
Efficient Management of 2-d Interval Relat ions

Nikos Lorentzos and Yannis Manolopoulos

Informatics Laboratory, Agricultural University of Athens, 118 55 Athens, Greece.
Department of Informatics, Aristotle University, 54006 Thessaloniki, Greece.

Abst rac t . We identify a number of probicms concerning the manage-
ment of interval data and propose efficient algorithms in the case of 2-
dimensional interval relations. The approach is of practical importance
and has many applications, one of which is spatiotemporal databases.

1 I n t r o d u c t i o n

The term interval is quite generic. Time intervals mark the duration of events
(the lifespan of a person). Alphabetic intervals have many applications (fam-
ily names in the range A-C). Given the wide use of intervals, their handling is
of major importance. However, there is a number of problems which relate to
their management. Such of them were initially identified in research in temporal
databases. In particular, the necessity to support temporal data led to the for-
malisation of many distinct temporal extensions to the relational model [1]. In
spite however of the major differences between the various modelling approaches,
one characteristic, common to almost all of them, is that the ordinary projec-
tion, set-union and set-difference operations are adapted appropriately, in all of
them, so as to apply appropriately to data incorporating time intervals. Next, it
was identified that the same problems arise in the management of certain types
of spatial data [2, 3], and this gave recently rise in research in spatiolemporal
databases [4].

The Interval-Extended Relational Model (IXRM) was defined to handle them
in a uniform way. In this paper we investigate the properties of the IXRM op-
erations and propose efficient algorithms for the above operations. Our work re-
stricts to relations with two pure interval attributes. The algorithms have been
based on the geometric interpretation of the contents of pure interval attributes
and improve substantially the time and space requirements. The remainder of
this work is as follows: In section 2 we identify certain problems concerning the
management of interval data. In section 3 we present briefly the IXRM and
investigate the properties of its operations. In section 4 we make use of these
properties and provide efficient algorithms. Conclusions are drawn in the last
section.

2 M o t i v a t i o n

In this section we demonstrate the problems concerning the projection, insertion
and deletion of interval data. Commercial DBMSs do not support them directly.

73

P r o j e c t i o n : In relation ASSIGNMENT (figure 1) we record the history of
employee assignments to projects. The query "list the time intervals during which
each employee was assigned to some project" requires to project out the second
attribute of ASSIGNMENT. If the standard projection operation is used to this
end, A1 (figure 1) will be obtained. In contrast, the user would rather obtain A2
(figure 1). We say that A2 is a normalised relation, to denote that it does not
contain adjacent or overlapping intervals, which data duplication. For example,
the fact that John was assigned to some project for each of the dates in [d20,d50),
is implicit in A1, from both its first and third tuple.

Assignment
Name Proj Time
John Pl [dl0,d50)
John P1 [d80,d120)

'John P2 [d20,d80)
John Pa [d80,dl00)
Alex P1 [da0,ds0)
Alex P2 [dr0,d150)

Fig. 1. Relations with interval data.

A1
Name Time
John [dl0,d50)
John [d80,d120)
John [d20,d80)
John [d80,dl00)
Alex [d30,d50)
Alex [d70,d150)

A2
Name Time
John [dl0,dl20) l
Alex [d30,d50)
Alex [d70,d150)

LAND
Pno Depth]

[0,20)
1 [0,100)
1 [30,120
1 [o,3o)
2 [0,60)
2 [6o,loo

Time IpH
[d0,d80) 8~.0 rl

d120,d200:8.0r2
[d0,d80)]80 r3

[d80,d120 8.2
[dlO,d50) 18.3
[d30,d90) 18.3

L
o[Depth Time pH

1170,140) [d40,d160) S.0
1160,120) [dlO,d40) 8.3

It2

Fig. 2. Relations with two pure interval atributes.

Similar problems also arise in relations with more than one pure interval
attribute. For example, LAND (figure 2) has two such attributes, Depth, Time,
of an intege~; time interval type, respectively. A non-trivial projection of LAND
on a set of attributes which include either Depth or Time will yield a non-
normalised relation. Therefore, the projection of a relation with pure interval
attributes has to be replaced by some nor'malisation operation, before the result
relation is presented to the user.

D a t a In se r t i on : Assume that we want to insert into LAND the contents of
L (figure 2). Using the standard insertion operation, this will result in relation
LAND1 (figure 3). LAND1 is non-normalised (for example the soil plI at depth
70 on date d40, is recorded in both r2 and r4). In fact, we would like to obtain
LAND2 (figure 3), which is normalised.

D a t a De le t ion : If we use the standard deletion operation, to delete from
LAND the contents of L, nothing will actually be deleted, whereas we would like
to obtain LAND3 (figure 3).

74

3 The Interval Extended Relational Model

In this section we describe shortly the IXRM, which overcomes the problems
identified in the previous section. Its formalisation can be found in [5].

LAND1
Pno Depth

1
1
1
1
1
2
2
2

Time
[0,20) [dO,d80)

[70,140) [d40,d160)
[0,t00) [d120,d200)
[30,120) [d0,dS0)
[0,30) [dS0,d120)
[0,60) [dl0,d50)

[60,100) [daO,d90)
[60,120) [dl0,d40)

L
iPno Depth Time pH

1 [70,120 t [dO,d40) 8.0
1 [0,20) [d0,d80) 8.0
1 [30,70) [dO,dSO) s.o
1 [0,70) [d120,d200) 8.0
1 [70,100) [d160,d200) 8.0
1 [0,30) [d80,d120) 8.2
2 [0,60) [dlO,d50) 8.3
2 [60,100) [d40,d90) 8.3

L
Pno Depth Time pH

pit 1 [0 ,20) [d0,d80) 8.0
S.0 rl 1 [30,70) [d0,d80) S.0
8.0 r2 1 [100,120) [d0,dl60) 8.0
8.0 r3 1 [70,100) [d0,d200) 8.0
8.0 r4 1 [120,140) [d40,d160) 8.0
8.2 1 [0,70) [d120,d200) 8.0
8.3 1 [0,30) [d80,d120) 8.2
8.3 2 [100,120) [dlO,d40) 8.3
8.3 2 [0 ,60) [dl0,dS0) 8.3

2 [60,100) [dl0,d90) 8.3
A3
Name Time
John dl0

John dl19
Alex d30

Alex d49
Alex d70

Alex d149

tl
t2
t3
t4
t5
t6

Fig. 3. Insertion and deletion of interval data. Result of operation unfold.

A 1-dimensional (l-d) space is a non-empty, finite, totally ordered set D of
points: D = dl, d2, ..., dn. (Without loss of generality, we occasionally start num-
bering from do.) A (l-d) interval over D is defined as

[dm, dn) = {dkldm < dk < dn,dm,dn E D}.
The points dm, dn are the boundaries of [din, dn), denoted by start([dm, dn)),
stop([dm,dn)), respectively. An interval [di,di+l), with exactly one point, is
called elementary. The set of all intervals over D is denoted by I(D). Thus,
if DATES=d0, dl, . . . , d200 is a set of consecutive dates then [dl0, d21) is an inter-
val in I(DATES). If [din, dn) and [dp, dq) are two intervals, we define a predicate,
merges, as

[dm, dn) merges [dp, dq) if and only if (dn _> dp and dq ~ din)
If D1, ..., Dn are spaces then every subset R of the Cartesian product I(D1) x ...
x I(Dn) is an n-d interval relation. Each tuple (element) of R represents an n-d
interval. An n-d interval ([dil, dil+l), [di2, di2+1), ..., [din, din+l)) with exactly one
n-d point (dil, ..., din), is called n-d elementary interval. We further notice that
a point di can be seen as an interval [di, di+l). Therefore, if we use the notation
X(D) to denote exclusively either I(D) or D, then every subset of X(D1) x ... x

75

X(Dn) is, up to an isomorphism, an interval relation. Hence, all the relations in
figures 1-3 are interval relations.

Two operations have been formalised in the IXRM: If R(A,B=I(D)) is a
relation then for each tuple (a,[dm, dn+l)) in R, S=unfold[B](R) consists of the
set of tuples: (a, din), (a, din+l), (a, dm+2), ..., (a, d,~). Conversely, if S consists
of the above tuples, but it does not contain any of (a,dm-1) and (a,dn+l), then
fold[B](S) produces from them the single tuple (a,[dm,dn+l)). More generally,
fold coalesces two or more overlapping or adjacent intervals into one. Examples
of these operations, based on the relations in figures 1-3, are

A3=unfold[Time](A1), A3=unfold[Time](A2), A2=fold[Time](A3),
A2=fold[Time](A1)

If [B~, ..., Bm] is any list of the attributes of a relation R(A~, ..., A,) , the
definitions of unfold and fold are now extended as follows:

unfold[B1, B2, ..., Bm](R) = unfold[Bin](... (unfold[B2](unfold[B1](R))))
fold[B1, B2, ..., Bm](R) = fold[Bin](... (fold[B2](fold[B1](R))))

Another operation, normalise, can also be defined in terms of unfold and fold:
normalise[B~, B2, ..., Bm](R) = fold[B~, B2, ..., Bm](unfold[B1, B2, ..., Bm](R))

By the definition of normalise, unfold initially eliminates duplicate tuples. Next
fold yields a relation which does not contain adjacent or overlapping intervals.

Finally, if R and S be two union-compatible relations, operations unique
points set-union (punion) and unique points sel-difference (pdiff) are defined as

punion[Bl,..., Bm](R, S) = fold[B1,..., Bm](unfold[B1,..., Bm](R) U
unfold[B1,..., Bm](S))

pdifJ~B1,..., Bm](R,S) = fold[B],..., Bm](unfold[B1,..., Bm](R) -
unfold[B,, ..., Bm](S))

By their definition, these operations return a normalised relation. It is easy to
show that

punion[B1,.., Bm](R,S) -- fold[B1,.., Bm](unfold[B1,.., Bm](R l..J S)).
Using the above operations, the problems identified in the previous section are
faced as follows:
N o r m a l i s a t i o n : A2 = normalise[Time](A1),
LAND2 = normalise[Time,Depth](LAND1)
I n s e r t i o n of I n t e r v a l Da ta : LAND2 = punion[Time,Depth](LAND, L)
D e l e t i o n o f I n t e r v a l Da ta : LAND3 = pdiff[Time,Depth](LAND,L)

The above three operations can be used to handle relations with arbitrarily
many pure interval attributes. However, their definition in terms of unfold, makes
them prohibitively costly. In the sequel we investigate the properties of unfold
and fold and provide efficient algorithms in the next section.

An interval [dm, dn) can geometrically be seen as a line segment which is
closed to the left and open to the right. Hence, every tuple of an n-cry relation
can be seen as an n-d cuboid. Thus, the single tuple of relation R (figure 4(a)) is
represented by the orthogonal rectangle WXYZ (figure 4(b)). The 2-d points on
sides XY and YZ are not points of the interval. In contrast, the 2-d points in the

76

rectangle and also those on sides WX and WZ (excluding X and Z) are points of
it. If Rl=unfold[B](R) is now issued, then R1 will consist of four tuples, ([1, 4),
i), i = 1, 2, 3, 4. Since point i is isomorphic with the interval [i, i+1), each of these
tuples can geometrically be interpreted by one of the four adjacent rectangles in
figure 4(c). This figure shows that unfold[B](R) splits each tuple (interval) of a
relation R into intervals whose values for attribute B are elementary intervals.
Similarly, if we issue next R2=unfold[A](R1) we obtain a relation consisting of
2-d elementary points whose geometric interpretation is shown in figure 4(d).

R

[1,5) ~r , , l , ,

1 2 3 4 5 B]
(a) (b)

R

A

[1,4)

R1
P

I I p

2 3 4 5 B
(c)

} R2

I I I I I ,
1 2 3 4 5 B

(d)

Fig. 4. Geometric interpretation of a 2-d interval and of operations unfold and fold.

It can easily be seen that the relations, whose representation is given in figure
4, satisfy Rl=fold[A](R2), R=fold[B](R1) and, therefore, R=fold[A,B](R2). The
following properties can be deduced from the definition of fold (the reader can
found their formal proofs in [6]).

P r o p e r t y 1: unfold[S,A](R) = unfold[A,S](R).
P r o p e r t y 2: If a relation R(A,B) is sorted with respect to A and B then

/old[B](R) can be accomplished in one pass, by scanning sequentially the tuples
of R.

P r o p e r t y 3: If R1, R2, ..., Rk is a partition of R(A,B) such that all the tuples
in the same Ri have identical A values whereas tuples in distinct Ri and Rj have
different A values, then

fold[B](R) = fold[B](R1) U fold[B](R2) [3...U fold[B](Rk).
P r o p e r t y 4: Let R(A,B=I(D)) be a relation and BP a subset of points in D.

If S is the relation obtained from R if all the tuples of R are split with respect
to the points in BP, then

fold[B](R) = fold[B](S).
P r o p e r t y 5: fold[B](a) = fold[B](unfold[B](a)).
P r o p e r t y 6: Let R(A,B=I(D)) be a relation and BP be a subset of points

in D. If S is the relation obtained from R if all the tuples of R are split with
respect to the points in BP, then

fold[B](unfold[B](R)) = fold[B](S).
P r o p e r t y 7: For any relation R,

fold[A,B](unfold[A,B](R)) = fold[A,B](unfold[B](a)).
Because of the above properties normalise and punion are equivalent to

normalise[B1, B2, ..., Bm](R) = fold[B1, B2,..., Bm](Unfold[B2, S3, ..., Bm](R))
punion[B1,..., Bm](R,S) = fold[B1, ..., Bm](Unfold[B2, B3, ..., Bm](R U S)).

77

4 Efficient A l g o r i t h m s

U s i n g t h e p r o p e r t i e s o f t h e p r e v i o u s s e c t i o n , w e n o w p r o v i d e e f f i c i e n t a l g o r i t h m s

for no rma l i s e , p u n w n and pdiff.

T i m e

d200

d160

d120

d80

d40

dO

Time
d200

d160

d120

d80

d40

dO

r, li!ii!i!iiiii!ilJ!l
30 r'o 9'o Z p -

I J I ' I I I p

1t0 130

(a)
bd2

~ d 5 bd6 bd7

Y: /:? illlsiiiiiii

10 .30 50 70 90 110 130

(c)

Time
d200

d160

d120 i
d80

d40

dO 10

Time
d200

d160

d120

d80

d40

dO

t6

t4

30 50 70 90

(b)

bd2

bdl!bd3 bd4

I /
10 30 50 70 90

(a)

Deptlh (cm)
, . I

110 130

bd5 bd6 bd7

I

110 130

Time

d200

d160

d120

d80

d40

dO

b d l bd2

q I

10

bda b d4 b d5 b d6
. ~ t6

.)) i 43t4

. ~ ! ! aot 3

i i c ~ ~ t I | i] ~ 4,~1
;30 50 70 90 110 130 ~

(e)

Fig . 5. Geometric in terpre ta t ion of efficient operations.

78

4.1 Efficient Normal iza t ion of 2-d Interval da ta

LAND1 (figure 3) is non-normalised, therefore normalise/fold has to be applied.
From property 3 it suffices to normalise each distinct set in the partition of
LAND1. Indeed, LAND1 is already sorted with respect to Pno and pH and the
partition is {P,Q,R}, where P consists of the first four tuples, Q consists of the
fifth and R contains consists of the last three tuples. The interpretation of P is
shown in figure 5(a). Tuple r2, in particular, is dark. The rectangles in r2 which
are darker, including their bottom and left sides, denote duplicate points.

If we now issue normalise[Time,Depth](P), we shall obtain the first six tu-
ples of LAND2 (figure 3). The interpretation of these tuples is shown in figure
5(b). By using property 7, the number of attributes on which LAND1 has to be
unfolded may by reducing by one, that is
normalise[Time,Depth](LAiD1) = fold[Time,Oepth](unfold[Oepth](LAiD1)).

If we issue uufold[Depth](LAND1), each of the rectangles in figure 5(a) will be
split into a large number of rectangles with Depth components of exactly one
point each. The same result can be obtained if the rectangles in figure 5(a) are
split only into sub-rectangles with respect to the boundary points of their Depth
values. This split is shown in figure 5(c). The set of these boundary points with
respect to which the split will take place, is DepthBoundaries={bdl,...,bd7}.
Hence, rather than using unfold, we can use this split, to finally achieve an
equivalent result. Thus, if P1 is the relation having as tuples the rectangles
in figure 5(c), then the interpretation of P2=fold[Time](P1) is shown in figure
5(d). Finally, Pa=fold[Depth](P2) shown in figure 5(b), is the interpretation of
the normalised relation LAND2. The above procedure has to be repeated for
each set in the partition {P,Q,R} of LAND1.

Inpu t : Relation R(NI, A, B), Index(NI) of relation R.
Outpu t : Relation S=normalise[A,B](R).
begin

for each distinct ni value stored in Index(NI) do
begin

retrieve the subset Ri of R with Ri[NI]=ni
for each tuple r(ni,a,b) of Ri do
begin

store the boundaries of b in BBoundaries(B)
store (a,b) in Temp(A,B)

end
sort BBoundaries(B) and eliminate any duplicate rows
split each tuple in Temp(A,B) wrt the points in BBoundaries(B)
fold(Temp)
for each tuple r(a,b) in Temp(A,B), write S(ni,a,b)

end

end Table 1: Algorithm for EJficient-normalise on two attributes.

Let NI be a set of zero or more attribute and let R(NI,A=I(D1),B=I(D2))
be a relation. We assume that two temporary files, BBoundaries(B=D2) and

79

Temp(A=I(D1),B=I(D2)) can fit in main memory. For simplicity, we assume
also that the result of a split or fold in a main memory structure, is stored in
this same structure. The algorithm normalise, shown in table 1, calls algorithm
fold, given in table 2.

I n p u t : Relation Temp(A,B).
O u t p u t : Relation fold[A,B](Temp).
beg in

sort Temp(A,B) on B, A
fold Temp(A,B) on A
sort Temp(A,B) on A, B
fold Temp(A,B) on B

e n d Table 2: Algorithm to fold on two attributes.

4.2 Efficient I n s e r t i o n o f 2-d Interval D a t a

Consider LAND (figure 2), indexed on NI=[Pno, pH] and assume that we want
to insert into L (figure 2). By using property 3, we initially partition L with
respect to its distinct NI values and for each set in this partition we consider
only the respective partition in LAND. More precisely, L can be partitioned
into two sets, of one tuple each. The Pno and pH values of the tuples in the
first set (tuple r2) are 1 and 8.0, respectively. For this set, it suffices to consider
from LAND only those tuples with the same respective values, ttowever, tuple
rl (figure 5(a)) can in fact be excluded because neither its Time nor its Depth
component merges with the respective component of r2. In contrast, tuples r3
and r4 of LAND have to be involved in punion because: (i) Their Pno and pH
values are identical with the respective values of r2 (also satisfied by rl) and (ii)
both their Depth and Time values merge with the respective values of r2 (not
satisfied by rl).

I n p u t : Relations R(NI,A,B), Index(NI) of relation R, T(NI,A,B)
(* R is normalised with respect to A, B *)
O u t p u t : Relation R=punion[A,B](R,T)
beg in

sort T on NI
for each subset Ti(NI,A,B) of T with identical NI values do
beg in

for each tuple r(ni,a2,b2) of Ti do
beg in

store the boundaries of b2 in BBoundaries(B)
store (a2,b2)in Temp(a,B)
for each tuple r(ni,al ,bl) in R such that

(al merges a2) and (bl merges b2) do
beg in

store the boundaries of bl in BBoundaries(B)
store (M,b l) i n Temp(A, B)

80

delete r from R
e n d

e n d
sort BBoundaries(B) a n d eliminate any duplicate rows
split each tuple in Temp(A,B) wrt the points in BBoundaries(B)
fold(Temp)
for each tuple r(a,b) in Temp(A,B), write R(ni,a,b)

e n d

end Table 3: Algorithm for efficient punion on two attributes.

It is now clear from sub-section 4.1, that if punion[Time,Depth](LAND,L) is
issued, the resulting relation will contain the tuples t2-t6 (figure 5(b)), in place of
tuples r3 and r4 (figure 5(a)). This means that tuples r3 and r4 have to be deleted
from LAND and tuples t2-t6 will next have to be inserted into LAND. Further-
more, since only the tuples r2-r4 need be split, the set of the Depth boundary
points with respect to which the split will take place, is DepthBoundaries =
{bdl,bd3,.. ,bd7} (figure 5(c)).

Finally, the tuples derived by this split have to be folded on Time and Depth
and be inserted into LAND. The same procedure has to be repeated with each
set into which L is partitioned. The above imply the algorithm for punion which
is given in table 3.

4.3 Efficient De le t ion of 2-d In t e rva l D a t a

Now assume that we want to delete from LAND the contents of L (figure 2).
Since pdiffinvolves fold, similarly to punion, L has to be partitioned with respect
to the values of its tuples on attributes NI. Then pdi/0~Time,Depth](LAND,L)
can be implemented by considering separately each distinct set in this partition,
with the respective partition in LAND. The first set in the partition of L consists
of tuple r2, only. The respective set of LAND consists again of the tuples r l , r3,
r4 from which only r3 and r4 have again to be considered because (i) their Pno
and pH values match with the respective values of r2 and (ii) both their Depth
and Time values merge with the respective values of r2. As can be seen in figure
5(a), only the portion in dark of tuples r3 and r4 has to be eliminated. Figure
5(e) shows the tuples which LAND will contain in place of r3 and r4, after the
execution of pdiff. This implies that (i) once r3 and r4 have been identified, they
have to be deleted from LAND and (ii) once the tuples in figure 5(e) have been
computed, they have to be inserted into LAND. The tuples in figure 5(e) can be
computed as follows:

I n p u t : Relations R(NI,A,B), Index(NI) of relation R, T(NI,A,B)
(* R is normalised with respect to A, B *).
O u t p u t : Relation R=pdi]:J[A,B](R,T).
beg in

sort T on NI
for each subset Ti(NI,A,B) of T with identical NI values do

81

begin
for each tuple r(ni,a2,b2) of Ti do
begin

store the boundaries of a2 in ABoundaries(A)
store the boundaries of b2 in BBoundaries(B)
store (a2,b2) in Temp2(A,B)
for each tuple r(ni,al,bl) in R such that

(al merges a2) and (bl merges b2) do
begin

store the boundaries of al in ABoundaries(A)
store the boundaries of bl in BBoundaries(B)
store (al,bl) in Templ(A,B)
delete r from R

end
end
sort ABoundaries(A) and eliminate any duplicate rows
sort BBoundaries(B) and eliminate any duplicate rows
split each tuple in Templ(A,B) wrt the points in ABoundaries(A)
split each tuple in Templ(A,B) wrt the points in BBoundaries(B)
split each tuple in Temp2(A,B) wrt the points in ABoundaries(A)
split each tuple in Temp2(A,B) wrt the points in BBoundaries(B)
delete from Templ(A,B) the tuples in Temp2(A,B)
fold(Tempi)
for each tuple r(a,b) in Templ(A,B), write R(ni,a,b)

end
end

Table 4: Algorithm %r efficient pdiff on two attributes.

Firstly, by comparing figures 5(a) and 5(e), it is clear that, initially, tu-
ples r2-r4 have to be split twice: The first split will be with respect to their
Depth boundary points, DepthBoundaries={bdl,...,bd6}. The tuples obtained
this way, will next have to be split with respect to their Time boundary points,
TimeBoundaries={btl,...,bt6}. Thus, two distinct main storage structures have
now to be maintained, DepthBoundaries and TimeBoundaries. The result ob-
tained after the split of r3 and r4 is maintained in a main storage structure,
Templ(A,B). Similarly, the result obtained by the split of r2 is maintained in a
main storage structure Temp2(A,B).

Secondly, in order that the dark rectangles of figure 5(c) are eliminated, we
have to issue

Tempa(A,B) -- Tempa(a,B) - Temp2(a,B).
Finally, the result of fold[Time,Depth](Templ), shown in figure 5(e), has to be
inserted into LAND. Hence, the algorithm for an efficient pdifJ~A,B] is the one
given in table 4.

82

5 Conclusions

We considered relations with two interval attributes and examined the problems
arising when certain operations are applied to them. At the logical level, it was
shown how the relational algebra should be extended to overcome these prob-
lems, by using two additional operations, fold and unfold. We investigated the
properties of these operations and presented efficient algorithms for the man-
agement of 2-d interval data. Work concerning their implementation can be
found in [6]. In our approach we considered indices on non-interval attributes
but spatiotemporal indexing approaches have also been proposed (see for exam-
ple [7, 8, 9] for surveys). However, the indexing of interval data is still an open
research problem. Thus, for the problems examined in this work, even more
efficient algorithms have to be investigated.

Acknowledgment

This work has been funded by the ESPRIT III Project ORES, 7224.

References

1. L.E. McKenzie and R.T. Snodgrass: Evaluation o/ Relational Algebras Incorporat-
ing the Time Dimension in Databases, ACM Computing Surveys 23(4), 501-543,
1991.

2. C.S. Jensen and R.T. Snodgrass: Extending Normal Forms to Temporal Relations,
TR 92-17, Computer Science Dept., University of Arizona, 1992.

3. S.K. Gadia: Parametric Databases: Seamless Integration of Spatial, Temporal, Be-
lief and Ordinary Data, ACM SIGMOD RECORD 22(1) 15-20, 1993.

4. K.K. AI-Taha, R.T. Snodgrass and M.D. Soo: Bibliography on Spatiotemporal
Databases, ACM SIGMOD Record 22(1), 59-67, 1993.

5. N.A. Lorentzos: The Interval Extended Relational Model and its Application to
Valid Time Databasesr, in Theory, Design and Implementation (ed. A. Tansel
et.al.), Benjamin/Cummings, 67-91, 1993.

6. N.A. Lorentzos, A. Poulovassilis and C. Small: Implementation of Update Opera-
tions]or Interval Relations, The Computer Journal, 37(3), 164-176, 1994.

7. Y. Manolopoulos and G. Kapetanakis: Overlapping B+trees]or Temporal Data,
Proc. 5th JCIT Conference, 491-498, 1990.

8. H. Samet: The Design and Analysis of Spatial Data Structures, Addison-Wesley,
Reading MA, 1990.

9. C. Kolovson: Indexing for Historical Databases, in Theory, Design and Implemen-
tation (ed. A. Tansel et.al.), Benjamin/Cummings, 418-432, 1993.

