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Abstract. Spatial indexes, such as those based on Quadtree, are impor-
tant in spatial databases for efficient execution of queries involving spatial
constraints. In this paper, we present improvements of the xBR-tree (a
member of the Quadtree family) with modified internal node structure
and tree building process, called xBR+-tree. We highlight the differ-
ences of the algorithms for processing single dataset queries between the
xBR and xBR+-trees and we demonstrate performance results (I/O effi-
ciency and execution time) of extensive experimentation (based on real
and synthetic datasets) on tree building process and processing of single
dataset queries, using the two structures. These results show that the two
trees are comparable, regarding their building performance, however, the
xBR+-tree is an overall winner, regarding spatial query processing.
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1 Introduction

Hierarchical index structures are useful because of their ability to focus on the
interesting subsets of the data [8]. This focusing results in an efficient repre-
sentation and improved execution times on query processing and is thus par-
ticularly useful for performing spatial operations [13]. Important advantages of
these structures are their conceptual clarity and their great capability for query
processing. The Quadtree is a well known hierarchical index structure, which has
been applied successfully on Geographical Information Systems (GISs), image
processing, spatial information analysis, computer graphics, digital databases,
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etc. [11, 12]. It was introduced in the early 1970s [2], and it is based on the prin-
ciple of recursive decomposition of space, and have become an important access
method for spatial data [3].

The External Balanced Regular (xBR)-tree [15] belongs to the family of
Quadtrees and it has been shown to be competitive to the R*-tree [1] for spatial
queries involving a single dataset [10]. In this paper, we present an improved
version of the xBR-tree [15], called xBR+-tree, which is also a secondary memory
structure that belongs to the Quadtree family. The xBR+-tree improves the
xBR-tree node structure and tree building process. The node structure of the
xBR+-tree stores information related to the quadrant subregions that contain
point data. On the contrary, information related to the position of the quadrants
is not stored explicitly in xBR+-tree, but is computed when needed. These, make
query processing more efficient.

Apart from the presentation of the xBR+-tree, other contributions of this
paper are the conclusions arising from an extensive experimental comparison
(based on real and synthetic datasets) of xBR and xBR+-trees, regarding I/O
performance and execution time for

– Tree building,

– Point Location Queries (PLQs),

– Window Queries (WQs) and Distance Range Queries (DRQs),

– K-Nearest Neighbor Queries (K-NNQs) and Constrained K-Nearest Neigh-
bor Queries (CK-NNQs).

To improve readabilty, in Table 1 we present the above and other abbreviations
used in this paper.

Table 1. List abbreviations.

Abbreviation Term

PLQ Point Location Query
WQ Window Query
DRQ Distance Range Query
K-NNQ K-Nearest Neighbor Query
CK-NNQ Constrained K-Nearest Neighbor Query
K-DJQ K-Distance Join Query
MBR Minimum Bounding Rectangle
DBR Data Bounding Rectangle
Address Directional digits that specify position and size of a node
REG Size and position of Quadrant
qside Size of Quadrant
NAclN North America Cultural Landmarks Dataset
NAppN North America Populated Places Dataset
NArrN North America Rail Roads Centers Dataset
NArrND North America Rail Roads MBR Coordinates Dataset
NArdN North America Roads Centers Dataset
NArdND North America Roads MBR Coordinates Dataset
XXXKCN XXX thousands of Clustered Normalized Points
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This paper is organized as follows. In Section 2 we review Related Work
on Quadtrees and comparable access methods, regarding query processing and
provide the motivation for this paper. In Section 3, we review the xBR-tree
and present the improvements of the xBR+-tree, paying special attention to the
node structure and the tree building process. In section 4, we present the algo-
rithms for processing single dataset spatial queries over xBR and xBR+-trees. In
Section 5, we present representative results of the extensive experimentation per-
formed, using real and synthetic datasets, for comparing the performance of the
two Quadtree-based structures. Finally, in Section 6 we provide the conclusions
arising from our work and discuss related future work directions.

2 Related Work and Motivation

A Quadtree is a class of hierarchical data structures whose common property is
that they are based on the principle of recursive decomposition of space and it
contains two types of nodes: non-leaf (internal) nodes and leaf (external) nodes.
It is most often used to partition a 2d space by recursively subdividing it into four
quadrants or regions: NW (North West), NE (North East), SW (South West)
and SE (South East). According to [14], types of Quadtrees can be classified by
following three principles: (1) the type of data that they are used to represent
(points, regions, curves, surfaces and volumes), (2) the principle guiding the
decomposition process, and (3) the resolution (variable or not).

In order to represent Quadtrees, there are two major approaches: pointer-
based Quadtree and pointerless Quadtree. In general, the pointer-based Quadtree
representation is one of the most natural ways to represent a Quadtree struc-
ture. In this method, every node of the Quadtree will be represented as a record
with pointers to its four sons. Sometimes, in order to achieve special operations,
an extra pointer from the node to its father could also be included. This repre-
sentation should be taken into account when considering space requirements for
recording the pointers and internal nodes. The xBR-tree belongs to the category
of pointer-based Quadtree. On the other hand, the pointerless representation of
a Quadtree defines each node of the tree as a unique locational code [12]. By
using the regular subdivision of space, it is possible to compute the locational
code of each node in the tree. The linear Quadtree is an example of pointerless
Quadtree. We refer the reader to [11–13, 16] for further details.

Regarding to the performance comparison of spatial query algorithms using
the most cited spatial access methods (R-trees and Quadtrees), several previous
research efforts have been published.
– In [5] a qualitative comparative study is performed taking into account three

popular spatial indexes (R*-tree, R+-tree and PMR Quadtree), in large
line segment databases. The main conclusion reached was that the R+-tree
and PMR Quadtree have the best performance when the operations involve
search, since they result in a disjoint decomposition of space.

– In [6], various R-tree variants (R-tree, R*-tree and R+-tree) and the PMR
Quadtree have been compared for the traditional overlap spatial join oper-
ation. They showed that the R+-tree and PMR Quadtree outperform the
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R-tree and R*-tree using 2d spatial data for overlap join, since they are
spatial data structures based on a disjoint decomposition of space.

– In [7], the authors have compared the performance of the R*-tree and the
Quadtree for evaluating the K-NN and the K Distance Join (K-DJ) query
operations and the index construction methods (dynamic insertion and bulk-
loading algorithm). It was shown that the query processing performance of
R*-tree is significantly affected by the index construction methods, while the
Quadtree is relatively less affected by the index construction method. The
regular and disjoint partitioning method used by the Quadtree has an inher-
ent structural advantage over the R*-tree in performing KNN and distance
join queries. Finally, the Quadtree-based index structure can be a better
choice than the widely used R*-tree for studied spatial queries when indices
are constructed dynamically.

– In [10], the performance of R*-trees and xBR-trees is compared for the most
usual spatial queries, like PLQs, WQs, DRQs, K-NNQs and CK-NNQs. The
conclusions arising from this comparison show that the two indexes are com-
petitive. The xBR-tree is more compact and it is built faster than the R*-
tree. The performance of the xBR-tree is higher for PLQs, DRQs and WQs,
while the R*-tree is slightly better for K-NNQs and needs less disk access
for CK-NNQs.

Finally, xBR-trees have been presented in [15] and results related to the
analysis of their performance have been presented in [4]. Using xBR-trees for
processing PLQs, WQs or DRQs is rather straightforward [10], due to the or-
ganization of the xBR-tree. However, algorithms for processing K-NNQs and
CK-NNQs by using these trees have only recently been developed and tested
with real datasets [9, 10], with excellent performance. Therefore, the main ob-
jective of this paper is to improve the xBR-tree, obtaining the xBR+-tree, and
compare its performance against the performance of the xBR-tree, considering
the most representative spatial queries where a single index is involved.

3 The xBR-tree Family

In this section we describe the xBR-tree ( [10, 15]) and illustrate the extension
of it, the xBR+-tree, which is the primary contribution of this paper. When a
characteristic is common for both trees, we will refer to the xBR-tree family.
Otherwise, we will refer explicitly to the tree type that has this characteristic.

For 2d the hierarchical decomposition of space in the xBR-tree family is that
of Quadtrees (the space is recursively subdivided in 4 equal subquadrants). The
space indexed by a member of the xBR-tree family is a square. The nodes of
members of the xBR-tree family are disk pages of two kinds: leaves, which store
the actual multidimensional data themselves and internal nodes, which provide
a multiway indexing mechanism.
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3.1 Internal Nodes

As described in [10], internal nodes of xBR-trees contain entries of the form
(Shape, Address, REG, Pointer). An Address is used to determine the region of
a child node and is accompanied by the Pointer to this child. Since Addresses
are of variable size, the number of entries fitting in each node is not predefined.
Apparently, the space occupied by all entries within a node must not exceed the
size of this node. The maximum size of an Address is only limited by the node
size and in practice it never reaches this limit. Shape is a flag that determines if
the region of the child is a complete or non-complete square (the area remaining,
after one or more splits; explained later in this subsection). This field will be used
widely in queries. Finally, REG stores the coordinates of the region referenced
by Address. We measured the execution time for queries and we found that it is
more expensive if we do not save this field, but calculate its value when needed.

Each Address represents a subquadrant which has been produced by Quad-
tree-like hierarchical subdivision of the current space. It consists of a number
of directional digits that make up this subdivision. The NW, NE, SW and SE
subquadrants of a quadrant are distinguished by the directional digits 0, 1, 2 and
3, respectively. For example, the Address 1 represents the NE quadrant of the
current space, while the Address 10 the NW subquadrant of the NE quadrant of
the current space. The address of the left child is * (has zero digits), since the
region of the left child is the whole space minus the region of the right child.

However, the region of a child is, in general, the subquadrant of the related
Address minus a number of smaller subquadrants. The region of this child is the
subquadrant determined by the Address in its entry, minus the subquadrants
corresponding to the next entries of the internal node (the entries in an internal
node are saved sequentially, in preorder traversal of the Quadtree that corre-
sponds to the internal node). For example, in Figure 1 an internal node (a root)
that points to 2 internal nodes that point to 7 leaves is depicted. The region of
the root is the original space, which is assumed to have a quadrangular shape.
The region of the right (left) child is the NW quadrant of the original space (the
whole space minus the region of the NW quadrant - a non complete square), de-
picted by the union of the black regions of the leaves of this child. The * symbol
is used to denote the end of a variable size address. The Address of the right
child is 0*, since the region of this child is the NW quadrant of the original space.
The Address of the left child is * (has zero directional digits), since the region
of the left child is the whole space minus the region of the right child. Each of
these Addresses is expressed relatively to the minimal quadrant that covers the
internal node (each Address determines a subquadrant of this minimal quad-
rant). For example, in Figure 1, the Address 2* is the SW subquadrant of the
whole space (the minimal quadrant that covers the left right child of the root).
During a search, or an insertion of a data element with specified coordinates,
the appropriate leaf and its region is determined by descending the tree from the
root. Although, for the sake of presentation, Figure 1 depicts a tree with nodes
having up to four children, note that nodes are disk pages and they are likely to
have a significant number of children (xBR-trees are multiway trees).
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Fig. 1. An XBR+-tree with two levels of internal nodes.

Internal node entries in xBR+-trees contain entries of the form (Shape, qside,
DBR, Pointer). The fields Shape and Pointer play the same role as in xBR-trees,
DBR (Data Bounding Rectangle) stores the coordinates of the subregion that
contains point data (at least one point must reside on each side of the DBR),
while qside is the side length of the quadrant that corresponds to the child-node
pointed by Pointer. In xBR+-trees, the Address and the corresponding REG of
the region of this child node are not explicitly stored. However, only REG may be
needed by the query processing algorithms and it can be easily calculated using
qside and DBR (in most steps of the query processing algorithms, the use of the
values of qside and DBR is enough and further calculations are avoided). Note
that the fields qside and DBR are represented using double precision floating
point numbers (like REG) which have a fixed size defined by the implementa-
tion of the programming language. By avoiding to store the variable-sized field
Address in xBR+-trees, processing of internal nodes is simplified, since their ca-
pacity is fixed. Moreover, the use of DBR makes processing of several queries
more efficient, since it signifies the subarea of the child node that actually con-
tains data, which is (in general) different to and smaller than the region of this
child node, leading to higher selectivity of the paths that have to be followed
downwards when descending the tree and deciding the parts of the tree that may
contain (part of) the query answer.

In summary, the basic structural differences between the xBR-tree and the
xBR+-tree are:

– Internal node entries of xBR+-trees do not contain the Address and REG
fields, but contain the DBR and qside fields.

– The Address and REG fields are calculated only when needed.
– Since variable fields are not stored in internal node entries of xBR+-trees,

internal nodes have a fixed capacity.

3.2 Leaf Nodes

External nodes (leaves) of members of the xBR-tree family simply contain the
data elements and have a predetermined capacity C. When C is exceeded, due
to an insertion, the leaf is partitioned according to hierarchical (Quadtree like)
decomposition, until each of the resulting two regions (the one region corresponds
to the most populated subquadrant and the other region to the rest of the node
area) contains data elements with cardinalities ≤ xC, 0.5 < x < 1. The choice of
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x affects the number of necessary subdivisions of an overflowed node and the size
of addresses that result from a node split. A value closer to 0.5, in general, results
in more subdivisions and larger addresses, since it is more difficult to partition
the region of the leaf in subregions with almost equal numbers of elements. Of
course, such a choice provides a better guarantee for the space occupancy of
leaves. We used x = 0.75, which leads to a good compromise between size of
addresses and leaf occupancy. Splitting of a leaf creates a new entry that must
be hosted by an internal node of the parent level. This can cause backtracking
to the upper levels of the tree and may even cause an increase of its height. Note
also that in the xBR-tree family, data elements are stored in leaves in X-order.
This ordering permits us to use the plane sweep technique (when appropriate)
during processing of the data elements of a leaf, in the process of answering
certain query types.

3.3 Splitting of Internal Nodes

When an internal node of a member of the xBR-tree family overflows, it is split
in two. The goal of this split is to achieve the best possible balance between
the space use in the two nodes. The split in the xBR-tree family is either based
on existing quadrants or in ancestors of existing quadrants. First, a Quadtree is
built that has as nodes the quadrants specified in the internal node [15]. This
tree is used for determining the best possible split of the internal node in two
nodes that have almost equal number of bits, as proposed in [15], or entries (a
simpler and equally effective criterion, according to experimentation).

3.4 Tree Building

Building of a member of the xBR-tree family consists in repetitive insertion of
the data elements in the tree by descending the tree for the root, seeking for the
appropriate leaf to host each new element. The leaf found may be split, which
may cause further splits of internal nodes in the path up to the root. In case
of the xBR+-tree, the possibility to avoid creating a new node (leaf, or internal
node), but to merge it with another node is considered. The nodes examined for
merging are either direct descendants, or direct ancestors of the new node, when
we consider the Quadtree that corresponds to the entries of the parent internal
node of the new node and candidate merging-nodes.

4 Query Processing Algorithms on the xBR-tree Family

In this section, extending material that appears in [9, 10], we present algorithms
for processing PLQs, WQs, DRQs, K-NNQs and CK-NNQs on the xBR-tree
family, highlighting the differences between the xBR and xBR+-trees.

PLQs can be processed in a top-down manner on the xBR-tree family. Dur-
ing a PLQ for a point with specified coordinates, the appropriate leaf and its
region is determined by descending the tree from the root. Initially, the region
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under consideration is the whole space (the region of the root). As noted in
Subsection 3.1, the entries in an internal node are saved in preorder traversal of
the Quadtree that corresponds to the internal node and are examined in reverse
sequential order (this means that we examine first a subregion, before examining
an enclosing region of this subregion and in this way we avoid to examine multi-
ple times overlapping regions). So first we examine the last node of the Quadtree.
If its subquadrant specified by the Address field of the entry, in case of the xBR-
tree, or its DBR, in case of the xBR+-tree, does not contain the query point, we
continue with the next entry in reverse sequential order. The first subquadrant
/ DBR that hosts the query point determines the smallest region that hosts this
point. Then we follow the Pointer field to the related child at the next lower
level, until we reach the leaf level. This way, we reach the unique leaf that may
contain the query point. Note that, it is possible the query point to fall within a
subquadrant without falling inside the DBR of the corresponding a child node.
This means that, in case of an unsuccessful search, the search is likely to stop
at a middle level of the xBR+-tree, while it will always continue until the leaf
level of the xBR-tree.

Processing of WQs follows the same strategy to PLQs, regarding the way we
examine regions/entries of an internal node. The decision about whether we are
at a entry with a region likely to contain points inside the query window is the
answer to the question: do the subquadrant / DBR of the current entry (specified
by the Address / DBR field of the entry) and the query window intersect? If
yes, then we follow the pointer to the related child at the next lower level. We
repeat until we have examined all entries of the internal node, or until the query
window is completely inscribed inside the region (subquadrant) of the entry
that we examine (because none of the other, not examined, regions of the tree
overlaps with this region). Note that, the use of DBRs in xBR+-trees eliminates
the possibility to visit a subtree storing data outside the query window.

DRQ follows the same strategy as WQ. At first, the querying circle is replaced
from its MBR (the calculations are faster in this way) and if the answer about
the intersection of the subquadrant / DBR of the current entry and the query
MBR is positive, then we follow the pointer to the related child at the next lower
level. If we reach a leaf with a region that intersects the query MBR, we select
the points that are inside the query circle.

For K-NNQs, the algorithmic approach for both trees is similar. The search
algorithm traverses recursively the tree in a DF (Depth-First) manner (in each
node, entries are examined according to mindist from the query point and re-
cursively child nodes are visited), or in a BF (Best-First) manner (among all
nodes visited so far, entries are examined, and respective children are visited,
according to mindist from the query point). Both algorithmic approaches utilize
a max K-heap that stores the K points found so far with the shortest distances
to the query point. In the case of the DF (BF) algorithm, an additional local to
every internal node (global) min heap is kept, storing node entries according to
their mindist from the query point, calculated using the Address field, in case of
the xBR-tree, or the DBR field, in case of the xBR+-tree. When the leaves are
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reached, the set of entries is sorted in ascending order on X-axis, next this set is
split into two subsets, taking as reference the query point. Then, the algorithm
scans both subsets (from left to right and from right to left) while the distance
on X-axis is smaller than the distance value of the Kth-NN that has been found
so far, inserting those points in max K-heap. The CK-NNQ algorithm inserts en-
tries in min heaps / points in the max heap, in case mindist of entries / distance
of points is larger than a distance threshold. More details about these algorithms
for the case of xBR-trees appear in [9, 10].

In summary, the basic algorithmic differences for spatial query processing
between the xBR-tree and the xBR+-tree are:

– In PLQs, due to the use of DBRs an unsuccessful search is likely to stop
without descending the whole height of the tree.

– In WQs, due to the use of DBRs we avoid visiting subtrees that either do
not store any data, or store data outside the query window.

– In DRQs, due to the use of DBRs we avoid visiting subtrees that either do
not store any data, or store data outside the circumscribed square of the
query circle.

– In K-NNQs/CK-NNQs, the precedence of min heap entries follows mindist
of DBRs from the query point which gives better estimates of the actual
distances of the data from the query point.

5 Experimentation

We designed and run a large set of experiments to compare xBR and xBR+-trees
and not R-tree variants ([10] documents comparable performance of xBR and
R*-trees). We used 6 real spatial datasets of North America, representing cul-
tural landmarks (NAclN with 9203 points) and populated places (NAppN with
24493 points), roads (NArdN with 569120 line-segments) and rail-roads (NArrN
with 191637 line-segments). To create sets of 2d points, we have transformed
the MBRs of line-segments from NArdN and NArrN into points by taking the
center of each MBR (i.e. |NArdN| = 569120 points, |NArrN| = 191637 points).
Moreover, in order to get the double amount of points from NArrN and NArdN,
we chose the two points with min and max coordinates of the MBR of each line-
segment (i.e. |NArdND| = 1138240 points, |NArrND| = 383274 points). The
data of these 6 files were normalized in the range [0, 1]2. We have also created
synthetic clustered datasets of 125000, 250000, 500000 and 1000000 points, with
125 clusters in each dataset (uniformly distributed in the range [0, 1]2), where
for a set having N points, N/125 points were gathered around the center of
each cluster, according to Gaussian distribution. The experiments were run on a
Linux machine, with Intel core duo 2x2.8 GHz processor and 4 GB of RAM. We
run experiments for tree building, counting tree characteristics and creation time
and experiments for PLQs, WQs, K-NNQs and CK-NNQs, counting disk-page
accesses (I/O) and total execution time.
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In the first experiment, we built the xBR and xBR+-trees. We stored point
coordinates as double numbers5 and constructed each tree for the following node
(page) sizes: 512B, 1KB, 2KB, 4KB, 8KB and 16KB. Results for the construction
characteristics indicate that, the xBR+-tree in comparison to the xBR-tree has
larger height (by 1, or more rarely by 2 levels) in 1/3 of the cases and creates
more (54/60) or equal (6/60) internal nodes, uses less space in the most cases
(46/60) (i.e. it is more compact) and the creation time varies, in some cases
(22/60) is faster having maximum relative difference 18.75% while in some cases
(34/60) is slower having worst relative difference -27.18%. Thus, the xBR+-tree
is slightly higher and has more internal nodes but needs less space in disk, which
means that it has (in all cases) a smaller number of leafs (this is due to the use
of merging leafs or internal nodes that improves searching efficiency). Results
for the construction characteristics (Table 2) are depicted only for one node size
for each dataset, due to the limited space (other results were analogous).

Table 2. Tree construction characteristics.

Dataset
Node Tree height Tree size (KBytes) Creation time (secs)
size xBR xBR+ xBR xBR+ xBR xBR+

NAclN 512B 4 5 412 408 0.16 0.13
NAppN 1KB 4 4 1034 1002 0.31 0.35
NArrN 2KB 4 4 7596 7252 3.19 3.33
NArrND 4KB 3 3 14932 14140 8.60 8.81
NArdN 8KB 3 3 22160 20668 20.12 19.40
NArdND 16KB 3 3 44272 41280 71.30 62.29

125KCN 2KB 3 4 4582 4632 1.97 2.04
250KCN 4KB 3 3 9112 9100 5.36 5.13
500KCN 8KB 3 3 18168 18104 17.22 15.64
1000KCN 16KB 3 3 36224 36000 60.32 52.53

For each dataset, we created rectangular query windows (and their inscribed
circles) for studying WQs (DRQs) by splitting the whole space into 24, 26, · · ·,
216 windows, in a row-order mapping manner. The centroids of these windows
were also used as query inputs for all the other queries (PLQs, DRQs, K-NNQs
and CK-NNQs). Especially, for K-NNQs and CK-NNQs we used the following
set of K values: 1, 10, 100 and 1000. Since the number of experiments performed
was vast, we show only representative results, since results were analogous for
each query category.

For PLQs we executed two sets of experiments. In the first set we used as
query input the original datasets and in the second one we used as query input
the centroids of the query windows. The results showed that the xBR+-tree
needs the same number of disk accesses as its height for every query point, if

5 Note that we used double numbers for coordinates, instead of float numbers used in
[10], to be able to represent large number of points in the normalized square space.
Due to this change of representation, results for specific datasets that appear in [10]
for the xBR-tree differ slightly from the respective results in this paper.
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Fig. 2. Total disk accesses (left) and execution time (right) vs. node size for PLQs
(NArdND). The query points were 1138240 points existing in the dataset.

that point exists in the dataset. In the other case, searching for not existing
points in the dataset, the disk accesses may be less than the tree-height. The
xBR-tree, in both cases, needs always the same number of disk accesses as its
height. Nevertheless, PLQ execution time was faster in xBR+-tree in almost
all of the experiments. Results for the largest dataset (NArdND) are shown in
Figures 2 and 3. Especially in Figure 2 the first set of PLQs experiments are
shown, where the query points were the 1,138,240 original (existing) points of
this dataset. In Figure 3 the second set of PLQs experiments are shown, where
the query points were the centroids of the 216 query windows. The results for
the other datasets were analogous, and always in favor of the xBR+-tree.

We noticed that the xBR-tree needs a number of disk accesses equal to its tree
height, while the xBR+-tree needs at most this number of accesses, especially for
the case of non existing query points. This finding can easily be explained from
the analysis of the algorithms discussed above. This is due to the structural
difference of the two trees. Internal nodes of xBR+-trees contain information
about DBRs that only include data points. In this way, if the dataset has empty
regions, the xBR+-tree does not store DBRs for these, depending on the data
distribution in the space of the node. However, the xBR-tree saves in internal
nodes information about the regions in which the space is split, regardless of
whether they contain data points. It is important to mention that the number of
disk accesses becomes lower as the size of node increases, while execution time
increases (for both trees). This may be surprising at first, but can be explained
considering the fact that when the size of nodes increases, so does the time for
main memory calculations and, consequently, the execution time.

In Figure 4, for the WQ, we depict the results for the third synthetic dataset
(500KCN), as one representative example. It is shown that the xBR+-tree needed
fewer accesses than xBR-tree, to find the population of 4096 windows with which
we scanned the whole space occupied from the 500K clustered data points of this
dataset. As the size of node increases the relative I/O difference between the two
trees becomes smaller. In both trees, a logarithmic dependence of the number of
disk accesses to the size of the node appears. Note the reduction of the difference
from the smallest node size (512B) to the largest size (16KB). This is due to the
reduction of tree height as the size of node increases.
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Fig. 3. Total disk accesses (left) and execution time (right) vs. node size for PLQs
(NArdND). The query points were 16384 points non-existing in the dataset.

Fig. 4. Total disk accesses (left) and execution time (right) vs. node size for WQs
(500KCN, 4096 query windows).

In the right part of Figure 4, for the execution time, it is shown that the
xBR+-tree is faster for all sizes of nodes. The explanation for this fact is again
related to the structural difference between two trees. Two additional remarks
can be made. First, in a more detailed observation we can see that the relative
difference of performance between the two trees in execution time is a little
smaller than in disk accesses. This may be explained by the fact that even though
xBR+-tree stores DBRs that improve time performance, it occasionally needs
to spend time to calculate the coordinates of the region pointed by the Address
of the subquadrant. This fact does not affect the number of disk accesses. The
second remark is that the number of disk accesses appears to have monotonic
dependence to the size of nodes. The execution time does not have the same
characteristic. Both trees seem to exhibit an inflection point in the dependence
of the execution time to the size of nodes. This point of optimal execution time
performance appears when the size of nodes is equal to 4KB. This optimization
in execution time is stopped for size of nodes larger than 8KB. This behavior
holds for the experiments of all datasets and all query windows.

For DRQs (1024 query circles, inscribed into the respective rectangular win-
dows, δ value equal to 1/(2

√
1024)=1/64 of the space side length), the xBR+-tree

needed less disk accesses and was faster than the xBR-tree, in all cases and for
all datasets (Figure 5). The performance of the xBR+-tree for all datasets and
for all sets of query circles (24, 26, 28, 210, 212 and 214) for every size of node
(512B, 1KB, 2KB, 4KB, 8KB and 16KB) is 60-0 in all cases for the disk accesses
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Fig. 5. Total disk accesses (left) and execution time (right) vs. node size for DRQs
(NArrND, 1024 query circles).

Fig. 6. Total disk accesses (left) and execution time (right) vs. node size for KNNQs
using DF algorithm (1000KCN, 16384 query points, searching for K=100).

and (59-1, 57-3, 60-0, 60-0, 60-0 and 60-0) for the execution time, where a pair
like 57-3 signifies that the xBR+-tree wins 57 times and the xBR-tree wins 3
times, in whole set of experiments. The lower improvement in execution time
can be explained just as in the previous paragraph.

For the K-NNQ, the xBR-tree showed similar behavior to the WQ. The
xBR+-tree needed fewer disk accesses for finding the nearest neighbors than
the xBR-tree. Furthermore, the difference became larger when the size of node
(for the same dataset) increased. Regarding the execution time, the xBR+-tree
showed improved performance, in relation to its I/O difference from the xBR-
tree. In Figures 6, we show results for K=100 and the large synthetic dataset
(1000KCN) using algorithms DF. At this point, the worse time performance of
both trees, for larger node sizes (where the I/O cost is smaller) must be noted.
This is due to the fact that as the node size increases, the trees become very wide
and very short. In this case, a node holds many elements to be processed and
branching during tree descend plays a smaller role in restricting the search space.
This leads us to the conclusion that the increase of the node size leads to many
more calculations in main memory, canceling the benefit of reducing I/O. For
all experiments performed, the xBR+-tree shows better performance than the
xBR-tree in disk accesses and execution time for both DF and BF algorithms.

Finally, for the CK-NNQs we noticed that the xBR+-tree was improved for
both performance categories of our study. In Figure 7, we present the results of
CK-NNQs for the largest real dataset (NArdN) for all (256 query points, setting
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Fig. 7. Total disk accesses (left) and execution time (right) vs. node size for CKNNQs
using BF algorithm (NArdN, 256 query points, searching for K=100 and δ=1/32).

K = 100 and δ value equal to 1/(2
√

256)=1/32 of the space side length) using
the BF algorithm. The behavior is similar to K-NNQs.

In summary, the experimental comparison showed that

– The xBR+-tree needs less space and is built in a similar time, while its height
is slightly larger than the xBR-tree.

– The time and I/O performance of the xBR+-tree is better than the xBR-tree
for PLQs, WQs, DRQs, K-NNQs and CK-NNQs for DF and BF algorithms.

– Main memory processing of xBR+-trees is simpler and faster thanks to stor-
ing DBRs, though some execution efficiency is spent for the cases where the
coordinates of REGs need to be calculated.

6 Conclusions and future work

In [10], the xBR-tree was compared to the R*-tree and, as future work, possible
variations of the xBR-tree that might improve its performance were proposed.
In this paper, elaborating on these variations, we developed an improved version
of the xBR-tree, called xBR+-tree, and compared it experimentally to the xBR-
tree. Moreover, we presented the differences of the algorithms for processing
PLQs, WQs, DRQs, KNNs and CKNNs in xBR+-trees.

The presented extensive experimental comparison, based on real and syn-
thetic data, showed that the xBR+-tree is a global winner in I/O and execution
time, considering the most representative spatial queries that involve a single in-
dex, while building of the two trees has comparable efficiency. More specifically,
I/O is improved (on the average) by 23% in PLQs for non-existing points, by
45.4% in WQs, by 45.4% in DRQs, by 33.4% in 100NNs-DF, by 42% in 100NNs-
BF, by 49.6% in C100NNs-DF, by 55% in C100NNs-BF and execution time is
improved (on the average) by 37.4% in PLQs for non-existing points, by 42.2%
in WQs, by 41.7% in DRQs, by 24.2% in 100NNs-DF, by 40.1% in 100NNs-BF,
by 40.5% in C100NNs-DF, by 48.9% in C100NNs-BF. In fact, in 98% of the
cases, the xBR+-tree excels in I/O and time performance by at least 5%.

Due to its improved building process, the xBR+-tree is smaller and taller
than the xBR-tree, while the use of the DBR field in xBR+-trees represents
populated regions more accurately, gives better estimates of the actual distances
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of the data from the query point, improves pruning of subtress and simplifies
main memory processing.

Future work might include studying how the higher performance of the
xBR+-tree is achieved, in terms of Euclidean distance and X-axis distance calcu-
lations saved and heap operations performed. This insight might permit further
optimizations of the new structure. Moreover, a detailed relative performance
study of the xBR+-tree against the R*-tree and/or R+-tree for single dataset
and multi-dataset queries is a target in process.
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