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Abstract. In this paper we examine the problem of indexing time se-

quences in order to answer inverse queries. An inverse query computes all

the time points at which the sequence contains values equal to the query

value. The presented method is based on [7] in order to represent each

time sequence with a few ranges of values, which are in fact one dimen-

sional minimum bounding rectangles. We compare the proposed method

with the IP-index which has been presented in [8] as an indexing mecha-

nism for answering inverse queries. As it is shown, the proposed method

outperforms the IP-index for very large time sequences.

1 Introduction

Time series databases consist of discrete sequences representing the values of
one or several variables as a function of time. This function may be discrete or
continuous. In the case of a continuous function, the values of the sequence are
produced by a sampling procedure and, if it is desirable, the intermediate values
can be obtained through an interpolation function (linear, step-wise constant,
splines).

Time sequences have found applications in temporal and historical databases
[10] and in scienti�c databases which store several phenomena measurements. In
data mining applications, time sequences are used in order to discover sequential
patterns [3]. All these applications require the time sequences to be dynamically
updated and that all the past values should be maintained.

The two basic categories of queries for time series data are the similarity
queries and the retrieval queries. The �rst category has been already studied
thoroughly [1, 7, 2]. Retrieval queries ask for the value at a particular time
point, or for the range of values for a time span. These queries can be handled
e�ciently by several type of indexes [5].

Lin et al. [8] have proposed a method for answering inverse queries, i.e. queries
that ask for the time points where the sequence contains values equal to the query
value. Figure 1a illustrates an example of an inverse query. The approach of [8]
is based on the association of each inserted value with all its covering segments.
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Fig. 1. a.An example of an inverse query : value v0 is equal to the value at t0. b. An

1-d MBR of 4 successive values.

A segment is de�ned as the line segment that joins two consecutive values (in
Figure 1a all segments are represented as Sgi). In the same �gure, we remark
that the value at the time point t2 is covered by the segment Sg3 (a segment
Sgi covers a value v, if v is between the values of the bounding points of Sgi).
This indexing scheme is called IP-index, and compared to sequential scanning
results in a performance improvement of more than two orders of magnitude.

As it is mentioned in [8], the insertion time and the space requirements are
heavily depended on the number of covering segments which, as it is shown in
the sequel, for very large time series grows rapidly, resulting in an increase in the
above requirements. Therefore, for very large time sequences, which are stored
in the secondary memory, we have to take into consideration the fact that suc-
cessive values are likely to be covered by a large number of common segments.
Thus, we propose the representation of successive values of the time sequence by
their covering range of values, which is in fact their one dimensional minimum
bounding rectangle (1-d MBR). Figure 1b presents a number of successive val-
ues and the corresponding MBR. The collection of the resulting MBRs can be
e�ciently stored in an R�-tree [4]. This idea was successfully used in [7], where
the values of the Fourier Transformation of time series are indexed, in order
to answer subsequence matching similarity queries. It will be shown that this
approach correctly �nds all the qualifying time points. As a result, we have to
store a much smaller number of entries, yielding to reduced space overhead and
processing costs as it is validated by the experimental results.

The rest of this paper is organized as follows. In Section 2 we present a
description of the IP-index and the way it can be implemented in secondary
storage. Section 3 presents the proposed approach and Section 4 describes the
experimental evaluation of both approaches. We summarize in Section 5 by giv-
ing some brief conclusions.

2 Related Work and Motivation

In this section, we present the implementation of the IP-index [8] for secondary
storage. Lin et al. have proposed that for time sequences of one value, each pair
of a time point ti and a value vi (a point in the two-dimensional t-v plane)
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Fig. 2. a. A sequence of 4 time points and the projections of the values on the v-axis.

b. The corresponding B+-tree and the attached segment lists.

de�nes a state Si. Two consecutive states Si and Si+1 de�ne a line segment Sgi.
Then the problem of answering an inverse query for a value v0 is equivalent to
�nding all the segments Sgi that are intersected by the line v = v0 (see Figure
1a). The corresponding time points can be found by applying any interpolation
function (e.g. linear interpolation is used in the example of Figure 1a).

In order to answer an inverse query without scanning the hole time sequence,
each line segment Sgi is projected on the v-axis. The collection of all the pro-
jections for all states Si forms a set of non-overlapping intervals [kj ; kj+1) (see
Figure 2a). Each kj corresponds to one (more than one in case of equal values)
value vi. Then, all the values that belong in the interval [kj ; kj+1) are covered
by the same segments. The IP-index associates each interval [kj ; kj+1) with the
corresponding list of covering segments < Sgi >. Since intervals are successive,
each interval can be represented only with its starting value, i.e. kj .

In [8], the IP-index was implemented in main memory by using an AVL-tree.
For secondary storage, the IP-index has to be implemented as a B+-tree, where
every leaf node entry contains a pointer to its corresponding segment list. Figure
2b gives the resulting B+-tree for the example of Figure 2a. To answer an inverse
query for a value v0 using the IP-index, we have to search the B+-tree (or any
other implementation) to �nd the interval [kj ; kj+1) that v

0 belongs to. This is
achieved by �nding the maximum value kj that is less than or equal to v

0. Then,
the list of the covering segments for that interval, contains all the segments that
intersect the line v = v0.

The performance of the IP-index method is a�ected by the total number of
entries and especially the number of covering segments, which in very large se-
quences tend to increase rapidly. In [8], this problem is addressed by limiting the
precision of the measured values. This results into the reduction of the number
of index entries due to the fact that several time points will have the same value
for the reduced precision, while this is not the case of the original precision.
Apparently, the reduction of the precision is application depended and cannot
be applied in general.

Since the IP-index has been proposed as a main memory index, the search
time is linear with respect to the length of the segment lists. However, for sec-
ondary storage, extra disk access cost is required to traverse these lists. For
the implementation of those lists in secondary storage, we follow the approach
proposed in [6], where the problem of the e�cient handling of posting records

553Indexing Time-Series Databases for Inverse Queries   



in a B+-tree is examined. With this approach, we have a number of covering
segments stored in consecutive positions in secondary memory. These segments
are stored in buckets, the contents of which one can be retrieved with one log-
ical disk access. The cost measures that are considered in [6] for posting lists
are similar with those ones in the case of segment lists. More precisely, we have
to take into account the fragmentation which occurs when we choose a large
bucket size and the increased search time when we choose a small bucket size.
We have to note that we use a constant bucket size. Although the other method
described in [6] achieves improved search time, it requires total reorganization
of the bucket entries. This would had a great impact on the insertion time due
to the large number of bucket entries which the IP-index requires.

3 Proposed Method

The problem of answering inverse queries translates to �nding a way to index the
values of the time sequence in order to discard irrelevant parts of the sequence
and search only the ones that contain values satisfying the query condition and
thus, avoiding the straightforward solution to search the entire sequence for
�nding the time points which answer the query.

As it has been mentioned previously, the IP-index divides the set of all val-
ues into intervals of values which contain values that are all covered by the
same segments. This method gains at instances of time sequences that contain
the same values at several time points. As it is mentioned in [8], the IP-index
performs extremely well for periodic time sequences with values of reduced pre-
cision. However, in most cases, time sequences are not periodic and may contain
values of high precision. This fact leads to a point where we have to store as
many intervals as the number of points in the time sequence. Moreover, the
problem is enhanced due to the fact that several intervals are covered by the
same segments. As a consequence, there is a large number of duplicates stored
in the segments lists. Since, as it will be shown later, for very large time series
the overlapping between covering segments is also large, the IP-index leads to a
large space overhead. This also a�ects the insertion and search times.

The ine�ciency in terms of space and insertion time stems from the fact that
every interval is explicitly stored. The proposed method is based on the property
that consecutive time points will probably have similar values. This approach was
followed in [7], in order to answer subsequence similarity queries. Therefore, we
can divide the sequence into subsequences of consecutive time points that do not
have values with large di�erences. The collection of these points corresponds to a
range of values and all included values can be represented only with that range.
An inverse query has to retrieve only the ranges that contain values satisfying the
query condition. It is easy to show that if an inverse query intersects some of the
values inside the range then it has to intersect the range itself. The time points
of all the subsequences which take values inside the retrieved ranges have to be
computed by examing the contents of each subsequence. As it will be shown
in the sequel, the proposed method correctly �nds all the time points which
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Fig. 3. a. A sequence divided into 3 parts and the corresponding MBRs. b. The struc-

ture of an internal and of a leaf node of the R�-tree.

satisfy the query condition. Such a range of values represents the one dimensional
minimum bounding rectangle (MBR) of the values it includes. Therefore, the
proposed index method can be implemented with an 1-d R�-tree, storing these
MBRs.

Figure 3a presents an example of a time sequence which is divided into three
subsequences. For each one of them the corresponding 1-d MBR is depicted with
a solid line (for illustration reasons each subsequence is bounded by a rectan-
gle). In the same �gure it is shown that di�erent MBRs may have overlapped
projections on the v-axis. Notice that the R�-tree has to store at the leaf nodes
the starting time and the ending time of each subsequence. Figure 3b illustrates
the structure of an internal and an external node of the R�-tree.

3.1 Insertion

Following the previously described approach, we have to de�ne a way such that
several consecutive values will be included in the same MBR, forming one sub-
sequence. As it is mentioned in [7], the criterion whether a value will belong to a
subsequence or not is based on the fact that it does not increase the probability
that the corresponding MBR is going to be accessed. As it can be easily shown
for data normalized to the range [0; 1], the probability P that an MBR (1-d in
our case) of length L will be accessed by the average range query is equal to
P = L + 0:5 (it is assumed that an average range query is of length equal to
0:5). Also, notice that this criterion requires that the values are normalized to
the range [0; 1]. In [7] for an MBR consisting of k values the marginal cost mc
of this MBR is de�ned as mc = (L+0:5)=k which means that the probability of
accessing the MBR is divided by the number of values that this MBR includes.

Hence, the criterion to include (or not) a new value in a subsequence is based
on the comparison of the new marginal cost mca of the MBR produced in case
of insertion of the new value into the speci�c subsequence, with the marginal
cost mcb of the MBR before the insertion. More precisely if the MBR length
before the insertion was Lb, whereas after the insertion it changes to La (notice
that La may be equal to Lb if there is no expansion), then we have to test if
La=(k + 1) � Lb=k
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Therefore, we start with the �rst value of the whole sequence and we form
a subsequence by including all the successive values, as long as these values
preserve the above inequality. In case that the inequality does not hold, we have
to start a new subsequence. At this point, our approach di�ers from that in [7]
in order to include a special case. Figure 4 illustrates this case. In this �gure
values v1, v2 and v3 belong to the same subsequence and they are represented
by their 1-d minimum bounding rectangleMBR1. Value v4 is such that it has to
be excluded from the previous subsequence and to start a new subsequence. In
this new subsequence, values v5 and v6 will also be included. In order to be able
to answer correctly an inverse query with a value v0 such that v3 < v0 < v4, we
have to de�ne as starting value of the second subsequence the value v3 and not
v4. As a consequence, the 1-d minimum bounding rectangleMBR2 of the second
subsequence, as it is drawn in Figure 4, will be intersected by values of inverse
queries like the value v0. Otherwise, if we started the new subsequence from the
value v4 (forming the MBR0

2) then the indexing method could not guarantee
safe satisfaction of inverse queries. Finally, notice that the proposed method
supports the dynamic appending of new values at the end of the sequence, since
these new values can be the starting points of new subsequences.

3.2 Search

Here, we examine how we have to search the index for the time points that
correspond to an inverse query. First, for a given inverse query that asks for all
the time points that the time sequence takes values equal to v0, we perform a
point query within the R�-tree to retrieve all the leaf MBRs that totally enclose
the value v0. The retrieved MBRs, as it was described before, represent ranges of
values in subsequences of the original sequence. The fact that an MBR encloses
the value v0 means that the corresponding subsequence includes values, where
some of them are equal to v0.

In the sequel we have to examine all the subsequences that are represented
with an MBR that has been retrieved in the previous step. Thus, we perform
sequential scanning, but only inside each subsequence, in order to �nd the exact
time points that the time sequence takes values equal to v0. As it has been
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Fig. 5. Synthetic Time Sequences

described, the boundaries of each subsequence, i.e. its starting and its �nishing
time, are stored within the corresponding MBR. This way for each query we can
quickly select only the interesting subsequences, and then we can exactly answer
the query by searching only inside these subsequences.

3.3 Correctness

The following lemma proves the correctness of the proposed method.

Lemma1. The proposed method correctly �nds all the time points that the time

sequence contains values equal to the query value.

Proof. Let an inverse query of value v0. Then for any interval of consecutive
values [v1; v2] which satis�es the condition : v1 � v0 � v2, values v1 and v2 will
either belong to the same or to consecutive subsequences. In the �rst case, the
MBR that represents the subsequence they belong to, will enclose that interval
and thus, the MBR will be retrieved by the query. In the second case, as it was
explained in subsection 3.1, the MBR of the second subsequence will enclose the
interval [v1; v2] and so it will also be retrieved by the query. Since these cases
are the only ones, the proposed method correctly answers inverse queries. 2

4 Performance Evaluation

We implemented both the IP-index structure and the proposed one in C++
and we carried out experiments on a Ultra Sparc under Solaris 2.5.1. We used
synthetic data of various lengths and characteristics. According to [8], the IP-
index is by far better than the sequential method, henceforth we do not study
the sequential scanning any more. We measured the performance of the IP-index
and the proposed method, which we will refer to as SIQ-index (denoting indexing
Sequences for Inverse Queries). More precisely we performed measurements of
space overhead, insertion time and search time.

The synthetic data were modeled as random walks [9]. A random walk, also
called brown noise, can be generated by using the following formula [1]:

xt = xt�1 + zt
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Fig. 6. a. Number of segments IP-stores versus sequence length. b. Number of index

entries versus sequence length.

where zt, t = 0; 1; : : : are IID random variables following uniform distribution.
Figure 5 shows examples of the produced synthetic time sequences. These se-
quences have lengths equal to 50000 and 100000 respectively. Each value was
represented with a oat number and no limit to the precision was applied.

The page size for the B+-tree and R�-tree access methods is equal to 4K.
Hence, the B+-tree has a larger fan-out because, as it was explained earlier, the
SIQ-index requires some additional information to be stored in the leaf nodes
of the R�-tree. On the other hand, for the implementation of the segment lists
for the IP-index, we chose the buckets containing the elements of the lists (the
covering segments) to be of constant size equal to 1K. As it is mentioned in [8],
each segment is represented with only one integer denoting the time point of its
staring value. Note that if we chose a larger bucket size, e.g. 4K, then this would
result in severe fragmentation and, as a consequence, in large space waste. In all
our experiments, a bucket of 1K was large enough to hold the average number
of entries of the segment list for each entry in the B+-tree.

4.1 Space overhead

We �rst measured the number of covering segments that the IP-index requires
to store. This is the total number of covering segments for all index entries,
including the duplicates which the IP-index requires to store. Figure 6a gives the
results with respect to the time sequence length. As it is illustrated, the number
of covering segments grows rapidly with respect to the size of the sequences.

For the same sequences, we measured the number of index entries for the
IP and SIQ indexes. Since the IP-index requires the storage of almost every
individual value, whereas the SIQ-index stores only ranges which include more
than one values, the SIQ-index has much less index entries. Figure 6b illustrates
the number of entries for each index. Therefore, the SIQ-index requires much
less space overhead since it stores less index entries and moreover, it does not
require the storage of the covering segments.
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Fig. 7. a. Relative insertion time versus sequence length. b. Required disk accesses

versus sequence length for the search operation.

4.2 Insertion time

Next we measured the insertion time for both indexing methods. Figure 7a
illustrates the results with respect to the sequence length. In Figure 7a, the
insertion time of the IP-index is given relatively to the insertion time of the
SIQ-index. As it is clearly shown by these results, the SIQ-index outperforms
the IP-index due to the fact that it involves the insertion of a much smaller
number of entries and moreover, it does not require the manipulation of the
covering segments that the IP-index does.

4.3 Search time

Finally, we measured the search time which both methods require in order to
answer inverse queries. We carried out the measurement by producing 100 ran-
dom query values. As a cost measure we choose the number of required disk
accesses. Since both the IP-index and SIQ-index involve a post-processing phase
(the former in order to do the interpolation and the latter in order to discard
all intervals that are not intersected by the query value), this measure does not
include the post-processing time which is considered to be negligible since it is
a main memory operation.

Figure 7b illustrates the results of this measurement (the vertical axis depicts
the average disk accesses for one query). As it shown in this �gure, in most cases
the SIQ-index is slightly better than the IP-index, except some cases where IP-
index performs a little better. This is due to the fact that in these cases, the
overlapping between the MBRs is quite large, so the R�-tree requires more than
one leaf MBR to be searched in order to answer the query. On the other hand,
the IP-index can answer the query by accessing only one leaf node because it
divides all values into non-overlapping intervals. The price paid for this is a very
large space overhead.

5 Conclusions

We have presented a method to index time series databases in order to e�ciently
answer inverse queries. This method is based on [7], where the problem of in-
dexing time series databases for subsequence similarity queries is examined. The
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proposed method represents successive values of the sequence with their range of
values which is in fact an one dimensional minimum bounding rectangle (MBR).
Therefore, the collection of these MBRs can be stored in an R�-tree.

The proposed method is compared with the IP-index [8] which organizes a
time sequence by keeping track of each individual interval of consecutive values.
As it was shown, the proposed method achieves clearly a much less space over-
head and better insertion times. At the same time, the approximation of time
values by ranges of values does not lead to worse search time.

Future work may include the examination of the proposed method for in-
dexing collections of time sequences. Also, one other interesting topic is the
examination of the method for time sequences of more than one dimensions.
Finally, future research could involve the generalization of the proposed method
for queries which �nd the intersection points between time sequences.
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