350 400 450 500

T
ot

al
 C

P
U

Window Size

Total CPU vs. Window Size

IDC-INDEX
VA+-STREAM

SS

10000

100000

1e+006

1e+007

50 100 150 200 250 300 350 400 450 500

T
ot

al
 D

is
k

A
cc

es
se

s

Window Size

Total Disk Accesses vs. Window Size

IDC-INDEX
VA+-STREAM

SS

Fig. 15. CPU time (left) and disk accesses (right) vs sliding window size (W) for TAO data set.

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 495
Fig. 16 shows the space requirements for the two methods for the STOCKS and TAO data sets, with
respect to the sliding window size. The space requirements of the IDC-Index remains fairly constant. On
the other hand, the size of the CSET structure of the VAþ-stream increases linearly with respect to the sliding
window size. Recall that the CSET structure uses one integer for each dimension to determine the cell of each
stream.

4.2.3. Performance of k-NN similarity queries

In the sequel, we studied the performance of the three methods in k-NN query processing. The first exper-
iment studies the performance of the methods with respect to k. Figs. 17 and 18 show the results for the
STOCKS and the TAO data set, respectively. IDC-Index is consistently more efficient than SS and VAþ-
stream. It is evident that the impact of k is not significant. The methods have the same behavior in both
k-NN and range queries. Again the CPU cost of SS is less than that of the IDC-Index but the gain of disk
accesses surpasses this cost. Moreover, IDC-Index is better than VAþ-stream since IDC-Index achieves better
hit ratio.

Fig. 19 depicts the performance with respect to the workload. The CPU cost of SS is less than that of the
other methods, whereas the I/O cost dominates. IDC-Index outperforms VAþ-stream since IDC-Index pro-
cesses queries faster than VAþ-stream.
0

50

100

150

200

250

0 200 400 600 800 1000

S
pa

ce
 R

eq
ui

si
te

s(
M

B
)

Window Size

IDC-INDEX
VA+-STREAM

0

5

10

15

20

25

30

0 100 200 300 400 500

S
pa

ce
 R

eq
ui

si
te

s(
M

B
)

Window Size

IDC-INDEX
VA+-STREAM

Fig. 16. Storage requirements of IDC-Index and VAþ-stream schemes for STOCKS (left) and TAO (right) data sets vs. sliding windows
size.

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

T
ot

al
 C

P
U

k

Total CPU vs. k of kNN query

IDC-INDEX
VA+-STREAM

SS

100

1000

10000

100000

1e+006

1e+007

10 20 30 40 50 60 70 80 90 100

T
ot

al
 D

is
k

A
cc

es
se

s

k

Total Disk Accesses vs. k of kNN query

IDC-INDEX
VA+-STREAM

SS

Fig. 17. CPU time (left) and disk accesses (right) vs. k for STOCKS data set.

0.1

1

10

100

10 20 30 40 50 60 70 80 90 100

T
ot

al
 C

P
U

k

Total CPU vs. k of kNN query

IDC-INDEX
VA+-STREAM

SS

100

1000

10000

100000

1e+006

1e+007

10 20 30 40 50 60 70 80 90 100

T
ot

al
 D

is
k

A
cc

es
se

s

k

Total Disk Accesses vs. k of kNN query

IDC-INDEX
VA+-STREAM

SS

Fig. 18. CPU time (left) and disk accesses (right) vs. k for TAO data set.

0.1

1

10

100

10 20 30 40 50 60 70 80 90

T
ot

al
 C

P
U

Percentage of Queries

Total CPU vs. Workload

IDC-INDEX
VA+-STREAM

SS

1000

10000

100000

1e+006

1e+007

10 20 30 40 50 60 70 80 90

T
ot

al
 D

is
k

A
cc

es
se

s

Percentage of Queries

Total Disk Accesses vs. Workload

IDC-INDEX
VA+-STREAM

SS

Fig. 19. CPU time (left) and disk accesses (right) vs. workload for TAO data set.

496 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
As we already mentioned, we have used a buffering for the IDC-Index and the VAþ-stream. For SS the use
of buffer is meaningless, since for each query all the streams are accessed. The buffer has an important role in
the performance. We have studied the performance with respect to the buffer size and the results are illustrated

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 497
in Fig. 20. The buffer size is expressed as the percentage of the total number of pages occupied by the data.
Both methods are equally affected by the buffer size.

Next, we examine the impact of the sliding window size to the performance of the methods. It is expected
that the CPU cost for the IDC-Index will not be affected significantly, since the number of coefficients remains
fixed. The number of disk accesses of the IDC-Index increases due to the loss of information as the window
size increases. Nevertheless, the IDC-Index method is more efficient than the VAþ-stream and SS, as it is
depicted in Fig. 21.

4.2.4. Comparison of global and local IDC-index

In this section, we show the experimental results obtained by the comparison of global and local IDC-
Index. In these experiments, only a fraction of the streams is updated in each time instance. The specified
update ratio is set equal to 1%. We studied the performance of the methods both for range and k-NN queries.
Notice that both methods have back pointers at the leaves and therefore have the current DFT values. Thus
the number of disk accesses is the same.

The first experiment shows the CPU cost of the methods in executing k-NN queries with respect to the
ratio of the streams that are updated. The ratio varies from 0.1% to 10%. We used two different workloads:
(a) 20% queries and 80% updates and (b) 80% queries and 20% updates. Fig. 22 depicts the results for
k = 10 for the TAO data set. It is observed that the local IDC-Index shows better performance, especially
when the workload contains more queries than updates and the ratio of updated streams is low. Recall that
1000

10000

100000

1e+006

1e+007

0 5 10 15 20

T
ot

al
 D

is
k

A
cc

es
se

s

Buffer Size

Total Disk Accesses vs. Buffer Size

IDC-INDEX
VA+-STREAM

SS

Fig. 20. Disk accesses vs. buffer size for TAO data set.

0.1

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

T
ot

al
 C

P
U

Window Size

Total CPU vs. Window Size

IDC-INDEX
VA+-STREAM

SS

100

1000

10000

100000

1e+006

1e+007

100 200 300 400 500 600 700 800 900 1000

T
ot

al
 D

is
k

A
cc

es
se

s

Window Size

Total Disk Accesses vs. Window Size

IDC-INDEX
VA+-STREAM

SS

Fig. 21. CPU time (left) and disk accesses (right) vs. sliding window size for STOCKS data set.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 C

P
U

Percentage of the Updated Streams

Total CPU vs. Percentage of the Updated Streams

IDC-INDEX
IDC-LOCAL

3

3.5

4

4.5

5

5.5

6

0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 C

P
U

Percentage of the Updated Streams

Total CPU vs. Percentage of the Updated Streams

IDC-INDEX
IDC-LOCAL

a b

Fig. 22. CPU time vs. stream update ratio (TAO data set, k = 10). (a) 20% queries, 80% updates. (b) 80% queries, 20% updates.

498 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
the IDC-Index with local Dq updates the local Dq of the leaf when a new value arrives. This can cause a
bottom-up update to the upper levels. If the number of updates is much more than the number of queries
or the ratio of streams that are updated is high, then the IDC-Index with local Dq cannot perform well.
Fig. 23 shows the same results for k = 1000 for the TAO data set. The results are similar to those of the
previous case.

An important parameter in the IDC-Index is the specified update ratio. If the update ratio is low, then the
update operation is fast, whereas query processing efficiency may be affected. Since the update operation is
implemented in a bottom-up manner, the question is how this modification affects the performance of the
R*-tree and therefore the overall query execution time. The last experiment compares the performance of
our modified R*-tree to that of a regular R*-tree, which is reconstructed in each time instance in order to guar-
antee the quality of the structure. We used both the global and the local IDC-Index. Fig. 24 illustrates the
query CPU cost and total CPU cost with respect to k, for the ‘‘light’’ workload. As expected, the reconstructed
R*-tree has slightly better performance with respect to the query CPU time, since the quality of the structure
is higher, but not enough to surpass the total CPU overhead. Notice that the gap between the reconstructed
R*-tree and the modifications is of the order of 4 seconds at most for the query CPU time. In contrast, the gap
for the total CPU time is of the order of up to 1500 seconds, since the reconstruction of the structure is a very
costly operation. Moreover the IDC-Index with local Dq is better than the IDC-Index with global Dq. This was
expected, since the use of the local Dq restricts the expansion of the query and therefore less tree nodes are
accessed.
2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 C

P
U

Percentage of the Updated Streams

Total CPU vs. Percentage of the Updated Streams

IDC-INDEX
IDC-LOCAL

9.5

10

10.5

11

11.5

12

12.5

0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 C

P
U

Percentage of the Updated Streams

Total CPU vs. Percentage of the Updated Streams

IDC-INDEX
IDC-LOCAL

a b

Fig. 23. CPU time vs. stream update ratio (TAO data set, k = 1000). (a) 20% queries, 80% updates. (b) 80% queries, 20% updates.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

Q
ue

ry
 C

P
U

k

Query CPU vs. k of kNN query

IDC-LOCAL
IDC-INDEX

REC

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

T
ot

al
 C

P
U

k

Total CPU vs. k of kNN query

IDC-LOCAL
IDC-INDEX

REC

Fig. 24. Query and total CPU time vs. k (‘‘light’’ workload).

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 499
5. Concluding remarks

Data stream processing is an active area of research aiming at the design of efficient methods for handling
time evolving data with frequent updates. Streaming time series compose a special category of data streams
that appear in many applications such as network monitoring, sensor networks, financial applications, tele-
communications data management. A streaming time series is a sequence of data values, where new values
are continuously appended as time progresses. In many cases we are interested only in the recent values of
a streaming time series. Therefore, a sliding window of length W is defined to capture the last W values of
each streaming time series.

An important operation in streaming time series is to determine similar time series with respect to a query
series. Similarity is expressed by means of the last W values of the streams. In this paper, we have studied sim-
ilarity range queries and similarity nearest-neighbor queries in such an environment. More specifically,
we addressed the issues of: (1) incremental feature extraction, (2) efficient in-memory indexing by means of
R*-tree-based access methods, (3) algorithms for range and nearest-neighbor query processing, (4) adapting
the indexing scheme to approximate the update frequency. Performance evaluation results have shown that
significant improvement is achieved in comparison to a recent proposal based on the Vector Approximation
File (VA-File), both in storage requirements and query processing efficiency. The current research can be
extended in a number of different directions:

• the support of multiple continuous queries,
• the consideration of other similarity measures such as Dynamic Time Warping (DTW) [3] and Discrete

Wavelet Transform (DWT) [19],
• the selection of the number of coefficients with respect to the properties of the data set, and
• the efficient processing of similarity join queries in a streaming environment.

Acknowledgement

The research supported by the PENED 2003 program, funded by the General Secretariat for Research and
Technology, Ministry of Development, Greece.
Appendix

Proposition 1. Let S be a streaming time series with values Sð0Þ; Sð1Þ; . . . ; SðW � 1Þ and length W. Moreover, let
DFT 0ðSÞ;DFT 1ðSÞ; . . . ;DFT W�1ðSÞ denote the DFT coefficients of S. If a new value for this stream arrives, we get

500 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
the sequence T ð1Þ; T ð2Þ; . . . ; T ðW Þ, where SðiÞ ¼ T ðiÞ for 1 6 i 6 W � 1 and T ðW Þ is the new value. The DFT

coefficients of T can be computed by the DFT coefficients of S according to the following equation:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
�DFTnðSÞ � Sð0Þ þ T ðW Þ

� �
� ej2pn=W ; ð0 6 n 6 W � 1Þ ð4Þ
Proof. Note that SðiÞ ¼ T ðiÞ for 1 6 i 6 W � 1. The nth DFT coefficient of a streaming time series S is given
by:
DFTnðSÞ ¼
1ffiffiffiffiffi
W
p

XW�1

k¼0

SðkÞ � e�j2pkn=W ð5Þ
Similarly, the nth DFT coefficient of a streaming time series T is given by:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p

XW�1

k¼0

T ðk þ 1Þ � e�j2pkn=W ð6Þ
We begin with Eq. (6) and substitute the values of DFTðSnÞ as follows:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p ðSð0Þ þ Sð1Þe�j2pn=W þ � � � þ SðW � 1Þe�j2pðW�1Þn=W � Sð0Þ þ T ðW ÞÞej2pn=W ð7Þ
By algebraic manipulations in the above equation and taking into consideration that SðiÞ ¼ T ðiÞ for
1 6 i 6 W � 1, and that ej2pn=W ¼ e�j2pðW�1Þn=W we get:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p ðT ð1Þ þ T ð2Þe�j2pn=W þ � � � þ T ðW � 1Þe�j2pðW�2Þn=W þ T ðW Þe�j2pðW�1Þn=W Þ ð8Þ
which is exactly Eq. (4). h

Proposition 2. Let S be a streaming time series with values Sð0Þ; Sð1Þ; . . . ; SðW � 1Þ and length W. Moreover, let

DFT 0ðSÞ, DFT 1ðSÞ; . . . ;DFT W�1ðSÞ denote the DFT coefficients of S. If a new value for this stream arrives, we get
the sequence T ð1Þ; T ð2Þ; . . . ; T ðW Þ, where SðiÞ ¼ T ðiÞ for 1 6 i 6 W � 1 and T ðW Þ is the new value. The real

(DFT nðT Þreal) and the imaginary (DFT nðT Þimag) part of the DFT coefficients of T can be computed by the DFT

coefficients of S according to the following equations:
DFTnðT Þreal ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
�DFTnðSÞreal � Sð0Þ þ T ðW Þ

� �
� cos

2pn
W

� �
�DFTnðSÞimag � sin

2pn
W

� �
ð9Þ
and
DFTnðT Þimag ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
�DFTnðSÞreal � Sð0Þ þ T ðW Þ

� �
� sin

2pn
W

� �
þDFTnðSÞimag � cos

2pn
W

� �
ð10Þ
where ð0 6 n 6 W � 1Þ.

Proof. Using Eq. (4), we substitute the DFTnðSÞ with the real and the imaginary part:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
� ðDFTnðSÞreal þ j �DFTnðSÞimagÞ � Sð0Þ þ T ðW Þ

� �
� ej2pn=W
Using the Euler’s formula, we get:
DFTnðT Þ ¼
1ffiffiffiffiffi
W
p �

ffiffiffiffiffi
W
p
� ðDFTnðSÞreal þ j �DFTnðSÞimagÞ � Sð0Þ þ T ðW Þ

� �

� cos
2pn
W

� �
þ j � sin

2pn
W

� �� �
By algebraic manipulations in the above equation we get Eqs. (7) and (8). h

M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502 501
References

[1] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases, in: Proceedings of the 4th International
Conference on Foundations of Data Organization and Algorithms (FODO 1993), Evanston, IL, USA, 1993, pp. 69–84.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART on Symposium Principles of Database Systems (PODS 2002), Madison, WI, 2002, pp. 1–16.

[3] D. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in: Proceedings of the Workshop on Knowledge
Discovery in Databases, 1994, pp. 359–370.

[4] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan, Maintaining variance and k-medians over data stream windows, in: Proceedings
of the Symposium on Principles of Database Systems (PODS’03), 2003, pp. 234–243.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an efficient and robust access method for points and rectangles, in:
Proceedings of the ACM SIGMOD, Atlantic City, NJ, 1990, pp. 322–331.

[6] S. Babu, J. Widom, Continuous queries over data streams, ACM SIGMOD Record 30 (3) (2001) 109–120.
[7] S. Chandrasekaran, M.J. Franklin, Streaming queries over streaming data, in: Proceedings of the 28th International Conference on

Very Large Databases (VLDB 2002), Hong Kong, China, 2002.
[8] G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan, Comparing data streams using hamming norms (how to zero in), IEEE

Transactions on Knowledge and Data Engineering 15 (3) (2003) 529–540.
[9] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subsequence matching in time-series databases, in: Proceedings of the ACM

SIGMOD Conference, Minneapolis, MN, USA, 1994, pp. 419–429.
[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. OCallaghan, Clustering data streams: theory and practice, IEEE Transactions on

Knowledge and Data Engineering 15 (3) (2003) 515–528.
[11] L. Gao, X.S, Wang, Continually evaluating similarity-based pattern queries on a streaming time series, in: Proceedings of the,

Madison, WI, 2002.
[12] L. Gao, Z. Yao, X.S. Wang, Evaluating continuous nearest neighbor queries for streaming time series via pre-fetching, in:

Proceedings of the 28th International Conference on Very Large Data Bases (VLDB 2002), Hong Kong, China, 2002.
[13] L. Gao, X.S. Wang, Improving the performance of continuous queries on fast data streams: time series case, in: Proceedings of the

ACM SIGMOD DMKD Workshop, Madison, WI, 2002.
[14] KLL02 D. Kwon, S. Lee, S. Lee, Indexing the current positions of moving objects using the lazy update R-tree, in: Proceedings of the

Third International Conference on Mobile Data Management, Washington, DC, USA, 2002, pp.113–120.
[15] M. Kontaki, A.N. Papadopoulos, Efficient similarity search in streaming time sequences, in: Proceedings of the 16th International

Conference on Scientific and Statistical Database Management (SSDBM 2004), Santorini, Greece, 2004.
[16] M. Lee, W. Hsu, C.S. Jensen, B. Cui, K.L. Teo, Supporting frequent updates in R-trees: a bottom-up approach, in: Proceedings of the

29th International Conference on Very Large Data Bases (VLDB 2003), Berlin, Germany, 2003, pp. 608–619.
[17] X. Liu, H. Ferhatosmanoglu, Efficient k-NN search on streaming data series, in: Proceedings of the 8th International Symposium on

Spatial and Temporal Databases (SSTD 2003), Santorini, Greece, 2003.
[18] A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.
[19] C. Sidney Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms, Prentice-Hall, 1997.
[20] T. Seidl, H.-P. Kriegel, Optimal multi-step k-nearest neighbor search, in: Proceedings of the ACM SIGMOD Conference, Seatle, WA,

USA, 1998, pp.154–165.
[21] T. Sellis, N. Roussopoulos, C. Faloutsos, The R+ tree: a dynamic index for multidimensional objects, In: Proceedings of the 13th

International Conference on VLDB (VLDB 1987), England, 1987, pp. 507–518.
[22] R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in high-dimensional

spaces, in: Proceedings of the 24th International Conference on Very Large Databases (VLDB 1998), New York City, NY, 1998,
pp.194–205.

[23] H. Wu, B. Salzberg, D. Zhang, Online event-driven subsequence matching over financial data streams, in: Proceedings of the ACM
SIGMOD Conference, Paris, France, 2004.

Maria Kontaki received her B.S. degree in Computer Science from the Aristotle University of Thessaloniki, and
she is currently a Ph.D. student in the Department of Informatics of Aristotle University of Thessaloniki. Her
research interests include data streams processing, data mining and data management issues in sensor networks.
Further information can be found at http://delab.csd.auth.gr/kontaki.

http://delab.csd.auth.gr/kontaki

Apostolos N. Papadopoulos was born in Eleftheroupolis, Greece in 971. He received his 5-year Diploma degree in
Computer Engineering and Informatics from the University of Patras and his Ph.D. degree from Aristotle
University of Thessaloniki in 1994 and 2000 respectively. He has published several research papers in journals and
proceedings of international conferences. From March 1998 to August 1998 he was a visitor researcher at INRIA
Research Center in Rocquencourt, France, to perform research in spatial databases. His research interests include
spatial and spatiotemporal databases, data stream processing, data mining and information retrieval. His research
work has over 230 citations in scientific journals and conference proceedings. He has served as a track co-chair of
ACM SAC DTTA (Database Technologies Techniques and Applications) Track 2005, 2006 and 2007. He is a
member of the Technical Chamber of Greece. Currently, he is a Lecturer in the Department of Informatics of
Aristotle University of Thessaloniki. Further information can be found at http://delab.csd.auth.gr/apostol.

Yannis Manolopoulos was born in Thessaloniki, Greece in 1957. He received a B.Eng (1981) in Electrical Eng. and

502 M. Kontaki et al. / Data & Knowledge Engineering 63 (2007) 478–502
a PhD (1986) in Computer Eng., both from the Aristotle Univ. of Thessaloniki. Currently, he is Professor at
the Department of Informatics of the latter university. He has been with the Department of Computer Science
of the Univ. of Toronto, the Department of Computer Science of the Univ. of Maryland at College Park and the
Department of Computer Science of the University of Cyprus. He has published about 200 papers in refereed
scientific journals and conference proceedings. He is co-author of the following books: ‘‘Advanced Database
Indexing’’ and ‘‘Advanced Signature Indexing for Multimedia and Web Applications’’ by Kluwer, as well as

‘‘Nearest Neighbor Search: a Database Perspective’’ and ‘‘R-trees: Theory and Applications’’ by Springer. His
published work has received over 1700 citations from over 450 institutional groups. He served/serves as General/
PC Chair/Cochair of the 8th National Computer Conference (2001), the 6th ADBIS Conference (2002) the 5th
WDAS Workshop (2003), the 8th SSTD Symposium (2003), the 1st Balkan Conference in Informatics (2003), the

16th SSDBM Conference (2004) and the 8th ICEIS Conference (2006), the 10th ADBIS Conference (2006). His research interests include
Databases, Data mining, Web and Geographical Information Systems, Bibliometrics/Webometrics, Performance evaluation of storage
subsystems. Further information can be found at http://delab.csd.auth.gr/manolopo.

http://delab.csd.auth.gr/apostol
http://delab.csd.auth.gr/manolopo

	Adaptive similarity search in streaming time series with sliding windows
	Introduction
	Background, related work and contribution
	Proposed approach
	Incremental DFT computation
	Deferred update policy
	IDC-index with global query expansion
	Selecting the update threshold Delta u
	Updating the index
	Query processing issues
	Range query processing
	Nearest-neighbor query processing

	IDC-Index with local query expansion
	Updating the index
	Query processing issues

	Performance study
	The {{ VA}}^{+}-stream approach
	Experimental results
	Estimation accuracy
	Performance of range similarity queries
	Performance of k-NN similarity queries
	Comparison of global and local IDC-index

	Concluding remarks
	Acknowledgement
	References

