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Abst rac t .  We identify a number of probicms concerning the manage- 
ment of interval data and propose efficient algorithms in the case of 2- 
dimensional interval relations. The approach is of practical importance 
and has many applications, one of which is spatiotemporal databases. 

1 I n t r o d u c t i o n  

The term interval is quite generic. Time intervals mark the duration of events 
(the lifespan of a person). Alphabetic intervals have many applications (fam- 
ily names in the range A-C). Given the wide use of intervals, their handling is 
of major importance. However, there is a number of problems which relate to 
their management. Such of them were initially identified in research in temporal 
databases. In particular, the necessity to support temporal data led to the for- 
malisation of many distinct temporal extensions to the relational model [1]. In 
spite however of the major differences between the various modelling approaches, 
one characteristic, common to almost all of them, is that the ordinary projec- 
tion, set-union and set-difference operations are adapted appropriately, in all of 
them, so as to apply appropriately to data incorporating time intervals. Next, it 
was identified that the same problems arise in the management of certain types 
of spatial data [2, 3], and this gave recently rise in research in spatiolemporal 
databases [4]. 

The Interval-Extended Relational Model (IXRM) was defined to handle them 
in a uniform way. In this paper we investigate the properties of the IXRM op- 
erations and propose efficient algorithms for the above operations. Our work re- 
stricts to relations with two pure interval attributes. The algorithms have been 
based on the geometric interpretation of the contents of pure interval attributes 
and improve substantially the time and space requirements. The remainder of 
this work is as follows: In section 2 we identify certain problems concerning the 
management of interval data. In section 3 we present briefly the IXRM and 
investigate the properties of its operations. In section 4 we make use of these 
properties and provide efficient algorithms. Conclusions are drawn in the last 
section. 

2 M o t i v a t i o n  

In this section we demonstrate the problems concerning the projection, insertion 
and deletion of interval data. Commercial DBMSs do not support them directly. 
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P r o j e c t i o n :  In relation ASSIGNMENT (figure 1) we record the history of 
employee assignments to projects. The query "list the time intervals during which 
each employee was assigned to some project" requires to project out the second 
attribute of ASSIGNMENT. If the standard projection operation is used to this 
end, A1 (figure 1) will be obtained. In contrast, the user would rather obtain A2 
(figure 1). We say that  A2 is a normalised relation, to denote that it does not 
contain adjacent or overlapping intervals, which data duplication. For example, 
the fact that John was assigned to some project for each of the dates in [d20,d50), 
is implicit in A1, from both its first and third tuple. 

Assignment 
Name Proj Time 
John Pl [dl0,d50) 
John P1 [d80,d120) 

'John P2 [d20,d80) 
John Pa [d80,dl00) 
Alex P1 [da0,ds0) 
Alex P2 [dr0,d150) 

Fig. 1. Relations with interval data. 

A1 
Name Time 
John [dl0,d50) 
John [d80,d120) 
John [d20,d80) 
John [d80,dl00) 
Alex [d30,d50) 
Alex [d70,d150) 

A2 
Name Time 
John [dl0,dl20) l 
Alex [d30,d50) 
Alex [d70,d150) 

LAND 
Pno Depth ] 

[0,20) 
1 [0,100) 
1 [30,120 
1 [o,3o) 
2 [0,60) 
2 [6o,loo 

Time IpH 
[d0,d80) 8~.0 rl 

d120,d200:8.0r2 
[d0,d80) ]80 r3 

[d80,d120 8.2 
[dlO,d50) 18.3 
[d30,d90) 18.3 

L 
o[ Depth Time pH 

1170,140) [d40,d160) S.0 
1160,120) [dlO,d40) 8.3 

It2 

Fig. 2. Relations with two pure interval atributes. 

Similar problems also arise in relations with more than one pure interval 
attribute. For example, LAND (figure 2) has two such attributes, Depth, Time, 
of an intege~; time interval type, respectively. A non-trivial projection of LAND 
on a set of attributes which include either Depth or Time will yield a non- 
normalised relation. Therefore, the projection of a relation with pure interval 
attributes has to be replaced by some nor'malisation operation, before the result 
relation is presented to the user. 

D a t a  In se r t i on :  Assume that we want to insert into LAND the contents of 
L (figure 2). Using the standard insertion operation, this will result in relation 
LAND1 (figure 3). LAND1 is non-normalised (for example the soil plI at depth 
70 on date d40, is recorded in both r2 and r4). In fact, we would like to obtain 
LAND2 (figure 3), which is normalised. 

D a t a  De le t ion :  If we use the standard deletion operation, to delete from 
LAND the contents of L, nothing will actually be deleted, whereas we would like 
to obtain LAND3 (figure 3). 
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3 The Interval Extended  Relational  Model  

In this section we describe shortly the IXRM, which overcomes the problems 
identified in the previous section. Its formalisation can be found in [5]. 

LAND1 
Pno Depth 

1 
1 
1 
1 
1 
2 
2 
2 

Time 
[0,20) [dO,d80) 

[70,140) [d40,d160) 
[0,t00) [d120,d200) 
[30,120) [d0,dS0) 
[0,30) [dS0,d120) 
[0,60) [dl0,d50) 

[60,100) [daO,d90) 
[60,120) [dl0,d40) 

L 
iPno Depth Time pH 

1 [70,120 t [dO,d40) 8.0 
1 [0,20) [d0,d80) 8.0 
1 [30,70) [dO,dSO) s.o 
1 [0,70) [d120,d200) 8.0 
1 [70,100) [d160,d200) 8.0 
1 [0,30) [d80,d120) 8.2 
2 [0,60) [dlO,d50) 8.3 
2 [60,100) [d40,d90) 8.3 

L 
Pno Depth Time pH 

pit 1 [0 ,20)  [d0,d80) 8.0 
S.0 rl 1 [30,70) [d0,d80) S.0 
8.0 r2 1 [100,120) [d0,dl60) 8.0 
8.0 r3 1 [70,100) [d0,d200) 8.0 
8.0 r4 1 [120,140) [d40,d160) 8.0 
8.2 1 [0,70) [d120,d200) 8.0 
8.3 1 [0,30) [d80,d120) 8.2 
8.3 2 [100,120) [dlO,d40) 8.3 
8.3 2 [0 ,60)  [dl0,dS0) 8.3 

2 [60,100) [dl0,d90) 8.3 
A3 
Name Time 
John dl0 

John dl19 
Alex d30 

Alex d49 
Alex d70 

Alex d149 

tl  
t2 
t3 
t4 
t5 
t6 

Fig. 3. Insertion and deletion of interval data. Result of operation unfold. 

A 1-dimensional (l-d) space is a non-empty, finite, totally ordered set D of 
points: D = dl, d2, ..., dn. (Without loss of generality, we occasionally start num- 
bering from do.) A (l-d) interval over D is defined as 

[dm, dn) = {dkldm < dk < dn,dm,dn E D}. 
The points dm, dn are the boundaries of [din, dn), denoted by start([dm, dn)), 
stop([dm,dn)), respectively. An interval [di,di+l), with exactly one point, is 
called elementary. The set of all intervals over D is denoted by I(D). Thus, 
if DATES=d0, dl, . . . ,  d200 is a set of consecutive dates then [dl0, d21) is an inter- 
val in I(DATES). If [din, dn) and [dp, dq) are two intervals, we define a predicate, 
merges, as 

[dm, dn) merges [dp, dq) if and only if (dn _> dp and dq ~ din) 
If D1, ..., Dn are spaces then every subset R of the Cartesian product I(D1) x ... 
x I(Dn) is an n-d interval relation. Each tuple (element) of R represents an n-d 
interval. An n-d interval ([dil, dil+l), [di2, di2+1), ..., [din, din+l)) with exactly one 
n-d point (dil, ..., din), is called n-d elementary interval. We further notice that  
a point di can be seen as an interval [di, di+l). Therefore, if we use the notation 
X(D) to denote exclusively either I(D) or D, then every subset of X(D1) x ... x 
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X(Dn) is, up to an isomorphism, an interval relation. Hence, all the relations in 
figures 1-3 are interval relations. 

Two operations have been formalised in the IXRM: If R(A,B=I(D))  is a 
relation then for each tuple (a,[dm, dn+l)) in R, S=unfold[B](R) consists of the 
set of tuples: (a, din), (a, din+l), (a, dm+2), ..., (a, d,~). Conversely, if S consists 
of the above tuples, but it does not contain any of (a,dm-1) and (a,dn+l), then 
fold[B](S) produces from them the single tuple (a,[dm,dn+l)). More generally, 
fold coalesces two or more overlapping or adjacent intervals into one. Examples 
of these operations, based on the relations in figures 1-3, are 

A3=unfold[Time]( A1), A3=unfold[Time]( A2), A2=fold[Time]( A3), 
A2=fold[Time]( A1) 

If [B~, ..., Bm] is any list of the attributes of a relation R(A~, ..., A,) ,  the 
definitions of unfold and fold are now extended as follows: 

unfold[B1, B2, ..., Bm](R) = unfold[Bin]( ... ( unfold[B2]( unfold[B1](R) ) ) ) 
fold[B1, B2, ..., Bm](R) = fold[Bin]( ... (fold[B2](fold[B1](R) ) ) ) 

Another operation, normalise, can also be defined in terms of unfold and fold: 
normalise[B~, B2, ..., Bm](R) = fold[B~, B2, ..., Bm]( unfold[B1, B2, ..., Bm](R)) 

By the definition of normalise, unfold initially eliminates duplicate tuples. Next 
fold yields a relation which does not contain adjacent or overlapping intervals. 

Finally, if R and S be two union-compatible relations, operations unique 
points set-union (punion) and unique points sel-difference (pdiff ) are defined as 

punion[Bl,..., Bm](R, S) = fold[B1,..., Bm](unfold[B1,..., Bm](R) U 
unfold[B1,..., Bm](S)) 

pdifJ~B1,..., Bm](R,S) = fold[B],..., Bm](unfold[B1,..., Bm](R) - 
unfold[B,, ..., Bm](S)) 

By their definition, these operations return a normalised relation. It is easy to 
show that 

punion[B1,.., Bm](R,S) -- fold[B1,.., Bm](unfold[B1,.., Bm](R l..J S)). 
Using the above operations, the problems identified in the previous section are 
faced as follows: 
N o r m a l i s a t i o n :  A2 = normalise[Time](A1), 
LAND2 = normalise[Time,Depth](LAND1) 
I n s e r t i o n  of  I n t e r v a l  Da ta :  LAND2 = punion[Time,Depth](LAND, L) 
D e l e t i o n  o f  I n t e r v a l  Da ta :  LAND3 = pdiff[Time,Depth](LAND,L) 

The above three operations can be used to handle relations with arbitrarily 
many pure interval attributes. However, their definition in terms of unfold, makes 
them prohibitively costly. In the sequel we investigate the properties of unfold 
and fold and provide efficient algorithms in the next section. 

An interval [dm, dn) can geometrically be seen as a line segment which is 
closed to the left and open to the right. Hence, every tuple of an n-cry relation 
can be seen as an n-d cuboid. Thus, the single tuple of relation R (figure 4(a)) is 
represented by the orthogonal rectangle WXYZ (figure 4(b)). The 2-d points on 
sides XY and YZ are not points of the interval. In contrast, the 2-d points in the 



76 

rectangle and also those on sides WX and WZ (excluding X and Z) are points of 
it. If Rl=unfold[B](R) is now issued, then R1 will consist of four tuples, ([1, 4), 
i), i = 1, 2, 3, 4. Since point i is isomorphic with the interval [i, i+1),  each of these 
tuples can geometrically be interpreted by one of the four adjacent rectangles in 
figure 4(c). This figure shows that  unfold[B](R) splits each tuple (interval) of a 
relation R into intervals whose values for attribute B are elementary intervals. 
Similarly, if we issue next R2=unfold[A](R1) we obtain a relation consisting of 
2-d elementary points whose geometric interpretation is shown in figure 4(d). 

R 

[1,5) ~r , , l , , 

1 2 3 4 5 B  ] 
(a) (b) 

R 

A 

[1,4) 

R1 
P 

I I p 

2 3 4 5 B  
(c) 

} R2 

I I I I I ,  
1 2 3 4 5 B  

(d) 

Fig. 4. Geometric interpretation of a 2-d interval and of operations unfold and fold. 

It can easily be seen that  the relations, whose representation is given in figure 
4, satisfy Rl=fold[A](R2), R=fold[B](R1) and, therefore, R=fold[A,B](R2). The 
following properties can be deduced from the definition of fold (the reader can 
found their formal proofs in [6]). 

P r o p e r t y  1: unfold[S,A](R) = unfold[A,S](R). 
P r o p e r t y  2: If a relation R(A,B) is sorted with respect to A and B then 

/old[B](R) can be accomplished in one pass, by scanning sequentially the tuples 
of R. 

P r o p e r t y  3: If R1, R2, ..., Rk is a partition of R(A,B) such that all the tuples 
in the same Ri have identical A values whereas tuples in distinct Ri and Rj have 
different A values, then 

fold[B](R) = fold[B](R1) U fold[B](R2) [3...U fold[B](Rk). 
P r o p e r t y  4: Let R(A,B=I(D)) be a relation and BP a subset of points in D. 

If S is the relation obtained from R if all the tuples of R are split with respect 
to the points in BP, then 

fold[B](R) = fold[B](S). 
P r o p e r t y  5: fold[B](a) = fold[B](unfold[B](a) ). 
P r o p e r t y  6: Let R(A,B=I(D)) be a relation and BP be a subset of points 

in D. If S is the relation obtained from R if all the tuples of R are split with 
respect to the points in BP, then 

fold[B](unfold[B](R)) = fold[B](S). 
P r o p e r t y  7: For any relation R, 

fold[A,B](unfold[A,B](R) ) = fold[A,B](unfold[B](a) ). 
Because of the above properties normalise and punion are equivalent to 

normalise[B1, B2, ..., Bm](R) = fold[B1, B2,..., Bm](Unfold[B2, S3, ..., Bm](R)) 
punion[B1,..., Bm](R,S) = fold[B1, ..., Bm](Unfold[B2, B3, ..., Bm](R U S)). 
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4 Efficient A l g o r i t h m s  

U s i n g  t h e  p r o p e r t i e s  o f  t h e  p r e v i o u s  s e c t i o n ,  w e  n o w  p r o v i d e  e f f i c i e n t  a l g o r i t h m s  

for no rma l i s e ,  p u n w n  and pdiff. 

T i m e  

d200 

d160 

d120 

d80 

d40 

dO 

Time 
d200 

d160 

d120 

d80 

d40 

dO 

r, li!ii!i!iiiii!ilJ!l 
30 r'o 9'o Z p -  

I J I ' I I I p 

1t0 130 

(a) 
bd2 

~ d 5  bd6 bd7 

Y: /:? illlsiiiiiii 

10 .30 50 70 90 110 130 

(c) 

Time 
d200 

d160 

d120 i 
d80 

d40 

dO 10 

Time 
d200 

d160 

d120 

d80 

d40 

dO 

t6 

t4 

30 50 70 90 

(b) 

bd2 

bdl!bd3 bd4 

I / 
10 30 50 70 90 

(a) 

Deptlh (cm) 
, . I 

110 130 

bd5 bd6 bd7 

I 

110 130 

Time 

d200 

d160 

d120 

d80 

d40 

dO 

b d l  bd2 

q I 

10 

bda b d4 b d5 b d6 
. . . . . . . . . . . . . . . . . . . . . . .  ~ t6  

. . . . . . . .  ) . . . . .  ) . . . . .  i . . . . . . . . . .  43t4 

. . . . . . . .  ~ . . . . .  ! . . . . .  ! . . . . . . . . . .  aot 3 

i i c ~ ~ t I | i ] ~ . . . . . . .  4,~1 
;30 50 70 90 110 130 ~ 

(e) 

Fig .  5. Geometric in terpre ta t ion of efficient operations.  
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4.1 Efficient Normal iza t ion  of 2-d Interval  da ta  

LAND1 (figure 3) is non-normalised, therefore normalise/fold has to be applied. 
From property 3 it suffices to normalise each distinct set in the partition of 
LAND1. Indeed, LAND1 is already sorted with respect to Pno and pH and the 
partition is {P,Q,R}, where P consists of the first four tuples, Q consists of the 
fifth and R contains consists of the last three tuples. The interpretation of P is 
shown in figure 5(a). Tuple r2, in particular, is dark. The rectangles in r2 which 
are darker, including their bottom and left sides, denote duplicate points. 

If we now issue normalise[Time,Depth](P), we shall obtain the first six tu- 
ples of LAND2 (figure 3). The interpretation of these tuples is shown in figure 
5(b). By using property 7, the number of attributes on which LAND1 has to be 
unfolded may by reducing by one, that is 
normalise[Time,Depth]( LAiD1) = fold[Time,Oepth]( unfold[Oepth](LAiD1) ). 

If we issue uufold[Depth](LAND1), each of the rectangles in figure 5(a) will be 
split into a large number of rectangles with Depth components of exactly one 
point each. The same result can be obtained if the rectangles in figure 5(a) are 
split only into sub-rectangles with respect to the boundary points of their Depth 
values. This split is shown in figure 5(c). The set of these boundary points with 
respect to which the split will take place, is DepthBoundaries={bdl,...,bd7}. 
Hence, rather than using unfold, we can use this split, to finally achieve an 
equivalent result. Thus, if P1 is the relation having as tuples the rectangles 
in figure 5(c), then the interpretation of P2=fold[Time](P1) is shown in figure 
5(d). Finally, Pa=fold[Depth](P2) shown in figure 5(b), is the interpretation of 
the normalised relation LAND2. The above procedure has to be repeated for 
each set in the partition {P,Q,R} of LAND1. 

Inpu t  : Relation R(NI, A, B), Index(NI) of relation R. 
Outpu t :  Relation S=normalise[A,B](R). 
begin  

for each distinct ni value stored in Index(NI) do 
begin  

retrieve the subset Ri of R with Ri[NI]=ni 
for each tuple r(ni,a,b) of Ri do 
begin  

store the boundaries of b in BBoundaries(B) 
store (a,b) in Temp(A,B) 

end  
sort BBoundaries(B) and  eliminate any duplicate rows 
split each tuple in Temp(A,B) wrt the points in BBoundaries(B) 
fold(Temp) 
for each tuple r(a,b) in Temp(A,B), write S(ni,a,b) 

end  

end Table 1: Algorithm for EJficient-normalise on two attributes. 

Let NI be a set of zero or more attribute and let R(NI,A=I(D1),B=I(D2)) 
be a relation. We assume that two temporary files, BBoundaries(B=D2) and 
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Temp(A=I(D1),B=I(D2)) can fit in main memory. For simplicity, we assume 
also that  the result of a split or fold in a main memory structure, is stored in 
this same structure. The algorithm normalise, shown in table 1, calls algorithm 
fold, given in table 2. 

I n p u t  : Relation Temp(A,B). 
O u t p u t :  Relation fold[A,B](Temp). 
beg in  

sort Temp(A,B) on B, A 
fold Temp(A,B) on A 
sort Temp(A,B) on A, B 
fold Temp(A,B) on B 

e n d  Table 2: Algorithm to fold on two attributes. 

4.2  Efficient I n s e r t i o n  o f  2-d Interval  D a t a  

Consider LAND (figure 2), indexed on NI=[Pno, pH] and assume that  we want 
to insert into L (figure 2). By using property 3, we initially partition L with 
respect to its distinct NI values and for each set in this partition we consider 
only the respective partition in LAND. More precisely, L can be partitioned 
into two sets, of one tuple each. The Pno and pH values of the tuples in the 
first set (tuple r2) are 1 and 8.0, respectively. For this set, it suffices to consider 
from LAND only those tuples with the same respective values, ttowever, tuple 
rl  (figure 5(a)) can in fact be excluded because neither its Time nor its Depth 
component merges with the respective component of r2. In contrast, tuples r3 
and r4 of LAND have to be involved in punion because: (i) Their Pno and pH 
values are identical with the respective values of r2 (also satisfied by rl)  and (ii) 
both their Depth and Time values merge with the respective values of r2 (not 
satisfied by rl). 

I n p u t  : Relations R(NI,A,B), Index(NI) of relation R, T(NI,A,B) 
(* R is normalised with respect to A, B *) 
O u t p u t :  Relation R=punion[A,B](R,T) 
beg in  

sort T on NI 
for  each subset Ti(NI,A,B) of T with identical NI values do 
beg in  

for each tuple r(ni,a2,b2) of Ti do 
beg in  

store the boundaries of b2 in BBoundaries(B) 
store (a2,b2)in Temp(a,B) 
for each tuple r(ni,al ,bl) in R such that 

(al merges a2) and (bl merges b2) do 
beg in  

store the boundaries of bl  in BBoundaries(B) 
store (M,b l ) i n  Temp(A, B) 
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delete r from R 
e n d  

e n d  
sort BBoundaries(B) a n d  eliminate any duplicate rows 
split each tuple in Temp(A,B) wrt the points in BBoundaries(B) 
fold(Temp) 
for  each tuple r(a,b) in Temp(A,B), write R(ni,a,b) 

e n d  

end  Table 3: Algorithm for efficient punion on two attributes. 

It is now clear from sub-section 4.1, that if punion[Time,Depth](LAND,L) is 
issued, the resulting relation will contain the tuples t2-t6 (figure 5(b)), in place of 
tuples r3 and r4 (figure 5(a)). This means that tuples r3 and r4 have to be deleted 
from LAND and tuples t2-t6 will next have to be inserted into LAND. Further- 
more, since only the tuples r2-r4 need be split, the set of the Depth boundary 
points with respect to which the split will take place, is DepthBoundaries = 
{bdl,bd3,.. ,bd7} (figure 5(c)). 

Finally, the tuples derived by this split have to be folded on Time and Depth 
and be inserted into LAND. The same procedure has to be repeated with each 
set into which L is partitioned. The above imply the algorithm for punion which 
is given in table 3. 

4.3 Efficient  De le t ion  of  2-d In t e rva l  D a t a  

Now assume that we want to delete from LAND the contents of L (figure 2). 
Since pdiffinvolves fold, similarly to punion, L has to be partitioned with respect 
to the values of its tuples on attributes NI. Then pdi/0~Time,Depth](LAND,L) 
can be implemented by considering separately each distinct set in this partition, 
with the respective partition in LAND. The first set in the partition of L consists 
of tuple r2, only. The respective set of LAND consists again of the tuples r l ,  r3, 
r4 from which only r3 and r4 have again to be considered because (i) their Pno 
and pH values match with the respective values of r2 and (ii) both their Depth 
and Time values merge with the respective values of r2. As can be seen in figure 
5(a), only the portion in dark of tuples r3 and r4 has to be eliminated. Figure 
5(e) shows the tuples which LAND will contain in place of r3 and r4, after the 
execution of pdiff. This implies that (i) once r3 and r4 have been identified, they 
have to be deleted from LAND and (ii) once the tuples in figure 5(e) have been 
computed, they have to be inserted into LAND. The tuples in figure 5(e) can be 
computed as follows: 

I n p u t  : Relations R(NI,A,B), Index(NI) of relation R, T(NI,A,B) 
(* R is normalised with respect to A, B *). 
O u t p u t :  Relation R=pdi]:J[A,B](R,T). 
beg in  

sort T on NI 
for  each subset Ti(NI,A,B) of T with identical NI values do 
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begin 
for each tuple r(ni,a2,b2) of Ti do 
begin 

store the boundaries of a2 in ABoundaries(A) 
store the boundaries of b2 in BBoundaries(B) 
store (a2,b2) in Temp2(A,B) 
for each tuple r(ni,al,bl) in R such that 

(al merges a2) and (bl merges b2) do 
begin 

store the boundaries of al in ABoundaries(A) 
store the boundaries of bl in BBoundaries(B) 
store (al,bl) in Templ(A,B) 
delete r from R 

end 
end 
sort ABoundaries(A) and eliminate any duplicate rows 
sort BBoundaries(B) and eliminate any duplicate rows 
split each tuple in Templ(A,B) wrt the points in ABoundaries(A) 
split each tuple in Templ(A,B) wrt the points in BBoundaries(B) 
split each tuple in Temp2(A,B) wrt the points in ABoundaries(A) 
split each tuple in Temp2(A,B) wrt the points in BBoundaries(B) 
delete from Templ(A,B) the tuples in Temp2(A,B) 
fold(Tempi) 
for each tuple r(a,b) in Templ(A,B), write R(ni,a,b) 

end  
end 

Table 4: Algorithm %r efficient pdiff on two attributes. 

Firstly, by comparing figures 5(a) and 5(e), it is clear that, initially, tu- 
ples r2-r4 have to be split twice: The first split will be with respect to their 
Depth boundary points, DepthBoundaries={bdl,...,bd6}. The tuples obtained 
this way, will next have to be split with respect to their Time boundary points, 
TimeBoundaries={btl,...,bt6}. Thus, two distinct main storage structures have 
now to be maintained, DepthBoundaries and TimeBoundaries. The result ob- 
tained after the split of r3 and r4 is maintained in a main storage structure, 
Templ(A,B). Similarly, the result obtained by the split of r2 is maintained in a 
main storage structure Temp2(A,B). 

Secondly, in order that the dark rectangles of figure 5(c) are eliminated, we 
have to issue 

Tempa(A,B) -- Tempa(a,B) - Temp2(a,B). 
Finally, the result of fold[Time,Depth](Templ), shown in figure 5(e), has to be 
inserted into LAND. Hence, the algorithm for an efficient pdifJ~A,B] is the one 
given in table 4. 
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5 Conclusions 

We considered relations with two interval attributes and examined the problems 
arising when certain operations are applied to them. At the logical level, it was 
shown how the relational algebra should be extended to overcome these prob- 
lems, by using two additional operations, fold and unfold. We investigated the 
properties of these operations and presented efficient algorithms for the man- 
agement of 2-d interval data. Work concerning their implementation can be 
found in [6]. In our approach we considered indices on non-interval attributes 
but spatiotemporal indexing approaches have also been proposed (see for exam- 
ple [7, 8, 9] for surveys). However, the indexing of interval data  is still an open 
research problem. Thus, for the problems examined in this work, even more 
efficient algorithms have to be investigated. 
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