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Abstract

The K-Closest-Pairs Query (K-CPQ), a type of distance join in spatial databases, discovers the K pairs of

objects formed from two different datasets with the K smallest distances. Recently, branch-and-bound algo-

rithms based on R-trees have been developed in order to answer K-CPQs efficiently. For query optimization

purposes, analytical models are needed to estimate the processing cost of a specific query in order to eval-

uate alternative execution plans. In this paper, we combine techniques that have been used for the analysis
of nearest neighbor and spatial join queries, and derive the performance cost (in terms of disk accesses) of

K-CPQs using R-trees. Moreover, we present two interesting extensions of the cost model for K-CPQs, one

exploiting the buffering management using R-trees and another for a second type of distance join, the so-

called buffer queries. The proposed cost models are verified under a variety of distributions in 2-dimen-

sional space on both synthetic and real datasets, shown to achieve accurate estimations of the measured

experimental results.
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1. Introduction

The role of spatial databases is continuously increasing in many modern applications during
last years. Mapping, urban planning, transportation planning, resource management, geomarket-
ing, archeology and environmental modeling are just some of these applications. The key charac-
teristic that makes a spatial database a powerful tool is its ability to manipulate spatial data, apart
from storing and representing them. The most basic form of such a manipulation is answering
queries related to the spatial properties of data. Some typical spatial queries include selections
with respect to a reference object (point location query; range query; nearest neighbor query)
and joins between two spatial datasets (overlap or distance join).

In this paper, the cost of a spatial query that combines join and nearest neighbor queries is stud-
ied. It is called K Closest Pairs Query (K-CPQ), which is a type of distance join query. It is defined
as follows: Given two different datasets S1 and S2 of NS1 and NS2 points, respectively, a K-CPQ
retrieves the 1 6 K 6 NS1 � NS2 different pairs of points from S1 · S2 with the K smallest distances
between all possible pairs of points that can be formed by choosing one point of S1 and one point
of S2. Like a join query, all pairs of objects are candidates for the result. Like a nearest neighbor
query, the K nearest neighbor property is the basis for the final ordering. In the degenerate case of
K = 1, the closest pair of spatial objects is discovered. Consider, for instance, a spatial database
where the datasets represent the cultural landmarks and the populated places of North America.
A K-CPQ will discover the K closest pairs of cities and cultural landmarks.

Tree-based algorithms for K-closest pairs search follow branch-and-bound techniques that aim
at finding quickly a good set of pairs, in order to prune the search space as soon as possible. The
earliest K-CPQ algorithms were proposed in [11,13] for R-trees [18], although they can be
modified for any data-partition index (e.g. LSDh-tree [19]). These algorithms report the elements
of a query result all together, at the end of the algorithm�s execution, assuming that the cardinality
(K) of the result is known in advance. In such algorithms, the R-trees are traversed in a Depth-
First (Sorted) or Best-First (Heap) manner, and the MinDist distance (MINMINDIST in
[11,13]) is applied for pruning the search space effectively, since MinDist is a generalization of
the minimum distance between points and MBRs (Minimum Bounding Rectangles, which geo-
metrically encloses spatial objects). MinDist can be applied to pairs of any kind of elements
(i.e. MBRs or points) stored in R-trees during the computation of branch-and-bound algorithms
for K-CPQ.

In the first algorithm presented in [11,13], the R-tree is traversed in a Depth-First manner. Spe-
cifically, starting from the two roots, all possible pairs of MBRs are sorted in ascending order of
MinDist, and the pair of MBRs with the lowest value is visited first. The process is repeated recur-
sively (internal R-tree nodes) until the leaf level where the first potential set of closest pairs is re-
trieved. During backtracking to the upper levels, the algorithm only visits entries whose MinDist
is smaller than or equal to the distance of the Kth closest pair found so far. Depth-First search,
finds many approximate solutions quickly (although, it may take long time to obtain the best solu-
tion if it does not traverse the search path in the right direction) and improves their quality along
time. In order to overcome these problems, in [11,13] a Best-First K-CPQ algorithm was also pro-
posed. This algorithm keeps a minimum binary heap with the references to pairs of nodes (char-
acterized by their MBRs) of the two different R-trees hMinDist;AddrR1

;AddrR2
i accessed so far,

and visits the pair of MBRs with the minimum MinDist in the heap. Although, this alternative
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can theoretically provide the optimal cost (i.e., it only visits the nodes necessary for obtaining the
K closest pairs), its performance in practice can suffer if the available memory is smaller than the
required heap. In these situations part of the heap must migrate to disk, which may incur addi-
tional disk accesses, affecting the query performance.

An important and interesting research direction is the query-cost modeling. Cost models are
used to rank and select the promising processing strategies in spatial databases [30], given a spatial
query and spatial datasets. Cost models are needed to estimate the selectivity of spatial search and
join operations toward comparison of execution costs of alternative processing strategies for spa-
tial operations during query optimizations. Several cost models have been proposed to estimate,
in terms of node accesses, the performance of nearest-neighbors and join queries in the context of
the R-trees, but more work is needed [30].

The analysis of query performance in spatial access methods is important for query optimiza-
tion and for evaluating access method designs. Most I/O cost models unrealistically assume uni-
formity and independence to make the analysis tractable. However, real data overwhelmingly
disobey these assumptions; they are typically skewed and often have dependences between dimen-
sions. In this paper, we derive formulae to estimate the number of disk accesses for K-CPQ be-
tween two R-trees, for real datasets. These formulae depend on several input parameters,
highlighting the correlation exponent (q) and number of pairs in the final result (K). Moreover,
our analysis provides a cost model of a typical (non-uniform) workload using the so-called biased
query model [22], which assumes that queries are more probable in high-density areas of the address
space. Moreover, we have successfully extended our cost model to other distance join queries as
buffer queries [9] and to the study of including buffering (LRU buffer model, [6]) in K-CPQ using
R-trees, which theoretical results have been very similar to the experimental ones in terms of buf-
fer hit probability and number of R-tree node accesses.

The rest of the paper is organized as follows. In Section 2, we review the R-tree family as spatial
access method, describe the branch-and-bound algorithms for K-CPQ and survey previous work
on cost models for nearest neighbors and join queries over R-trees. Section 3 presents our cost
model and the formulae that estimate the K-CPQ performance, which is a generalization of dif-
ferent cost models as nearest neighbor and spatial join queries using R-trees. In Section 4, two
interesting extensions of the cost model are discussed: a cost model for buffer queries (another
type of distance join) and a buffer model (LRU) for K-CPQ using R-trees. In Section 5, experi-
mental results of the proposed cost model are presented with respect to R-tree implementations
for different data distributions (synthetic (uniform) and real). Finally, Section 6 presents the con-
clusions of this research paper and gives directions for future work.
2. Related work

2.1. R-trees

An R-tree [18] is a hierarchical, height balanced multidimensional data structure, designed to be
used in secondary storage and it is a generalization of B-trees for multidimensional data spaces. It
is used for the dynamic organization of a set of d-dimensional objects represented by their d-
dimensional MBRs. These MBRs are characterized by min and max points of hyper-rectangles
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Fig. 1. An example of an R-tree.
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with faces parallel to the coordinate axes. Using the MBR instead of the exact geometrical repre-
sentation of the object, its representational complexity is reduced to two points, where the most
important object features (position and extension) are maintained. Consequently, the MBR is an
approximation widely employed.

The rules obeyed by an R-tree are as follows: leaves reside on the same level; each leaf contains
entries of the form (MBR, Oid), such that MBR is the minimum bounding rectangle that encloses
the object determined by the identifier Oid; internal nodes contain entries of the form (MBR,
Addr), where Addr is the address of the child node and MBR is the minimum bounding rectangle
that encloses MBRs of all entries in that child node; nodes (except possibly for the root) of an R-
tree of class (Cmin,Cmax) contain between Cmin and Cmax entries, where Cmin 6 dCmax/2e
(Cmax and Cmin are also called maximum and minimum branching factors or fan-out); the root
contains at least two entries, if it is not a leaf. Fig. 1 depicts the 2-dimensional points along with
their MBRs, on the left and the corresponding R-tree of class (2, 3), on the right.

Many variations of R-trees have appeared in the literature (an exhaustive survey can be found
in [17]). One of the most popular and efficient variations is the R*-tree [2]. The R*-tree added two
major enhancements to the R-tree, in case that a node overflows. First, rather than just consider-
ing the area, the node-splitting algorithm in the R*-tree also minimized the perimeter and overlap
enlargement of the minimum bounding rectangles. It tends to reduce the number of subtrees to
follow for search operations. Second, the R*-tree introduced the notion of forced reinsertion to
make the tree shape less dependent to the insertion order. When a node overflows, it is not split
immediately, but a portion of entries of the node is reinserted from the tree root. With these two
enhancements, the R*-tree generally outperforms original R-tree. It is commonly accepted that
the R*-tree is one of the most efficient R-tree variants.

2.2. Algorithms for K-CPQ using R-trees

If we assume that the datasets are indexed on any tree-like structure belonging to the R-tree
family, then the main objective while answering this type of distance-based query is to reduce
the search space. In [11], a generalization of the function that calculates the minimum distance
between points and MBRs (MinDist) was presented. MinDist (M1,M2) calculates the minimum
distance between two MBRs M1 andM2. If any of the two (both) MBRs degenerates (degenerate)
to a point (two points), then we obtain the minimum distance between a point and an MBR [29]
(between two points).
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Definition 1. MinDist(M1,M2).
Given two MBRs M1 = (a,b) and M2 = (c,d), in E(d) (d-dimensional Euclidean space)
M1 ¼ ða;bÞ; where a ¼ ða1;a2; . . . ; adÞ and b ¼ ðb1; b2; . . . ;bdÞ such that ak 6 bk 81 6 k 6 d

M2 ¼ ðc; dÞ; where c ¼ ðc1; c2; . . . ; cdÞ and d ¼ ðd1; d2; . . . ; ddÞ such that ck 6 dk 81 6 k 6 d
we define MinDist(M1,M2) as follows:
MinDistðM1;M2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

l2k

vuut ; such that lk ¼

ck � bk; if ck > bk

ak � dk; if ak > dk

0; otherwise

8>><
>>:
MinDist(M1,M2) serves as lower bound function of the Euclidean distance from the K closest pairs
of objects enclosed by the MBRs M1 and M2 (lower-bounding property). MinDist is monotonically
non-decreasing with the R-tree heights [13]. The general pruning mechanism for K-CPQs over
R-trees is the following: if MinDist(M1,M2) > z, then the pair of MBRs (M1,M2) will be discarded,
where z is the distance value of the Kth closest pair that has been found so far.

In order to design an efficient algorithm that retrieves the 1 6 K 6 NS1 � NS2 different pairs of
points from S1 · S2 (where both point datasets are indexed by R-trees), the concept of synchro-
nous tree traversals following a Depth-First or Best-First search can be applied for query process-
ing [13]. Since Best-First search is I/O optimal (in absence of buffers, it only visits the necessary
nodes for obtaining the query result [4]) and Depth-First search accesses more partitions than
actually necessary, we are going to focus on the first searching strategy for the K-CPQ algorithm
that will guide our cost analysis.

The Best-First K-CPQ algorithm needs to keep a minimum binary heap (H) [10] with the ref-
erences to pairs of internal nodes (characterized by their MBRs) accessed so far from the two dif-
ferent R-trees and their minimum distance (hMinDist;AddrR1

;AddrR2
i). It visits the pair of MBRs

(nodes) with the minimum MinDist in the H, until it becomes empty or the MinDist value of the
pair of MBRs located in the root of H is larger than the distance value of the Kth closest pair that
has been found so far (z). To keep track of z, we also need an additional data structure that stores
the K closest pairs discovered during the processing of the algorithm. This data structure is orga-
nized as a maximum binary heap (K-heap) [10] and will hold pairs of objects according to their
minimum distance (the pair with the largest distance resides in the root). In the implementation
of K-CPQ algorithm we must consider the following cases: (1) initially the (K-heap is empty (z
is initialized to 1), (2) the pairs of objects reached at the leaf level are inserted in the K-heap until
it gets full (z keeps the value of1), (3) if the distance of a new pair of objects discovered at the leaf
level is smaller than the distance of the pair residing in the K-heap root, then the root is extracted
and the new pair is inserted in the K-heap, updating this data structure and z (distance of the pair
of objects residing in the K-heap root). Such an algorithm for two R-trees (R1,R2) with the same
heights appears in the Fig. 2 (input: two R-trees (R1 and R2) indexing two point datasets and a
maximum binary heap with size K to store the final result (K-heap); output: K-heap (maximum
binary heap with pairs of points ordered according to their distances)). If the R-trees have differ-
ent heights, we can use fix-at-leaves technique [11].
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As we can observe from Fig. 2, the K-CPQ is a combination of spatial join and K-nearest
neighbor queries following a Best-First search [13]. Like a spatial join query, all pairs of objects
are candidates for the final result. Like a K-nearest neighbor query, distance functions form
the basis for pruning mechanism and the final ordering. Therefore, a combination of both cost
models would be reasonable to adopt in order to propose a cost model for the K-CPQ using
R-trees.

2.3. Cost models using R-trees

The first attempt to provide an analysis for R-tree index structures appeared in [16], where a
model that estimates the performance of R-trees and R+-trees for selection queries was proposed.
Later, [21,26], independently, presented a formula that calculates the average number of page
accesses in an R-tree accessed by a query window as a function of the average node size and
the query window size. Due to the high impact of similarity queries (mainly of the nearest neigh-
bor query), a considerable number of different algorithms using R-trees and the respective cost
models for estimating the number of page accesses have already been proposed in the last years.
Moreover, most related work on join processing using multidimensional access methods is based
on spatial intersect joins using R-trees. In this section, we are going to review the most represen-
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tative research efforts on analytical performance studies for nearest neighbor and spatial intersect
join queries using R-trees.

2.3.1. Cost models for nearest neighbor queries using R-trees
To the best of our knowledge, [27,22] are the most representative papers for analysis based on

fractals of nearest-neighbor queries on R-trees. These models try to account for the non-unifor-
mity of the data by modeling it using a few global parameters, like the fractal dimension. This
kind of models estimates the average page geometry assuming square pages and the average query
shape in a similar way as the uniform techniques. However, instead of using the embedding
dimension, they consider the fractal dimension. In [27] results for estimating data page accesses
of R-trees when processing nearest neighbor queries in a Euclidean space were reported. Since
it is difficult to determine accesses of pages with rectangular regions for spherical queries, the
authors approximate query spheres by minimum bounding and maximum enclosed cubes and
thus determine lower- and upper-bounds in average-case formulae for the number of page acces-
ses for 1-nearest-neighbor search. These bounds diverge rapidly with the increase of fractal dimen-
sions. In [22], closed-form formulae for K-nearest-neighbor queries, for arbitrary K were
proposed. Moreover, such formulae can be simplified and, thus, lead to fundamental observations
that deflate the dimensionality curse.

In [4], a cost model for query processing in high-dimensional data spaces was presented. It pro-
vides accurate estimations for nearest neighbor queries and range queries using the Euclidean dis-
tance, and assumptions of independence are implicit in the formulae. This paper introduces the
concept of the Minkowski sum to determine the access probability of a rectangular page for
spherical queries (i.e. range queries and nearest neighbor queries). The Minkowski sum can be
used to determine the index selectivity of distance-based join operations. Finally, in [7] an excel-
lent study that provides accurate estimations of the number of pages accesses for range queries
and nearest neighbor queries under Euclidean and maximum distances was presented. The bound-
ary effects are considered and the concept of fractal dimension is used to take into account the
effects of correlated data.

Recently in [33], a cost model for K-NN queries was also proposed for low and medium dimen-
sionalities, using a new technique based on the concept of vicinity rectangles and Minkowski rect-
angles (instead of the traditional vicinity circles and Minkowski regions, respectively), which
simplifies the resulting equations with minimal computational overhead. They confirmed the accu-
racy of the model through extensive experiments using the R*-tree as the underlying spatial access
method (with uniform and real datasets) and, demonstrated its applicability and effectiveness by
incorporating it in various query optimization problems related to nearest neighbor search.

2.3.2. Cost models for spatial join queries using R-trees
Considering join queries, in [1], analytical formulae for cost and selectivity, based on the R-tree

analysis of [21], were proposed. The basic idea of [1] was the consideration of one of the datasets
as the underlying database and the other dataset as a source for query windows in order to esti-
mate the cost of a spatial join query based on the cost of range queries. Experimental results show-
ing the accuracy of the selectivity estimation formula were also presented in that paper.

In [20], a cost model for spatial joins using R-trees was proposed. It was the first attempt to
provide an efficient formula for join performance by distinguishing two cases: considering either
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zero or nonzero buffer management. Using the analysis of [21] and assuming knowledge of R-tree
properties, this paper provides two formulae, one for each of the above cases. The efficiency of the
proposed formulae was demonstrated by comparing analytical estimations with experimental re-
sults for varying buffer sizes (with the relative error being around 10–20%).

In [32], a model that predicts the performance of R-tree-based structures for selection (point or
range) queries and an extension of this model for supporting join queries (overlap operator be-
tween spatial objects, although any other spatial operator could be used instead) were presented.
The proposed cost formulae are functions of data properties only, namely, the cardinality and the
density in the workspace, and, therefore, can be used without any knowledge of the R-tree index
properties. They are applicable to point or non-point datasets and, although they make use of the
uniformity assumption, they are also adaptive to non-uniform distributions, which usually appear
in real applications, by reducing its effect from global to local level (i.e., maintaining a density sur-
face and assuming uniformity on a small subarea of the workspace). Experimental results on both
synthetic and real datasets showed that the proposed analytical model was very accurate, with the
relative error being usually around 10–15% when the analytical estimate is compared to cost mea-
surements using the R*-tree. In addition, for join query processing, a path buffer was considered
and the analytical formula was adapted to support it. The performance saving due to the existence
of such a buffering mechanism was highly affected by the sizes (and height) of the underlying indi-
ces and reached up to 50% for two-dimensional datasets. The proposed formulae and guidelines
could be useful tools for spatial query processing and optimization purposes, especially when
complex spatial queries are involved.

In [8], an analytical model and a performance study of the similarity join operation on indexes
were presented. In this context, the optimization conflict between CPU and I/O optimization was
studied. To solve this conflict, a complex index architecture (Multipage Index, MuX) and join
algorithm (MuX-join), which allows a separate optimization of the CPU time and the I/O time,
was proposed. This architecture (MuX), which is based on R-trees (for a fast index construction,
the bottom-up algorithm for X-tree construction [5] was adopted), utilized large primary pages,
which are subject to I/O processing and optimized for this purpose. The primary pages accommo-
date a secondary search structure to reduce the computational effort. The experimental evaluation
using the join algorithm (MuX-join) over the index architecture (MuX) showed a good perfor-
mance.
3. A cost model for K-CPQ using R-trees

3.1. Preliminaries

According to the analysis of R-tree joins in [32,15,22] and assuming (without loss of generality)
that the search space is a normalized d-dimensional unit hypercube [0,1]d, we will consider the
symbols shown in Table 1 for the analysis of the cost model.

fRi , hRi , NRi;li , and sRi;li;k can be easily estimated under the following two assumptions [32,14]:

• Squaredness assumption. We consider square node MBRs (hypercubes), since this is a reason-
able property for good R-trees [21]. We make this assumption in order to make modeling



Table 1

List of symbols

Symbols Description

d Number of dimensions (1 6 k 6 d), i.e. embedding dimension

q Correlation exponent of two points datasets (pair-count exponent [15])

Si Point datasets that are indexed in the R-tree Ri with cardinality NSi
CmaxRi Maximum number of objects per node (maximum branching factor) in the R-tree Ri

UavgRi
Average node utilization in the R-tree Ri

fRi Effective R-tree node capacity or average R-tree node fan-out in the R-tree Ri

hRi Height of the R-tree Ri

NRi Number of points indexed in the R-tree Ri (cardinality of Si, NSi ¼ NRi )

NRi;li Average number of R-tree nodes in the R-tree Ri at level li (NRi;root ¼ NRi;0 ¼ 1)

NodesRi Total number of R-tree nodes in R-tree Ri

sRi;li;k Average extent of node MBRs of the R-tree Ri at level li on dimension k (1 6 k 6 d).

In other words, it is the average side length of node MBRs of Ri at level li on dimension k

distcp(K) Distance of the Kth closest pair

r(K) K-CPQ index selectivity

NAcp(K) Average number of pages (R-tree nodes) retrieved by a K-CPQ
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manageable. R-tree-like structures as the R*-tree and the X-tree try to produce such node
MBRs.

• Biased query model. We assume that queries are more probable in high-density areas of the
address space and that the anchor points are allowed to land only on data points. Thus,
high-density areas attract more candidates for the query result.
fRi ¼ CmaxRi � UavgRi
; hRi ¼ 1þ logfRi

NRi

CmaxRi

� �� �

NRi;li ¼
NRi

f
hRi�li
Ri

; NodesRi ¼
XhRi�1

li¼0

NRi;li
where li ¼ 0; 1; . . . ; hRi � 1 (the root is assumed at level li = 0 and leaves at li ¼ hRi � 1).

Moreover, in the case of low-dimensionality, for uniform data and considering the MBR effect,
the average extent sRi;li of a node MBR of the R-tree Ri (with height hRi) at level li (assuming that
all node MBRs at the same level have similar extents and each node MBR has identical extent on
each dimension) is given by the following formula [7]:
sRi;li;k � sRi;li ¼ 1� 1

fRi

� �
� min

f
hRi�li
Ri

NRi

 !
; 1

( ) !1=d
where li ¼ 0; 1; . . . ; hRi � 1 (the root is assumed at level li = 0 and leaves at li ¼ hRi � 1).
In order to obtain sRi;li;k (real average extent of node MBRs of the R-tree Ri at level li on dimen-

sion k (1 6 k 6 d)) for a given real R*-tree Ri (R*-trees tend to generate squared MBRs in its
structure [14], i.e. good R-trees) and prove the squaredness assumption, we have computed the fol-
lowing formula for each level li and dimension k. Let MRi;li;m be the mth MBR (1 6 m 6

Numberof NodesRi;li) at the lith level (0 6 li 6 hRi � 1) in the R*-tree Ri, where Number of



Table 2

Measured real average extent of node MBRs (sRi ;li ;k) of the R*-tree Ri at level li on dimension k (1 6 k 6 2) for uniform

datasets (see Section 5), varying the branching factor for CmaxRi ¼ 25 and 50

Level (li) 25 (CmaxRi ) 50 (CmaxRi )

Unif1 (Ri) Unif2 (Ri) Unif1 (Ri) Unif2 (Ri)

X (k = 1) Y (k = 2) X (k = 1) Y (k = 2) X (k = 1) Y (k = 2) X (k = 1) Y (k = 2)

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1 0.265303 0.278601 0.275572 0.285508 0.552201 0.551264 0.542527 0.542287

2 0.069035 0.065891 0.071967 0.071837 0.140719 0.142983 0.142961 0.127784

3 0.013189 0.013205 0.013975 0.014378 0.020989 0.021019 0.020858 0.020719

Table 3

Measured real average extent of node MBRs (sRi ;li ;k) of the R*-tree Ri at level li on dimension k (1 6 k 6 2) for real

datasets (see Section 5), varying the branching factor for CmaxRi ¼ 100 and 200

Level (li) 100 (CmaxRi ) 200 (CmaxRi )

CAS(Ri) CAP(Ri) CAS(Ri) CAP(Ri)

X (k = 1) Y (k = 2) X (k = 1) Y (k = 2) X (k = 1) Y (k = 2) X (k = 1) Y (k = 2)

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1 0.202204 0.212209 0.261987 0.249169 0.286131 0.277676 0.483801 0.497636

2 0.016961 0.017515 0.025633 0.024353 0.026881 0.028771 0.034857 0.033521
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NodesRi;li represents the real number of R-tree nodes of Ri at level li. MRi;li;m ¼ ðam; bmÞ, where
am = (am1,am2, . . .,amd) and bm = (bm1,bm2, . . .,bmd) such that amk 6 bmk for any 1 6 k 6 d (Tables
2 and 3).
sRi;li;k ¼
PNumber of NodesRi ;li

m¼1

Pd
k¼1 bmk � amkf g

n o
Numberof NodesRi;li
We can observe from the R*-trees generated for our experiments (with different maximum fan-
outs, CmaxRi) that the squaredness assumption is reasonable to use in our cost model, since
X(k = 1) � Y(k = 2) in the normalized 2-dimensional unit hypercube ([0,1]2) for any level li,
R*-tree Ri and maximum fan-out CmaxRi . Therefore, we can use square-like MBRs with average
extent sRi;li ðsRi;li;k � sRi;li) in the cost models using R*-trees.

3.2. Estimating the number of node accesses using R-trees

3.2.1. Number of node accesses for K-NNQ

We assume the normalized d-dimensional unit space [0,1]d and a spatial dataset of cardinality
NRi with the corresponding MBR approximations of spatial data being indexed in an R-tree Ri.
The problem of R-tree cost analysis for K-NNQ (K Nearest Neighbor Query), which finds the
K nearest neighbors to a given point query and arbitrary value of K (1 6 K 6 NRi), has been stud-
ied actively in [4,7,22]. The study in [22] for Euclidean distance, first it estimates how far away
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from the query point the Kth nearest neighbor is located in average (in effect transforming a near-
est neighbor query into an equivalent range query).
distnnðKÞ ¼
C ðd=2Þ þ 1ð Þð Þ1=dffiffiffi

p
p � K

NRi

� �1=D2

ð1Þ
where C(x) is the gamma function, obeying the recursive definition C(x + 1) = x * C(x), C(1) = 1,
Cð1=2Þ ¼

ffiffiffi
p

p
, which may be approximated by Cðxþ 1Þ � ðx=eÞx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p � x

p
.

Based on this distance, the cost model computes the volume of the Minkowski sum of the query
sphere with radius distnn(K) and the shape of an R-tree index page (average side length of node
MBRs of R-tree), which corresponds to the access probability of the R-tree node. Besides, to com-
pute distnn(K) is used the correlation fractal dimension D2 [3], which shows how the average num-
ber of neighbors of a given point of the dataset grows, as the box size grows (dividing the space
into hyper-cube grid boxes with size r). D2 is computed by a box-computing algorithm based on
the concept of sum of squared occupancies of points that are contained within boxes of size r [3].
Therefore, assuming a set of NRi d-dimensional points with correlation fractal dimension D2 in-
dexed by an R-tree Ri with effective R-tree node capacity fRi and height hRi , the average number
of accessed R-tree nodes (NA) to answer a K-NNQ is given by the following formula [22]:
NAnnðRi;KÞ ¼
XhRi�1

li¼0

NRi;li �
Xd
k¼0

d

k

� �
� ðsRi;liÞ

d�k � p
k=2 � ðdistnnðKÞÞk

C k=2þ 1ð Þ

( ) !D2=d
8<
:

9=
; ð2Þ
In this case, we can observe that NRi;li is the node density of the R-tree Ri at level li, and the term
Xd
k¼0

d

k

� �
� ðsRi;liÞ

d�k � p
k=2 � ðdistnnðKÞÞk

C k=2þ 1ð Þ

( ) !D2=d

ð3Þ
corresponds to the K-NNQ index selectivity, which is the probability that a node from the R-tree
Ri at level li is accessed for this distance-based query. When we use indexes, the only gain using
algorithms for query processing is the index selectivity, i.e. not all nodes must be accessed and not
all objects must be compared.

For nearest neighbor queries, assuming smoothly distributed points in the data space, low
dimensionality (low D2 values) and considering the MBR effect, the estimation of the average side
length of node MBRs of R-tree Ri at level li in presence of the correlation fractal dimension D2 is
as follows [7]:
sRi;li ¼ 1� 1

fRi

� �
� min

f
hRi�li
Ri

NRi

 !
; 1

( ) !1=D2

ð4Þ
3.2.2. Number of node accesses for spatial join
Formally, the problem of R-tree cost analysis for spatial join queries is defined as follows [32]:

Let d be the dimensionality of the normalized d-dimensional unit space [0,1]d. Let us assume two
spatial datasets of cardinality NR1

and NR2
, with the corresponding MBR approximations of spa-

tial data being stored in two R-tree indices R1 and R2, respectively. The goal of the cost analysis is
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a formula that would efficiently estimate the average number of nodes accessed in order to process
a spatial join query between the two datasets indexed by R-trees, based on the knowledge of the
data properties and extracting information from the corresponding R-tree structures.

Let the heights of the R-trees R1 and R2, be hR1
and hR2

, respectively. At each level li,
0 6 li 6 hRi � 1, Ri contains NRi;li nodes of average size sRi;li;k, on each dimension k (1 6 k 6 d).
The overall estimation of the total cost in terms of R-tree node accesses for the spatial join oper-
ation (when the spatial predicate is overlap) is defined by the following formula [32] (without loss
of generality, it is assumed that hR2

6 hR1
):
NAsjðR1;R2Þ ¼
XhR1�1

l1¼0

NAðR1;R2; l1Þ þ NAðR2;R1; l2Þf g
where
l2 ¼
l1; 0 6 l1 6 hR2

� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1

�

The cost of the previous formula at each level is the sum of two factors which correspond to the
costs for the two R-trees, namely NA(R1,R2, l1) and NA(R2,R1, l2), respectively. For the levels of
the two R-trees, where hR2

6 hR1
:

NAðR1;R2; l1Þ ¼ NAðR2;R1; l2Þ ¼ NR1;l1 � NR2;l2 �
Yd
k¼1

sR1;l1;k þ sR2;l2;k

� �

where hR2

6 l1 6 hR1
� 1 and 0 6 l2 6 hR2

� 1. Therefore, the estimation of the total I/O cost in
terms of R-tree nodes accessed for spatial join query is as follows:
NAsjðR1;R2Þ ¼ 2 �
XhR1�1

l1¼0

NR1;l1 � NR2;l2 �
Yd
k¼1

sR1;l1;k þ sR2;l2;k

� �( )
ð5Þ
where
l2 ¼
l1; 0 6 l1 6 hR2

� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1

�

From NAsj(R1,R2) formula, we can see that NR1;l1 � NR2;l2 is the R-tree node pairs density of the
R-trees R1 and R2 at levels l1 and l2, and the term
Yd
k¼1

sR1;l1;k þ sR2;l2;k

� �
ð6Þ
corresponds to the join index selectivity, and it equals the probability that a random pair of nodes
from two R-trees R1 and R2 at levels l1 and l2 is accessed (i.e. the number of node pairs at levels l1
and l2 to be processed divided by the theoretically possible node pairs).

3.2.3. Number of node accesses for K-CPQ

The previous formulae (2) and (5) can be applied for obtaining the I/O cost of the K-CPQ for R-
trees, using an appropriate K-CPQ index selectivity, (r). It depends mainly on the characteristics
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Fig. 3. The 2-dimensional Minkowski sum of two MBRs (a), and an MBR and a e-sphere (b).
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of the index (e.g. average side length of node MBRs) and on the distance parameter distcp(K),
which is the distance of the Kth closest pair for the K-CPQ.

The K-CPQ index selectivity (r) can be also obtained by using the concept of Minkowski sum
[4]. The Minkowski sum of two geometric objects A and B, each seen as an infinite number of
vectors (points) in the d-dimensional data space (e.g. A = {a1,a2, . . .} and B = {b1,b2, . . .}), is
defined as the set of vector sum of all combinations between vectors in A and B: A � B = {a + b:
a 2 A, b 2 B} = {a1 + b1,a1 + b2,a2 + b1, . . .}. For the cost modeling we are only interested in the
volume of the Minkowski sum, VA�B, not in its shape. The simplest case is both spatial objects to
be d-dimensional MBRs, M1 and M2, with side length rk and sk (1 6 k 6 d), respectively. In this
case, the volume V M1�M2

of the Minkowski sum of two MBRs is the MBR with side length tk,
where each tk corresponds to the sum of rk and sk, as in Fig. 3a for d = 2. Note the likeness of
V M1�M2

with the expression of join index selectivity, see formula (6).
V M1�M2
ððr1; r2; . . . ; rdÞ; ðs1; s2; . . . ; sdÞÞ ¼

Yd
k¼1

frk þ skg
A more complicate case is the volume of the Minkowski sum of an MBR M with side length rk
(1 6 k 6 d) and a hyper-sphere with radius e ðV M�SeÞ. In this case, we enlarge the MBR region so
that if the original MBR touched any point of the query sphere, then the enlarged MBR touches
the center point of the query. Thus, the MBR region becomes enlarged by a sphere of the same
radius e whose center point is drawn over the surface of the MBR region. The V M�Se equation is
given by the following binomial formula and the Fig. 3b shows this transformation for d = 2.
Again, observe the likeness with the expression of K-NNQ index selectivity, see formula (3).
V M�Seððr1; r2; . . . ; rdÞ; eÞ ¼
Xd
k¼0

d

k

� �
� ðrkÞd�k � pk=2

Cðk=2þ 1Þ � e
k

� 	
In [8] for the similarity join operation (two datasets of multidimensional points are combined in
such a way that the result contains all pairs of points where the distance does not exceed a given
distance threshold e), the volume of the Minkowski sum of three objects (two MBRs and a e-
sphere) was given by the following binomial formula:
V M1�M2�Seððr1; r2; . . . ; rdÞ; ðs1; s2; . . . ; sdÞ; eÞ ¼
Xd
k¼0

d

k

� �
� ðrk þ skÞd�k � pk=2

C k=2þ 1ð Þ � e
k

� 	



Fig. 4. The 2-dimensional Minkowski sum of two MBRs and a e-sphere.
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In our case (the K-CPQ), for the Euclidean distance, a pair of R-tree nodes is processed whenever
the minimum distance between their two MBRs does not exceed the distcp(K) distance value. In
order to determine the probability of this event, we enlarge the MBR of one node so that this
MBR touches any point of the MBR of the other node (Minkowski sum of two MBRs is an
MBR with added side lengths). This new MBR is enlarged even more by a sphere of radius
distcp(K) whose center point is drawn over the perimeter of the enlarged MBR. The 2-dimensional
Minkowski sum of two MBRs and a e-sphere (e � distcp(K)) is shown in the Fig. 4.

The volume of the Minkowski sum of two MBRs of two levels l1 and l2 R-tree nodes
(0 6 li 6 hRi � 1) from two R-trees R1 and R2 with heights hR2

6 hR1
and one sphere of radius

distcp(K), divided by the data space volume (the volume of the d-dimensional unit space [0,1]d

which is equal to 1), expresses the access probability (K-CPQ index selectivity, r(K)) of the corre-
sponding nodes and it is given by the following binomial formula (note that Ri contains NRi;li

nodes of average side lengths sRi;li with minimum distance between them smaller than or equal
to distcp(K)):
rðKÞ ¼
Xd
k¼0

d

k

� �
� sR1;l1 þ sR2;l2ð Þd�k � p

k=2 � ðdistcpðKÞÞk

Cðk=2þ 1Þ

( ) !q=d

ð7Þ
where
l2 ¼
l1; 0 6 l1 6 hR2

� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1

�

For example, if we have low values of dimensionality (d = 2 and 3), it is easy to deduce K-CPQ

index selectivity formula as follows (where a ¼ ðsR1;l1 þ sR2;l2Þ):
rðKÞ ¼
a2 þ 4 � a � distcpðKÞ þ p � ðdistcpðKÞÞ2

 �q=2

; d ¼ 2

a3 þ 6 � a2 � distcpðKÞ þ 3 � p � a � ðdistcpðKÞÞ2 þ 4
3
� p � ðdistcpðKÞÞ3


 �q=3
; d ¼ 3

8><
>:
Although, the Minkowski sum is used in [8] for uniform and independent data only, it can also be
applied for real data (non-uniform and independent data distributions) to determine r(K), assum-
ing the pairs distribution is smooth (in this case, smoothness means that the pairs density (number
of pairs inside a given volume) does not vary severely inside the Minkowski enlargement of page
pairs), since in this case, the non-uniformity does not have influence on the cost model [7].
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Moreover, the use of the exponent q/d for the whole sum in the above formula (7) is explained
as follows, according to [7]. Under uniformity and independence assumption, the number of pairs
of points enclosed in a hypercube with side length s is proportional to the volume of the hyper-
cube, pairs(s) = s * s

d = s * Vol, where s ¼ ðNR1
� NR2

Þ=VolDS is called pairs density (VolDS = 1d = 1
is the volume of the data space) and Vol ¼ sd () s ¼ Vol1=d . Real datasets (non-uniform and inde-

pendence with smooth pairs distribution) obey a similar power law using the �correlation exponent�
q (pair-count exponent) of the datasets [15] pairs(s) = sp * sq = sp * Volq/d, where sp is called cor-

relation pairs density, which is analogous to the pairs density s (and s = Vol1/d): for the uniform
case, q = d and sp = s. Since our K-CPQ index selectivity (r(K)) formula is calculated according
to the concept of Minkowski sum, really for cost modeling we are interested on its volume (the
volume of Minkowski sum corresponds to the volume of intersected pages [4]), and for this reason
we raise the volume of the Minkowski sum to q/d (for real datasets, obeying a �similar� power law
which depends on q and the volume of Minkowski sum), using the correlation exponent q and the
dimensionality d of the data space.

Finally, the overall estimation of the total I/O cost in terms of R-tree node accesses for K-CPQ
is given by the following formula (without loss of generality, it is assumed that hR2

6 hR1
), in a

similar way to NAnn(Ri,K) and NAsj(R1,R2). Where the multiplier (i.e. the factor 2) corresponds
to the cost of two R-trees (R1 and R2), NR1;l1 � NR2;l2 is the R-tree node pairs density of the R-trees
R1 and R2 at levels l1 and l2, and r(K) represents the percentage of pairs of R-tree nodes that are
accessed at these levels for the K-CPQ algorithm.
NAcpðR1;R2;KÞ ¼ 2 �
XhR1�1

l1¼0

NR1;l1 � NR2;l2 � rðKÞ
� �

ð8Þ
where �

l2 ¼

l1; 0 6 l1 6 hR2
� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1
3.3. Estimation of the distance of the Kth closest pair, distcp(K)

We are interested in the estimation of distcp(K) under the Euclidean distance for arbitrary object
distributions. Real datasets (non-uniform and independent) show a clear divergence from the uni-
formity and independence assumptions [14] and, hence, it is better to consider the uniformity as a
special case. In [15] was proposed a power law to predict the selectivity of spatial join and to esti-
mate the distance of the Kth closest pair (PC(r) = b * rq). Here, we will use the Box-Occupancy-

Product-Sum (BOPS) method (box-counting approach) as proposed in [15] to determine the
exponent (q) of the power law.

For the estimation of distcp(K), given two point datasets with finite cardinalities NR1
and NR2

embedded in a unit hypercube of dimension d, the average number of pairs within a region of reg-
ular shape characterized by a distance r P 0, obeying a power law based on the �correlation expo-
nent� q [15,3], is given by: pairs(r, �d-shape�) = sp * Vol(r,�d-shape�)q/d
pairsðr; ‘d-shape’Þ ¼ NR1
� NR2

� Cð1=2Þð Þd

Cðd=2þ 1Þð Þ � r
d

 !q=d
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where NR1
� NR2

is the correlation pairs density (sp) in [0,1]d and ((C(1/2))d/C(d/2 + 1)) * rd is
the volume of that part of an r-hypersphere centered on a point that is inside the d-dimensional
hypercube [0,1]d. Therefore, we can use the previous formula to estimate the average distance of
Kth closest pair under the Euclidean distance, satisfying that pairs(r, �d-shape�) = K and
r = distcp(K):
distcpðKÞ ¼
ðCððd=2Þ þ 1ÞÞ1=dffiffiffi

p
p � K

NR1
� NR2

� �1=q

ð9Þ
3.4. Estimation of the correlation exponent, q

The pair-count law [15] governs the distribution of pair-wise distance between two real, d-
dimensional point datasets. The exponent of the pair count law, so-called pair-count exponent q
(correlation exponent), can be calculated using the box-counting approach based on the concept
of box-occupancy-product-sum (BOPS) [15]. The most important properties of q are the following:
(1) q includes the correlation fractal dimension (D2) as special case; (2) q is invariant to affine trans-
formations (translation, rotation and uniform scaling); (3) q is invariant to sampling; and (4) q is
invariant to Lp metric distance used [15]. The algorithm for computing BOPS is an interesting
extension of the algorithm proposed in [3] for computing Dq (generalized fractal dimension).

Definition 2. Pair-count function, PC(r) [15].
For two point datasets, S1 and S2, and a given distance rP 0, the pair-count function, PC(r),

counts the number of pairs within a Euclidean distance smaller than or equal to r. PC(r) = {(ai,bj):
distance(ai,bj) 6 r, ai 2 S1 and bj 2 S2}.

Law 1. Power law for pair-count function (follows from Law 1 of [15]).
The pair-count function, PC(r), follows a power law PC(r) / rq, where q is the correlation

exponent and / stands for �proportional�, i.e. PC(r) = b * rq, where b is a proportionality
constant.

Definition 3. Pair-count exponent, q [15].
The exponent of the power law, called pair-count exponent q in [15], is defined as
q ¼ oðlogðPCðrÞÞÞ
oðlogðrÞÞ ¼ lim

r!0

logðPCðrÞÞ
logðrÞ
In order to obtain PC(r), we can use the box-counting algorithm (it is linear O(N+M) over the
total number of points in both datasets) based on the concept of Box-Occupancy-Product-Sum

(BOPS) [15]. Intuitively, BOPS(r) counts the number of pairs of points (from two different data-
sets) that lie within boxes of size r. Usually, to calculate the correlation exponent q (pair-count
exponent), it is useful to plot log(BOPS(r)) as a function of log(r) and measure the slope of the
linear part of the obtained curve by performing a linear interpolation (this slope corresponds
to the correlation exponent (q) and the proportionality constant to b); hence q = d(log(BOPS(r))/
d(log(r)). Intuitively, q shows how the average number of pairs from two different points datasets
grows, as the distance r increases.
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Definition 4. Box-Occupancy-Product-Sum, BOPS(r) [15].
The BOPS of a grid with box size r is defined as the sum of products of occupancies as
BOPSðrÞ ¼
XNðrÞ

i¼1

pi;S1 � pi;S2
where N(r) is the number of boxes with side r that are occupied by the two point datasets; pi;S1 and
pi;S2 are the percentage of points of the datasets S1 and S2, respectively, which fall inside the ith
box with side r.

A consequence of this definition is that BOPS(r) / rq (BOPS follows a power law with its expo-
nent equal to the correlation exponent, q) [15]. BOPS plays a similar role that the sum of squared
occupancies (S2ðrÞ ¼

P
p2i ), which is proportional to the correlation fractal dimension

D2(S2(r) / rD2) [3]. That is, the correlation exponent q includes the correlation fractal dimension
D2 as a special case [15].

Therefore, we have to estimate how the access probability of an R-tree page changes in presence
of the correlation exponent described by q. Let us assume that the point density of each dataset is
constant throughout the populated part of the page region and its Minkowski enlargement, and
taking into account the MBR effect [7], we can estimate the average extent sRi;li of a node MBR of
the R-tree Ri at level li according to the power law as follows:
sRi;li ¼ 1� 1

fRi

� �
� min

f
hRi�li
Ri

NRi

 !
; 1

( ) !1=q

ð10Þ
where li ¼ 0; 1; . . . ; hRi � 1 (the root is assumed at level li = 0 and leaves at li ¼ hRi � 1).
Having a method for the calculation of q from the involved datasets, we have completed our

cost model: we are able to evaluate the total cost of the K-CPQ for various values of K, dimen-
sions and q using formula (8), and the other dependent formulae (7), (9) and (10).

Finally, the formula (8) is a generalization of the cost models for K nearest neighbor and spatial
join queries (formulae (2) and (5), respectively). For spatial join query, we have distcp(K) = 0, and
the formula (7) is equivalent to (6); hence the formula (8) corresponds to (5). For the case of K-
NNQ, we have only one R-tree (R1, and R2 does not need to be considered), and we have to re-
move from the formula (9) NR2

and replace q by D2 (q includes D2 as a special case for one dataset
[15]), obtaining the formula (1), in the formula (10) we also replace q by D2 to obtain (4), and
removing sR2;l2 from (7) we get (3); hence the formula (8) corresponds to (2), because we have re-
moved the R-tree R2 and the multiplier in (8) is now 1 instead of 2.
4. Extensions of the cost model

4.1. Buffer queries

We can adapt our cost model to another type of distance join query as buffer query [9]. This
query involves two spatial datasets and a distance threshold d. The answer is a set of pairs of
spatial objects (in our case, pairs of points) from the two input datasets that are within distance
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d from each other (it is related with the similarity join [23], where the problem of deciding if two
objects are similar is reduced to the problem of determining if two high-dimensional points are
within a certain distance of each other). Formally: Given two different datasets S1 and S2 of
NS1 and NS2 spatial objects, respectively, a buffer query retrieves all different pairs of objects from
S1 · S2 with distance less than or equal to d. The cardinality of the answer set is in the range
½0 . . .NS1 � NS2 �. An example of such a query is to find pairs of cities and cultural landmarks that
are within 3 km of each other. In [9], this problem is solved for non-point (lines and regions) spa-
tial datasets, where efficient algorithms for computing the minimum distance for lines and regions,
pruning techniques for filtering in a Depth-First algorithm, and extensive experimental results are
presented.

Therefore, we can adapt the Best-First K-CPQ algorithm (z � d and K does not need to be
considered) as is the Fig. 5 (input: two R-trees (R1 and R2) indexing two point datasets, a dis-
tance threshold (d), and a file for the final result (resultSet); output: a file for the final result
(resultSet)).

Of course, if the R-trees have different heights, we can use the fix-at-leaves technique, although
in [9] are executed window queries (d-distance range query, which involves one point dataset, a
query point and a distance threshold d; and the answer is a set of points from the input dataset
that are within distance d from the query point) from the leaves of the smallest R-tree on the lar-
gest one.

Therefore, a simple derivation our cost model (formulae (7) and (8)) can estimate the number of
node accesses for buffer queries (where points are indexed by R-trees) as follows:
Fig. 5. Best-First algorithm for buffer query using R-trees.
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NAbqðR1;R2; dÞ ¼ 2 �
XhR1�1

l1¼0

NR1;l1 � NR2;l2 � rðdÞ
� �

ð11Þ

rðdÞ¼
Xd
k¼0

d

k

 !
� sR1;l1 þ sR2;l2ð Þd�k � pk=2 �dk

C k=2þ1ð Þ

( ) !q=d

and l2 ¼
l1; 06 l1 6 hR2

�1

hR2
�1; hR2

6 l1 6 hR1
�1

(

4.2. The effect of buffering

For the buffering study, on the one hand, we can extend our formula when a path buffer is acti-
vated in each R-tree, in the same way as in [32] for a Depth-First algorithm for spatial joins. Each
R-tree makes use of a path buffer accommodating all nodes of the active path, which were accessed
last. For this reason, this buffer has an important impact for Depth-First algorithms, where they
put higher priority to the nodes in the largest path, and the path buffer always maintains the active
path of R-tree nodes from root to the last accessed leaf. In our case, we have Best-First algo-
rithms, and they put higher priority to the nodes (pairs of nodes) with the smallest lower bound
(MinDist value) and the impact of path buffers (one for each R-tree) can be smaller than the effect
of path buffers on Depth-First algorithms. Moreover, the total size of the path buffer for K-CPQ is
limited by hR1

þ hR2
R-tree nodes and we cannot enlarge its size in order to get better performance

results, although small buffer sizes can notably affect the cost of join queries using Depth-First
algorithms. Therefore, here, we omit this study.

On the other hand, we can study the buffering impact when a global LRU buffer is incorporated
over a distance join query (K-CPQ or buffer query). The only study of a cost model for predicting
the performance of spatial join query using R-trees when a global buffer is present was proposed
in [20]. In such analysis, a probabilistic analysis of paging pattern assuming that the inter-access
page faults are exponentially distributed was studied. They did not consider the LRU buffer man-
agement over this kind of indexes (R-trees). Another related work was proposed in [24], when a
buffer model was presented to estimate the expected number of distinct R-tree node accesses in N

consecutive range queries. In this buffer model, a uniform access pattern in the context of buffering
of R-tree nodes was considered. Here, we will base on the buffer model proposed in [6], which can
model buffer performance with non-uniform distributions (access patterns).

In our analysis, we need to estimate the buffer hit probability in an LRU buffer, and we are
going to use the buffer model proposed in [6]. Here, we will only briefly review this buffer model,
and for the interested reader, the derivation and details behind the equations can be found in [6].
A database, in this buffer model, has of size N data pages (granules in [6]), partitioned into p

partitions. Each partition contains bj of the data pages (as a fraction of the total database size),
and aj of the accesses (access probability) is done to each partition. The distributions within
each of the partitions are assumed to be uniform. All accesses are assumed to be independent
of all previous requests (Independent Reference Model). We also denote an access pattern (par-
tition set) for a set of data pages as AP, where AP has p partitions, each j (0 6 j 6 p � 1) par-
tition is characterizes by bj and aj (AP = {b0,b1, . . .,bp�1,a0,a1, . . .,ap�1}); and the following is
satisfied:
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Xp�1

j¼0

bj ¼ 1.0 and
Xp�1

j¼0

aj ¼ 1.0
After n accesses with access pattern AP (p is the number of partitions) to the database containing
N data pages, the number of distinct data pages from partition j (0 6 j 6 p � 1) that have been
accessed can be approximated by:
Bjðn;N ;APÞ ¼ bj � N � 1� 1� 1

bj � N

 !aj�n !
When the number of accesses n is such that the number of distinct data pages accessed is less than
or equal to the buffer size B;Bðn;N ;AP Þ ¼

Pp�1

j¼0Bjðn;N ;AP Þ 6 B, the buffer hit probability for
partition j (0 6 j 6 p � 1) can be approximated by:
Hjðn;N ;APÞ ¼ 1� 1� 1

bj � N

 !aj�n
(1/(bj * N) represents the probability that a data page is accessed in the partition j) and the average
buffer hit probability can be estimated as:
Hðn;N ;APÞ ¼
Xp�1

j¼0

aj � Hjðn;N ;APÞ
� �
The steady state average buffer hit probability in an LRU-managed buffer given a certain access
pattern can be approximated to the buffer hit probability when the buffer first becomes full (i.e., n
is chosen as the largest n that satisfies Bðn;N ;APÞ ¼

P
jBjðn;N ;APÞ ¼ B, where B is the number of

data pages that fits in the buffer: HLRU(B,n,N,AP) = H(n,N,AP).
When the buffer size is varied, the expected number of accesses (n) needed to fill the buffer (i.e.

to satisfied the condition B(n,N,AP) 6 B) can be determined by a binary search (because
Bj(n,N,AP) is monotonically increasing function with respect to n). Alternatively, we could com-
pute Bðn;N ;AP Þ ¼

P
jBjðn;N ;AP Þ ¼ B using the equation of Bj(n,N,AP) for all partitions (p),

increasing n with some stride, and plot B(n,N,AP) versus Hj(n,N,AP) (0 6 j 6 p � 1), in order
to obtain the same characteristic [6].

We have reviewed the buffer model for independent and non-hierarchical access [6]. Modeling
buffer for hierarchical access methods, as R-trees, is not difficult to adapt [25]. Even searches to
the leaves can be considered to be random and independent, R-tree nodes (index pages) accessed
during traversal of the R-tree are not completely independent. For this reason, we are going to
modify the previous buffer model to take into account a hierarchical index structure (R-tree),
in order to approximate the average buffer hit probability assuming that each R-tree level is ac-
cessed with the same probability, obtaining an R-tree buffer model different to the proposed in
[24], where an uniform access pattern within each partition in the context of buffering of R-tree
nodes was considered.

Initially, for a given R-tree Ri, we have pRi
¼ hRi partitions (hRi is the height of Ri) with access

pattern APRi;li at each li level, and each of these partitions has NRi;li R-tree nodes. The access prob-
ability of each partition is 1=hRi . According to [6,25], if we want to account for hot spots, we divide
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the partition of leaf nodes of Ri into pRi;hRi�1 partitions with access pattern APRi;hRi�1 (in total,

we have pRi
¼ ðhRi � 1Þ þ pRi;hRi�1 partitions), each with a fraction of bRi;hRi�1;j of the R-tree (Ri)

leaf nodes (Ri; hRi � 1; j represents the j partition at leaf level (hRi � 1) of the R-tree Ri), and access
probability aRi;hRi�1;j relative to the same partition at leaf level. Thus, each of these partitions have
size bRi;hRi�1;j � NRi;hRi�1 (where hRi � 1 is the level of the leaf nodes in the R-tree Ri) and access
probability aRi;hRi�1;j=hRi . The hot spots at the leaf level make access to R-tree nodes on upper R-tree
levels non-uniform, but as long as the average R-tree node fan-out (fRi) is sufficiently large, and the
hot spot areas are not too narrow, we can treat accesses to R-tree nodes on upper levels (non-leaf
levels) as uniformly distributed within each R-tree level (partition) [25]. With these modifications,
an R-tree Ri of height hRi , and pRi;hRi�1 partitions at leaf level with access pattern APRi;hRi�1, the

equations for bRi;li;j (fraction of R-tree nodes in each partition in the R-tree Ri at level li) and
aRi;li;j (access probability of each partition in the R-tree Ri at level li) become:
bRi;li;j ¼

NRi;li

NodesRi

; 0 6 li; j 6 hRi � 2

bRi;li;j � NRi;li

NodesRi

; li ¼ hRi � 1 and hRi � 1 6 j 6 pRi
� 1

8>><
>>:

aRi;li;j ¼

1

hRi

; 0 6 li; j 6 hRi � 2

aRi;li;j

hRi

; li ¼ hRi � 1 and hRi � 1 6 j 6 pRi
� 1

8>><
>>:
where NodesRi represents the total number of R-tree nodes in the R-tree Ri
NodesRi ¼
XhRi�1

li¼0

NRi;li ðsee Table 1Þ and
XpRi�1

j¼hRi�1

bRi;hRi�1;j ¼ 1.0 and
XpRi�1

j¼hRi�1

aRi;hRi�1;j

¼ 1.0 are held.
Hence, under buffer model [6], after n R-tree node accesses with access pattern APRi;li (pRi
is the

number of partitions) to the R-tree Ri containing NodesRi R-tree nodes, the number of distinct
R-tree nodes of R-tree Ri at level li from partition j (0 6 j 6 pRi

� 1) that have been accessed
can be approximated by:
BRi;li;j n;NodesRi ;APRi;lið Þ ¼ bRi;li;j � NodesRi � 1� 1� 1

bRi;li;j � NodesRi

 !aRi ;li ;j�n
 !
where 1=ðbRi;li;j � NodesRi) represents the probability that an R-tree node of the R-tree Ri at level li
is accessed in the partition j. From this equation, 1� ð1� 1=ðbRi;li;j � NodesRiÞÞ

aRi ;li ;j�n represents the
probability that an R-tree node is accessed after n accesses from the R-trees Ri at level li in the
partition j.

The average number of distinct R-tree nodes of R-tree Ri, can be approximated by
BRi n;NodesRi ;APRi;lið Þ ¼
XpRi�1

j¼0

BRi;li;j n;NodesRi ;APRi;lið Þ
� �
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where
li ¼
j; 0 6 j 6 hRi � 2

hRi � 1; hRi � 1 6 j 6 pRi
� 1

(

Finally, we can estimate the average buffer hit probability in an LRU-managed buffer given a
certain access pattern, by using the buffer hit probability equation ðHðn;N ;AP Þ ¼

P
jfaj �

Hjðn;N ;APÞgÞ such that BRiðn;NodesRi ;APRi;liÞ ¼
P

jBRi;li;jðn;NodesRi ;APRi;liÞ ¼ Bð0 6 j 6 pRi
�

1Þ, with BRi;li;jðn;NodesRi ;APRi;liÞ;bRi;li;j and aRi;li;j defined above as: HLRURi
ðB; n;NodesRi ;APRi;liÞ ¼

Hðn;NodesRi ;APRi;liÞ ¼
P

jfaRi;li;j � HRi;li;jðn;NodesRi ;APRi;liÞg,
HLRU Ri B; n;NodesRi ;APRi;lið Þ ¼
XpRi�1

j¼0

aRi;li;j � HRi;li;j n;NodesRi ;APRi;lið Þ
� �
where
HRi;li;j n;NodesRi ;APRi;lið Þ ¼ 1� 1� 1

bRi;li;j � NodesRi

 !aRi ;li ;j�n
and
li ¼
j; 0 6 j 6 hRi � 2

hRi � 1; hRi � 1 6 j 6 pRi
� 1

(

In our case (the K-CPQ), we have two R-trees (R1 and R2, i.e. the total number of R-tree nodes is
NodesR1

þ NodesR2
), a global LRU buffer with size B R-tree nodes as in Fig. 6; and r(K) represents

the probability that a pair of MBRs (one from R1 at level l1 and another from R2 at level l2) are
accessed whenever the minimum distance between the two MBR regions is smaller than or equal
to distcp(K) for K-CPQ (similarly, r(d) is for buffer queries, where d is the distance threshold).

Assuming hR2
6 hR1

and pcp ¼ hR1
þ 1 ð0 6 j 6 hR1

Þ partitions with access pattern APcp;l1ðl2 6
l1Þ. That is, there are two additional partitions at leaf level following an 80/20 access
I/O Module

K-CPQ/Buffer Queries

LRU Buffer (B)

R1

NodesR1

R2

NodesR2

Fig. 6. Global LRU buffer scheme.
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pattern (APcp;hR1�1 ¼ fbcp;hR1�1;hR1�1 ¼ 0.2; bcp;hR1�1;hR1
¼ 0.8; acp;hR1�1;hR1�1 ¼ 0.8; acp;hR1�1;hR1

¼ 0.2g),
since this access pattern has been widely employed in many analysis and simulations [6,25],
wher
bcp;l1;j ¼
NR1;l1 þ NR2;l2

NodesR1
þ NodesR2

and acp;l1;j ¼
1

hR1

bcp;l1;hR1�1 ¼
0.2 � NR1;l1 þ NR2;l2ð Þ
NodesR1

þ NodesR2

and acp;l1;hR1�1 ¼
0.8

hR1

bcp;l1;hR1
¼ 0.8 � NR1;l1 þ NR2;l2ð Þ

NodesR1
þ NodesR2

and acp;l1;hR1 ¼
0.2

hR1

e; l1 ¼
j; 0 6 j 6 hR1

� 2

hR1
� 1; hR1

� 1 6 j 6 pcp � 1

(
and l2 ¼

l1; 0 6 l1 6 hR2
� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1

�
:

According to [6], we know that ð1� rðKÞÞacp;li ;j�n is the probability that a pair of MBRs separated
by a distance smaller than or equal to distcp(K) is not accessed after n accesses from each level of
the R-trees R1 and R2 (li, such that l2 6 l1) in the partition j. Thus, 1� ð1� rðKÞÞacp;li ;j�n is the
probability that a pair of MBRs separated by a distance smaller than or equal to distcp(K) is ac-
cessed after n accesses from each level of the R-trees R1 and R2 (li, such that l2 6 l1) in the parti-
tion j. Therefore, after n accesses to R-trees R1 and R2 with access pattern APcp;l1
(pcp ¼ hR1

þ 1 ð0 6 j 6 hR1
Þ partitions) and containing NodesR1

þ NodesR2
R-tree nodes, the num-

ber of distinct R-tree nodes of R-trees R1 and R2 at levels l1 and l2 that have been accessed for K-
CPQ can be approximated by:
Bcp;l1;j n;NodesR1
þ NodesR2

;APcp;l1

� 

¼ bcp;l1;j � NodesR1

þ NodesR2
ð Þ

� 

� 1� 1� rðKÞð Þacp;l1 ;j�nð Þ
and the average number of distinct R-tree nodes can be also estimated by:
Bcp n;NodesR1
þ NodesR2

;APcp;l1

� 

¼
Xpcp�1

j¼0

Bcp;l1;j n;NodesR1
þ NodesR2

;APcp;l1

� 
� �

where
l1 ¼
j; 0 6 j 6 hR1

� 2

hR1
� 1; hR1

� 1 6 j 6 pcp � 1

(
and l2 ¼

l1; 0 6 l1 6 hR2
� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1

�

Finally, we can estimate the average buffer hit probability for K-CPQ in an LRU-managed buffer
given a certain access pattern, by using the buffer hit probability equation ðHðn;N ;APÞ ¼P

jfaj � Hjðn;N ;AP ÞgÞ, with Bcpðn;NodesR1
þ NodesR2

;APcp;l1Þ ¼ B defined above as:
HLRU cpðB; n;NodesR1

þ NodesR2
;APcp;l1Þ ¼ Hðn;NodesR1

þ NodesR2
;APcp;l1Þ ¼

P
jfacp;l1;j � Hcp;l1;jðn;

NodesR1
þ NodesR2

;APcp;l1Þg. That is,
HLRU cp B; n;NodesR1
þ NodesR2

;APcp;l1

� 

¼
Xpcp�1

j¼0

acp;l1;j � Hcp;l1;j n;NodesR1
þ NodesR2

;APcp;l1

� 
� �
ð12Þ
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where, Hcp;l1;jðn;NodesR1
þ NodesR2

;APcp;l1Þ ¼ 1� ð1� rðKÞÞacp;l1 ;j�n, and
l1 ¼
j; 0 6 j 6 hR1

� 2

hR1
� 1; hR1

� 1 6 j 6 pcp � 1

(
; l2 ¼

l1; 0 6 l1 6 hR2
� 1

hR2
� 1; hR2

6 l1 6 hR1
� 1

�

The estimated average buffer hit probability (HLRU cpðB; n, NodesR1
þ NodesR2

;APcp;l1 )) for K-CPQ
represents the number of hits (avoided disk accesses) in an LRU-managed buffer with size B with
respect to the total disk accesses without buffer (NAcp(R1,R2,K)) for this kind of query.
HLRU cp B; n;NodesR1
þ NodesR2

;APcp;l1

� 

¼ NAavoided LRU cp B;R1;R2;Kð Þ

NAcp R1;R2;Kð Þ

On the other hand, the estimated average buffer no-hit probability (1.0� HLRU cpðB; n;NodesR1

þ
NodesR2

;APcp;l1Þ) for K-CPQ represents the number of failures (disk accesses or node faults) in an
LRU-managed buffer with size B with respect to the total disk accesses without the presence of
buffer.
NALRU cpðB;R1;R2;KÞ ¼ 1.0� HLRU cp B; n;NodesR1
þ NodesR2

;APcp;l1

� 
� 

� NAcp R1;R2;Kð Þ

ð13Þ

Obviously, B must be smaller than or equal to NodesR1

þ NodesR2
to have impact in the query pro-

cessing, i.e. larger buffer sizes will not have any positive effect in the overall buffer performance.
Moreover, NALRU cpðB;R1;R2;KÞ can be bounded by NodesR1

þ NodesR2
as lower bound, although

in real experiments this value can be slightly smaller than NodesR1
þ NodesR2

, due to some R-tree
nodes cannot be accessed during the processing of the query algorithm. Therefore, the estimated
average buffer hit probability can be bounded as follows:
HLRU cpð� � �Þ ¼
1.0� NALRU cpð� � �Þ

NAcpð� � �Þ
; NALRU cpð� � �Þ > NodesR1

þ NodesR2

1.0� NodesR1
þ NodesR2

NAcpð� � �Þ
; otherwise

8>><
>>: ð14Þ
To extend the previous formulae (12), (13) and (14) from K-CPQ to buffer queries (bq) is not dif-
ficult. First, bbq;li;j and abq;li;j are the same as bcp;li;j and acp;li;j. Second, to compute Bbq;li;j, we have
to consider r(d) instead of r(K). And finally, for computing NALRU bqðB;R1;R2; dÞ and
HLRU bqðB; n; NodesR1

þ NodesR2
;APbq;l1Þ, we need to use NAbqðR1;R2; dÞ instead of NAcpðR1;R2;KÞ.
5. Experimental results

This section experimentally evaluates the proposed model, using R*-tree [2] as the underlying
spatial access method. If the R*-trees have different heights, we will use the fix-at-leaves technique
[11]. We have used synthetic datasets (uniform distributions, UN1 and UN2) that contain 100,000
2-dimensional points and real-life datasets (the 2-dimensional data space is normalized to have
unit length). Real 2-dimensional datasets are data of California: (1) from [34] that contains
98,451 points (MBRs of streams (line segments), which have been transformed to points by taking
the middle point of each segment, CAS); and (2) from Sequoia benchmark [31] that consists of
62,556 points (populated places, CAP). The used point datasets are depicted in the Fig. 7: (a) uni-



Fig. 7. Datasets used in the experiments: (a) uniform, (b) CAS, (c) CAP.

Table 4

Estimated distcp(K) and measured distance value Kth closest pair at the end of the execution of K-CPQ algorithm (z) for

uniform and real datasets

K (UN1,UN2) (CAS,CAP)

z distcp(K) z distcp(K)

1 0.0000007123 0.0000056419 0.0000041164 0.0000054578

10 0.0000299811 0.0000178412 0.0000131463 0.0000177561

100 0.0000679477 0.0000564189 0.0000530100 0.0000577669

1000 0.0001854371 0.0001784124 0.0001649575 0.0001879355

10,000 0.0005614171 0.0005641895 0.0005294667 0.0006114188

100,000 0.0017900597 0.0017841241 0.0016640083 0.0019891558
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form, (b) CAS and (c) CAP. For uniform datasets, we have the correlation exponent value
q(UN1, UN2) = 2.0; and for real datasets q(CAS, CAP) = 1.951866859. Moreover, the average
node utilization is set to 70% (UavgRi

¼ 0.7), typical value according to [14] for the R*-tress.
Our cost model is based on the estimation of the distance of the Kth closest pair (distcp(K)).

Table 4 shows the estimated distcp(K) and z (measured distance value of the Kth closest pair found
at the end of the execution of the K-CPQ algorithm), varying the cardinality of the result (K) from
1 to 100,000, for uniform and real datasets. We can observe the small difference between them,
even for large K values. Therefore, our formula to estimate the distance of the Kth closest pair
(distcp(K)) is quite accurate and appropriate to use in the computation on K-CPQ index selectivity
(r(K)), which is the basis of the NAcp(R1,R2,K) formula.

To show the accuracy of our cost model, the next experiment studies the behavior of the for-
mula (8) that estimates the total I/O cost in terms of R-tree node accesses (NAcp(R1,R2,K)) for K-
CPQ with respect to the increase of K (number of pairs in the final result) values, varying from 1
to 100,000. Fig. 8 illustrates the measured and the estimated disk accesses for uniform (Fig. 8a)
and real (Fig. 8b) datasets where the maximum R-tree node capacity (CmaxRi) was set to 50 (1
Kbyte). We can notice from both charts that they follow very similar trends (the lines for mea-
sured values is slightly larger than the estimated one), which average relative error is around 0–
4% for uniform and 1–2% for real datasets.

To study the behavior of our cost model with respect to the variation in the maximum branch-
ing factor of the R*-trees (CmaxRi ¼ 25, 50, 100 and 200) as in [22] for K-NNQ, and K (from 1 to
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Fig. 8. Estimated and measured number of R-tree node accesses for K-CPQ, varying K and using uniform (a) and real

(b) datasets.

Table 5

Estimated NAcp(R1,R2,K) and measured R-tree node accesses for K-CPQ for real datasets (CAS, CAP), varying the

branching factor (CmaxRi ) and cardinality of the final query result (K)

K 25 50 100 200

Measured Estimated Measured Estimated Measured Estimated Measured Estimated

1 33,232 33,179 22,410 22,194 9142 9031 4330 4355

10 33,292 33,238 22,430 22,218 9148 9039 4332 4358

100 33,488 33,432 22,528 22,297 9176 9065 4338 4366

1000 34,046 34,066 22,784 22,553 9270 9151 4358 4394

10,000 36,256 36,159 23,602 23,395 9550 9431 4430 4487

100,000 43,486 43,312 26,502 26,225 10,458 10,365 4726 4791
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100,000), keeping the population of the read datasets constant (CAS, CAP, and q = 1.951866859).
Table 5 shows the estimated number of R-tree node accesses from the formula NAcp(R1,R2,K)
and the measured disk accesses using the Best-First K-CPQ algorithm. From these results we
can experimentally prove the accuracy of our cost model for this kind of distance-based join query
(K-CPQ). For example, we have considered very large K values (K = 100,000) and the difference
between measured and estimated R-tree node accesses is very low (around 2% in average for all
CmaxRi values).

The same experiment was run for uniform datasets and the Table 6 shows the measured and
estimated number of R-tree node accesses. As in Table 5, the estimated values are close to the
measured ones (e.g. CmaxRi ¼ 50 the average relative error is around 1.5% for all K values),
although for CmaxRi ¼ 200 the relative error is increased around 5%.

Another alternative to measure the accuracy of our cost model is to show the relative error (RE)
of the measured results (R-tree node accesses) compared to the predictions.
RE ¼
XK
i¼1

abs EstimatedNodeAccesses�MeasuredNodeAccessesð Þ
MeasuredNodeAccesses
Fig. 9 illustrates the relative error of the measured R-tree node accesses with respect to the esti-
mated ones for uniform (Fig. 9a) and real (Fig. 9b) datasets, where the K and CmaxRi are varied.
For uniform distributions the relative error is below 6% (for the highest CmaxRi ¼ 200, we can no-



Table 6

Estimated NAcp(R1,R2,K) and measured R-tree node accesses for K-CPQ for uniform datasets, varying the branching

factor (CmaxRi ) and cardinality of the final query result (K)

K 25 50 100 200

Measured Estimated Measured Estimated Measured Estimated Measured Estimated

1 47,576 46,237 25,780 25,405 12,148 12,124 5406 5674

10 47,622 46,326 25,788 25,438 12,156 12,136 5412 5678

100 48,008 46,611 25,934 25,545 12,190 12,171 5422 5690

1000 48,802 47,516 26,254 25,882 12,336 12,285 5458 5727

10,000 51,292 50,424 27,148 26,958 12,638 12,645 5558 5845

100,000 59,772 60,088 30,240 30,477 13,634 13,812 5914 6224
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Fig. 9. Relative error for the estimation cost of K-CPQ, using uniform (a) and real (b) datasets.
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tice the largest relative error). For real datasets, the relative error is lower than the uniform (less
than 1.4%), highlighting the values for the smallest fan-out (CmaxRi ¼ 25), which are smaller than
0.28%. In general, the relative error is very small for all our experiments. It means that our cost
model for K-CPQ is very accurate.

In the next experiment, we evaluate the analytical formula for K-CPQ estimation consists of
varying the cardinality of one of the real dataset (CAS), keeping constant the other one (CAP).
We have produced three different datasets from CAS, choosing randomly 73,838 (CAST),
49,226 (CASH) and 24,613 (CASC). The values of the correlation exponent for these datasets with
respect to CAP are the following: q(CASC, CAP) = 1.925609934, q(CASH, CAP) = 1.901360599,
q(CAST, CAP) = 1.978895579, and q(CAS, CAP) = 1.951866859. Also, we have to highlight that
fixing CmaxRi ¼ 50 the heights of the R*-trees are hCAP = 3, hCAS = 4, hCAST = 4, hCASH = 3 and
hCASC = 3. Fig. 10 illustrates estimated R-tree node accesses using NAcp(R1,R2,K) (Fig. 10a) and
the relative error (Fig. 10b) of the measured node accesses with respect to the estimated ones for
real datasets varying the cardinality of CAS. From the left chart, we can observe trends very sim-
ilar to the measured disk accesses, even when the R-tree heights are different. But the most inter-
esting conclusion can be obtained from the right chart, the relative error (of the measured results
compared to the predictions of the proposed model) is usually around 0–2%, which confirm the
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Fig. 10. (a) Estimated R-tree node accesses for K-CPQ for real datasets (CAS*, CAP); (b) relative error (right) with

respect to the measured results.
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and real (b) datasets.
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accuracy of the formula of our cost model for K-CPQ (mainly based on the correlation exponent
q) when the cardinality of the datasets involved on the distance-based join query is varied.

The same experiments have been performed for buffer queries (another kind of distance join),
where the distance threshold d can be given by the user and it is not necessary its estimation.
The Fig. 11 shows the estimated and measured number of R-tree node accesses for such a query
from the formula (11), varying d for the values {0.001, 0.002, 0.004, 0.006, 0.008 and 0.01} and
using uniform (Fig. 11a) and real (Fig. 11b) datasets (CmaxRi ¼ 50). Again, both charts follow
the same tendency, although the relative error between them is slightly larger than for K-CPQ,
it is around 3–9% for uniform and 2–10% for real datasets. It is interesting to observe the trend
of the curves in the right chart, where the larger the threshold distance is the larger the gap
becomes.

The behavior of the cost model with respect to the variation of CmaxRi of the R*-trees and the
distance threshold d is shown in Table 7. The estimation of the number of R-tree node accesses
using the formula NAbq(R1,R2,d) is quite accurate, e.g. for large d values (d = 0.01) the difference
between the measured and estimated R-tree node accesses is around 10% in average for all CmaxRi

values.



Table 7

Estimated NAbq(R1,R2,d) and measured R-tree node accesses for buffer queries for real datasets (CAS, CAP), varying

the branching factor (CmaxRi ) and the distance threshold (d)

d 25 50 100 200

Measured Estimated Measured Estimated Measured Estimated Measured Estimated

0.001 39,308 38,684 24,776 24,179 9918 9404 4554 4572

0.002 45,764 44,743 27,302 26,248 10,726 10,056 4832 4866

0.004 59,562 56,582 32,560 30,607 12,394 11,229 5356 5333

0.006 75,572 70,890 38,392 35,258 14,284 13,051 6000 5816

0.008 93,486 85,395 44,502 40,960 16,288 14,321 6650 6316

0.01 113,064 101,089 51,170 46,326 18,314 15,879 7304 6832

Table 8

Estimated NAbq(R1,R2,d) and measured R-tree node accesses for buffer queries for real datasets (CAS, CAP), varying

the branching factor (CmaxRi ) and the distance threshold (d)

d 25 50 100 200

Measured Estimated Measured Estimated Measured Estimated Measured Estimated

0.001 54,144 52,171 28,246 25,762 12,994 12,685 5686 5980

0.002 61,318 59,889 30,804 28,475 13,814 13,637 5968 6293

0.004 76,282 72,817 36,166 32,559 15,656 15,370 6588 7048

0.006 92,598 90,147 41,646 40,447 17,574 16,844 7148 7610

0.008 110,892 109,124 47,646 46,229 19,548 19,241 7816 8306

0.01 129,870 129,747 53,952 52,157 21,608 21,077 8510 9029
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The same experiment was run for uniform datasets and the Table 8 shows the measured (exper-
imental results using the algorithm of Fig. 5) and estimated number of R-tree node accesses
(NAbq(R1,R2,d). As in Table 7, the estimated values are close to the measured ones (e.g.
CmaxRi ¼ 25 the average relative error is around 3% for all d values), although for CmaxRi ¼ 50
and CmaxRi ¼ 200 the relative errors are increased around 6% in average.

Fig. 12 illustrates the relative error of the measured R-tree node accesses with respect to the
estimated ones (NAbq(R1,R2, d)) of buffer queries for uniform (Fig. 12a) and real (Fig. 12b) data-
sets, where d and CmaxRi are varied. For uniform distributions the relative error is below 9% (for a
medium CmaxRi (=50) and low d values, we can detect the largest relative error, 8.79%). For real
datasets, the relative error is larger than the uniform (less than 14%), highlighting the relative
error values for the largest CmaxRi (=200), which are smaller than 4% in average for all d values.

As conclusion of the previous results of our cost model for R-tree distance join queries (K-CPQ
and buffer queries) is that it achieves an average relative error for R-tree node accesses with a max-
imum value of 6% (K-CPQ) and 14% (buffer queries). We believe these error values are within an
acceptable confidence level of cost prediction for distance join queries, demonstrating that our
cost model can be considered as an effective tool in the cost estimations of R-tree distance joins
during the distance join query optimization step.

On the other hand, to validate experimentally our LRU buffer model for distance join queries
(K-CPQ), we have also compared the estimated result with the measured ones for the number of
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Fig. 12. Relative error for the estimation cost of buffer queries, using uniform (a) and real (b) datasets.
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disk (R-tree node) accesses and the average buffer hit probability according to the formulae (13)
and (14), respectively. The formula (13) for NALRU cpðB;R1;R2;KÞ is bounded by NodesR1

þ
NodesR2

. The estimated results have been performed for the 80/20 access pattern for partitions
at leaf level, K = 100, with different maximum R-tree node capacity (CmaxRi ¼ 50 and 200,
although for the other CmaxRi values we have got similar qualitative results), buffer sizes
(B = 0, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and 8192) and data distributions (uniform
and real datasets). In our experiments, we maintain an LRU-managed buffer with size B and
an access to an R-tree node resident in the buffer, makes the R-tree node move to the front of
the LRU buffer according to this page replacement policy. The buffer model formulae assume
a hot buffer, i.e. we warm up the buffer by doing a large number of requests, before we start to
measure the buffer hit probability. Finally, we will compute the measured average buffer hit prob-
ability as follows (similar to Eq. (14)):
HLRU cp measuredðB;R1;R2;KÞ ¼ 1.0� NALRU cp measuredðB;R1;R2;KÞ
NAcp measuredðR1;R2;KÞ
Fig. 13 illustrates the overall buffer hit probability for uniform datasets, different maximum fan-
outs and buffer sizes. We can see clearly how the average buffer hit probability increases when an
LRU buffer is present, even with small size (B = 8 R-tree nodes). After that point, it grows more
slowly (in the range between 0.4 and 0.8), until it reaches the point where the buffer size is equal to
NodesR1

þ NodesR2
. We can also observe how close the estimated values are to the measured re-

sults, and the small difference between CmaxRi ¼ 50 and CmaxRi ¼ 200 (the larger CmaxRi the smal-
ler buffer hit probability).

For number of R-tree nodes, the Fig. 14 shows the same experimental configurations. The mea-
sured results are very close to the estimated ones, which confirm the accuracy of our buffer model
for this kind of R-tree distance join query (K-CPQ). For example, the average relative error be-
tween the measured and estimated number of R-tree node accesses for CmaxRi ¼ 50 is around
7.5% and for CmaxRi ¼ 200 is 9.3%, which are acceptable results to demonstrate the accuracy
of our R-tree buffer model for K-CPQ.
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Fig. 13. Estimated and measured average buffer hit probability for K-CPQ, varying the LRU buffer size B for the

values {0, 8, 16, 64, 128, 256, 512, 1024, 2048, 4096 and 8192}, K = 100, CmaxRi ¼ 50 (a) and CmaxRi ¼ 200; (b) for both

uniform datasets.
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For real datasets, we have observed very similar behaviors for the buffer hit probability and for
the I/O activity needed for K-CPQ, using similar configurations (80/20 access pattern, K = 100, dif-
ferent CmaxRi values (50 and 200), buffer sizes, etc.). For instance, in the Fig. 15, the trends of the
curves for measured and estimated buffer hit probability are similar to the uniform case. And in the
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Fig. 15. Estimated and measured average buffer hit probability for K-CPQ, varying the LRU buffer size B for the

values (0, 8, 16, 64, 128, 256, 512, 1024, 2048, 4096 and 8192), K = 100, CmaxRi ¼ 50 (a) and CmaxRi ¼ 200 (b) for both

real datasets (CAS, CAP).
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Fig. 16, the average relative error between the measured and estimated number of R-tree node
accesses for CmaxRi ¼ 50 is around 6.2% and for CmaxRi ¼ 200 is 6% (these errors are acceptable).

Again, as conclusion of these results related to LRU buffer model for R-tree distance join que-
ries (K-CPQ) is that, it achieves an average relative error for R-tree node accesses with a maxi-
mum value of 9% and the estimated average buffer hit probability obtained results very close
to the measured ones. Thus, we believe these error values are within an acceptable confidence level
of cost prediction for distance join queries, demonstrating that our buffer model is quite precise.
6. Conclusions and ideas for future extensions

In this paper, we have presented an I/O cost model for the K Closest Pairs Query (K-CPQ) and
others R-tree distance join queries. The development of our model was based on previous analyt-
ical results for nearest neighbor and spatial intersect join queries, which can be considered a gen-
eralization of them. We avoided following the unrealistic assumptions of uniformity and
independence. On the contrary, the formulae we developed correspond to real data and depend
mainly on the correlation exponent (q) and number of pairs in the final result (K). Our analysis
assumes a typical (non-uniform) workload where queries are more probable in high-density areas
of the address space. The proposed cost model (formulae and guideline) could be used in a query
optimizer for spatial query processing and optimization purposes, where distance join queries are
involved. Moreover, we have successfully extended our cost model to buffer queries and to the
analytical study of including buffering (LRU buffer model) in K-CPQ using R-trees.

Experimental results on both synthetic (uniform) and real datasets showed that the proposed
analytical model is very accurate (varying several parameters as cardinality of the query result
(K), maximum branching factor (CmaxRi), different dataset cardinalities and data distributions,
etc.), with the relative error being usually around 0–6% (K-CPQ) and 0–14% (buffer queries) when
the estimated results are compared to the measured costs using R*-trees. We believe these error
values are within an acceptable confidence level of cost prediction for distance join queries,
demonstrating that our cost model can be considered as an effective tool in the cost estimations
of R-tree distance joins during the distance join query optimization step. Finally, the experiments
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of our cost model, when an LRU-managed buffer is added, have shown that theoretical results
have been very similar to the measured ones in terms of buffer hit probability and number of
R-tree node accesses, which confirm the accuracy of the proposed extensions of our cost model.

Future work may include:

• Experimentation with high-dimensional points datasets, taking into account an upper and
lower bound of the average number of query sensitive anchors (based on Euclidean and max-
imum metrics) rather than the exact values as in [22].

• Use of new approximation techniques for K-CPQ, in a similar way that in [33] for K-NNQ.
• Extend the proposed LRU buffer model to distance joins with multiple inputs indexed in R-

trees [12], not only when we have two R-trees.
• Experimentation with different access pattern for the LRU buffer model (70/30, 90/10 and 95/

05) with two partitions at leaf level and more partitions with appropriate access patterns.
• Generalization of our study for non-points spatial objects [28].
Acknowledgement

Research partially supported by INDALOG TIC2002-03968 project ‘‘A Database Language
Based on Functional Logic Programming’’ of the Spanish Ministry of Science and Technology
under FEDER funds, EPEAEK II/ARCHIMEDES 2.2.14 project ‘‘Management of Moving Ob-
jects and the WWW’’ of the Greek Ministry of National Education and Religious Affairs co-
funded by the European Union and EPEAEK II/PYTHAGORAS 2.2.3 project ‘‘Spatio-temporal
Data and Knowledge Management in Expert Virtual Environments’’ of the Greek Ministry of
National Education and Religious Affairs co-funded by the European Union.
References

[1] W.G. Aref, H. Samet, A cost model for query optimization using R-trees, in: Proceedings 2nd ACM Conference on

Geographical Informaton Systems (GIS), 1994.

[2] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an efficient and robust access method for points

and rectangles, in: Proceedings ACM SIGMOD Conference, 1990, pp. 322–331.

[3] A. Belussi, C. Faloutsos, Self-spatial join selectivity estimation using fractal concepts, ACM Transactions on

Information Systems 16 (2) (1998) 161–201.
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