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Abstract. Trend analysis of time series is an important problem since
trend identification enables the prediction of the near future. In stream-
ing time series the problem is more challenging due to the dynamic nature
of the data. In this paper, we propose a method to continuously clustering
a number of streaming time series based on their trend characteristics.
Each streaming time series is transformed to a vector by means of the
Piecewise Linear Approximation (PLA) technique. The PLA vector com-
prises pairs of values (timestamp, trend) denoting the starting time of the
trend and the type of the trend (either UP or DOWN) respectively. A dis-
tance metric for PLA vectors is introduced. We propose split and merge
criteria to continuously update the clustering information. Moreover, the
proposed method handles outliers. Performance evaluation results, based
on real-life and synthetic data sets, show the efficiency and scalability of
the proposed scheme.

1 Introduction

The study of query processing and data mining techniques for data stream pro-
cessing has recently attracted the interest of the research community [3, 6], due
to the fact that many applications deal with data that change frequently with
respect to time. Examples of such application domains are network monitoring,
financial data analysis, sensor networks, to name a few.

A class of algorithms for stream processing focuses on the recent past of data
streams by applying a sliding window. In this way, only the last W values of each
streaming time series is considered for query processing, whereas older values are
considered obsolete and they are not taken into account. As it is illustrated in
Figure 1, streams that are non-similar for a window of length W (left), may be
similar if the window is shifted in the time axis (right). Note that, in a streaming
time-series data values are ordered with respect to the arrival time. New values
are appended at the end of the series.

Trend analysis has been used in the past in static and streaming time series
[9, 12, 8]. We use trends as a base to cluster streaming time series for two rea-
sons. First, the trend is an important characteristic of a streaming time series.
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Fig. 1. Similarity using a sliding window of length W .

In several applications the way that stream values are modified is considered
important, since useful conclusions can be drawn. For example, in a stock data
monitoring system it is important to know which stocks have an increasing trend
and which ones have a decreasing one. Second, trend-based representation of
time series is closer to human intuition. In the literature, many papers [5] use
the values of the data streams and a distance function, like Euclidean distance,
to cluster streams. Although the distance between a pair of streams may be
large, the streams may be considered similar, if their plots are examined. Thus,
distance functions on raw values are not always appropriate to cluster or to
classify objects.

In this paper, we focus on the problem of continuous clustering of streaming
time series based on the trends of the series as time progresses. The sliding
window model is used for the clustering, i.e., the last W values of each stream
are considered. Each streaming time series is represented by a Piecewise Linear
Approximation (PLA). The PLA of a stream is calculated based on incremental
trend identification. An appropriate distance function is introduced to quantify
the dissimilarity between PLAs.

Recently, a number of methods have been proposed to attack the problem
of data stream clustering [1, 5]. The fundamental characteristic of the proposed
methods is that they attack the problem of incremental clustering the data
values of a single streaming time series, whereas our work focuses on incremental
streaming time series clustering using multiple streams.

The majority of the aforementioned contributions apply variations of k-
median clustering technique and therefore, the desired number of clusters must
be specified. Our clustering algorithm automatically detects the number of clus-
ters, by using the proposed split and merge criteria. As time progresses, the
values, and probably the trends of streaming time series, are modified. It is
possible, a split of a cluster in two different new clusters to be necessary to
capture the clustering information. The proposed split criterion identifies such
situations. In addition, the proposed merge criterion identifies a possible merge
between two different clusters. Moreover, the proposed method handles outliers.
The contributions of our work are summarized as follows:

– The PLA technique is used based on incremental trend identification, which
enables the continuous representation of the time series trends.
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– A distance function between PLAs is introduced.
– Continuous trend-based clustering is supported. Split and merge criteria are

proposed in order to automatically detect the number of clusters.

The rest of the article is organized as follows. In Section 2, we discuss the
incremental trend identification process. Section 3 presents the proposed method
for continuous clustering, whereas Section 4 reports the experimental results
based on real-life and synthetic data sets. Finally, Section 5 concludes the work.

2 Trend Detection

In this section, we study the problem of the incremental determination of each
stream synopsis, to enable stream clustering based on trends. The basic symbols,
used throughout the study, are summarized in Table 1.

Trend detection has been extensively studied in statistics and related disci-
plines [4, 7]. In fact, there are several indicators that can be used to determine
trend in a time series. Among the various approaches we choose to use the TRIX
indicator [7] which is computed by means of a triple moving average on the raw
stream data. We note that before trend analysis is performed, a smoothing pro-
cess should be applied towards removing noise and producing a smoother curve,
revealing the time series trend for a specific time interval. This smoothing is fa-
cilitated by means of the TRIX indicator, which is based on a triple exponential
moving average (EMA) calculation of the logarithm of the time series values.

The EMA of period p over a streaming time series S is calculated by means
of the following formula:

EMAp(t) = EMAp(t− 1) +
2

1 + p
· (S(t)− EMAp(t− 1)) (1)

Symbol Description

S, Si a streaming time series

PLAx PLA of streaming time series Sx

PLA(i), PLAx(i) the i-th segment of a PLA

PLA(i).tstart,PLA(i).tend the starting and ending time of segment PLA(i)

PLA(i).vstart,PLA(i).vend the values of the starting and ending time of PLA(i)

PLA(i).slope the slope of segment PLA(i)

cs, csi a common segment between two PLAs

C, Ci a cluster

C.n, Ci.n the number of streaming time series of a cluster

centroidi the centroid of cluster Ci

C.avg, Ci.avg the average DPLA distance of the streaming time series
of the cluster and its centroid

nCi the nearest cluster of cluster Ci

W sliding window length
Table 1. Basic notations used throughout the study.
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Fig. 2. Example of a time series and the corresponding TRIX(t) signal.

The TRIX indicator of period p over a streaming time series S is calculated by
means of the following formula:

TRIX(t) = 100 · EMA3p(t)− EMA3p(t− 1)
EMA3p(t− 1)

(2)

where EMA3p is a signal generated by the application of a triple exponential
moving average of the input time series.

The signal TRIX(t) oscillates around the zero line. Whenever TRIX(t)
crosses the zero line, it is an indication of trend change. This is exactly what we
need in order to perform a trend representation of an input time series. Figure 2
illustrates an example. Note that the zero line is crossed by the TRIX(t) signal,
whenever there is a trend change in the input signal. Figure 2 also depicts the
smoothing achieved by the application of the exponential moving average.

Definition 1
The PLA representation of a streaming time series S for a time interval of W
values is a sequence of at most W -1 pairs of the form (t, trend), where t denotes
the starting time of the segment and trend denotes the trend of the stream in
the specified segment (UP or DOWN).

Each time a new value arrives, the PLA is updated. Three operations (ADD,
UPDATE and EXPIRE) are implemented to support incremental computation
of PLAs. The ADD operation is applied when a trend change is detected and
adds a new PLA point. The UPDATE operation is applied when the trend is
stable and updates the timestamp of the last PLA point. The EXPIRE operation
deletes the first PLA point when the first segment of the PLA expires.
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3 Continuous Clustering

3.1 Distance Function

The literature is rich in distance metrics for time series. The most popular family
of distance functions is the Lp norm, which is known as city-block or Manhattan
norm when p=1 and Euclidean norm when p=2. A significant limitation of Lp

norms is that they require the time series to have equal length. In our proposal,
we compute distances between the PLAs of streaming time series, which may
have different lengths. Therefore, Lp norm distance metrics cannot be used. In
order to express similarity between time series of different lengths, other more
sophisticated distance measures have been proposed. One such distance measure
is Time Warping (TW) that allows time series to be stretched along the time axis.
The disadvantage of TW is that it is computationally expensive and therefore, its
use is impractical in a streaming scenario. In [10], an incremental computation
of TW has been proposed, but it is limited in the computation of the distance
between a static time series and a streaming time series, thus it is not suitable
for our problem.

We propose the DPLA distance function to overcome the above shortcom-
ings. DPLA splits the PLAs in common segments and computes the distance
between each segment. The sum of distances of all segments gives the overall dis-
tance between two PLAs. A distance function for PLAs should take into account
specific characteristics of the time series: 1) the trend of the segment: segments
with different trends should have higher distance than segments with similar
trends, and 2) the length of the segment: long segments should influence more
the distance than short ones.

Before we proceed with the definition of DPLA, let us define the slope of
a segment. Assume the i-th segment of a PLA starting at time PLA(i).tstart

and ending at time PLA(i).tend. The values of PLA(i) at the start and the end
point are denoted as PLA(i).vstart and PLA(i).vend respectively.

Definition 2
The slope of a segment PLA(i) is the fraction of the difference of the values of
the segment to the length of the segment:

PLA(i).slope =
PLA(i).vend − PLA(i).vstart

PLA(i).tend − PLA(i).tstart
(3)

Generally, PLAs have a different number of segments, each one of different
length. Thus, in order to compare two PLAs, we use the notion of common seg-
ment. A common segment of PLAx and PLAy is defined between max(PLAx(i).
tstart, PLAy(j).tstart) and min(PLAx(i).tend, PLAy(j).tend), where i and j are
initialized to 1 and assume values up to the number of segments of PLAx and
PLAy respectively.

For example, assume the two PLAs of Figure 3. We start with i = j = 1. The
first common segment is defined by the maximum starting timestamp (t1) and
the minimum ending timestamp (t2). Since we have reached the ending point of
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the segment belonging to PLA2, we increase j by one. We inspect now the first
segment of PLA1 (i = 1) and the second segment of PLA2 (j = 2). By observing
Figure 3 we realize that the next common segment of PLA1 and PLA2 is defined
by the timestamps t2 and t3. This process continues until we reach the end of
the PLAs.

The distance in a common segment cs defined by the i-th segment of the first
PLA and the j-th segment of the second PLA is given by the following formula:

Dcs = |PLAx(i).slope− PLAy(j).slope| · (cs.tend − cs.tstart) (4)
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Fig. 3. Common segments of PLAs.

Definition 3
The distance between two PLAs PLAx and PLAy with n common segments is
given by the sum of distances of common segments:

DPLA(PLAx, PLAy) =
n∑

i=0

Dcsi (5)

Notice that DPLA function takes into account both the trend and the length
of the segment and it can be computed incrementally.

3.2 Clustering Algorithm

Each cluster Ci has an id and a centroid which is the PLA of a streaming
time series belonging to this cluster. Moreover, a cluster C stores a C.n × C.n
matrix with the distances of streaming time series of the cluster. A streaming
time series Sx belongs to cluster Ci, if: ∀j 6= i, DPLA(PLAx, centroidi) ≤
DPLA(PLAx, centroidj). Additionally, we keep a two-dimensional matrix with
the distances of the centroids of all clusters.

First, we present the merge criterion. The average distance Ci.avgD of a
cluster Ci is the average DPLA distance of the streaming time series of the
cluster and its centroid.
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Merge criterion
Two clusters Ci and Cj are merged if the sum of their average distances is higher
than the half of the distance between their centroids:

ci.avgD + cj .avgD > DPLA(centroidi, centroidj)/2 (6)

To merge two clusters, we have to decide the centroid of the new cluster.
We compute the distances of all PLAs of the two clusters with their centroids.
The PLA which has the minimum sum of these two distances is chosen as the
centroid of the new cluster.

The split criterion is more complicated. For each PLAx of cluster Ci, we par-
tition all other PLAs in two subsets A and B. Subset A comprises the PLAs that
are close to PLAx and subset B comprises the remaining PLAs. We separate
close from distant streaming time series by using a threshold. Therefore, PLAs
that their distance to PLAx is below the threshold are assumed to be close to
PLAx. In our experiments, this threshold is set to half of the maximum distance
of PLAx to all other PLAs of Ci. The average distance between PLAx and PLAs
belonging to subset A is denoted as PLAx.close, whereas the average distance
between PLAx and PLAs belonging to subset B is denoted as PLAx.distant.

Split criterion
A cluster Ci splits in two different clusters if:

1
Ci.n

Ci.n∑
x=1

PLAx.distant− PLAx.close

max(PLAx.distant, PLAx.close)
> δ (7)

The above definition tries to approximate the silhouette coefficient of the
new clusters. The silhouette coefficient [11] is a well-known metric for clustering
evaluation, and ranges between [-1,1]. Values close to 1 indicate the existence of
a good clustering whereas values below 0 indicate the absence of a clustering.
The intuition for the above definition is that, if two clusters exist, then for each
PLA the fraction PLAx.distant−PLAx.close

max(PLAx.distant,PLAx.close) should be high. The parameter δ

can affect the clustering significantly. Values below 0.5 may reduce the number
of produced clusters, whereas large values (above 0.7) can cause consecutive
splits resulting in a large number of clusters. Essentially, parameter δ controls
the clustering quality and therefore, it is not necessary to change at runtime. In
our experiments, we have used δ = 0.6.

The centroids of the new clusters are chosen to be the PLAs that complies
to the following rules: 1) PLA.distant−PLA.close

max(PLA.distant,PLA.close) > δ for both PLAs and 2)
the DPLA distance between them is the highest distance between the PLAs
survived the first rule.

The outline of CTCS algorithm (Continuous Trend-based Clustering of Strea-
ming time series) is depicted in Figure 4. Lines 3-10 describe the update of the
clusters, whereas lines 11-17 show how CTCS adapts to the number of clusters.
Notice that CTCS does not require new values for all streaming time series to
update the clustering. In line 2, only the PLAs of streaming time series that
have a new value, are updated.
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Algorithm CTCS
Input

new values of streaming time series
Output

set of clusters

1. updC = ∅ //set of changed clusters
2. update PLAs of streaming time series
3. for (each PLAi)
4. Ck = cluster that PLAi belongs to
5. find its new nearest cluster Cj

6. if (Cj 6= Ck)
7. move PLAi to cluster Cj

8. insert Cj and Ck to updC
9. end
10. end
11. for (each cluster Ci of updC)
12. remove Ci from updC
13. apply merge criterion
14. if (merge occurs) insert the new cluster to updC
15. apply split criterion
16. if (a split occurs) insert the new clusters to updC
17. end
18. report the clusters;

Fig. 4. Outline of CTCS algorithm.

Additionally, an outlier detection scheme could be applied. A PLA belongs to
a cluster, if its distance from the centroid of this cluster is minimized. Let PLAx

be a PLA belonging to cluster Ci. PLAx will be declared as outlier if the DPLA
distance between PLAx and the centroid of the cluster Ci, is higher than the
DPLA distance between the centroids of the cluster Ci and its nearest cluster
nCi. In Figure 4, we can apply the outlier detection before line 6. If PLAx is an
outlier, we insert it into outliers and we continue with the next PLA, omitting
the computations of lines 6-9.

Table 2 shows the worst case complexity of the basic operations of CTCS
algorithm. These complexities are easily determined by a careful examination
of the corresponding operations. Stream update refers to the update of cluster
data due to the update of a stream S. k is the current number of clusters, Cold

is the previous cluster containing S, whereas Cnew is the new cluster containing

operation worst case complexity

PLA update O(1)
stream update O(k) + O(Cold.n) + O(Cnew.n)

split test O(C.n)
split process O((C.n)2) + O(k)
merge test O(1)

merge process O((C1.n + C2.n)2) + O(k)

Table 2. Complexity analysis of CTCS
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Fig. 5. Quality comparison: a) Silhouette coefficient, b) Jaccard coefficient and c) Rand
coefficient for SYNTH.

S. Notice that, split and merge processes have a quadratic complexity on the
number of streams per cluster and therefore, they are more computationally
intensive. However, these two operations are executed less frequently than the
rest, and thus the overall cost is not affected significantly.

4 Performance Study

In this section, we report the experimental results. We have conducted a series
of experiments to evaluate the performance of the proposed method. Algorithm
k-medoid is used as a competitor. k-medoid is modified to use the proposed dis-
tance function to handle PLAs of streaming time series. Notice that incremental
implementations of k-medoid are not applicable due to the evolution of clusters,
i.e., the number of clusters varies over time. However, in favor to k-medoid, we
assume that the number of clusters is known, and we seed the algorithm with
the previously determined medoids. All methods are implemented in C++ and
the experiments have been conducted on a Pentium IV system at 3.0GHz, with
1GB of main memory running Windows XP.

We use both real and synthetic data sets. STOCK contains stock prices
obtained from http://finance.yahoo.com. The data set consists of 500 time series,
and the maximum length of each one is set to 3000. SYNTH is a synthetic data
set and it is used in order to evaluate the quality of our method. The data set
generator takes as parameters the number of streaming time series, the size of
the sliding window and the number of clusters in different time instances. In this
way, the number of clusters are varied over time and therefore, we can validate
the performance of split and merge criteria.

First, we examine the quality of the results. We use the synthetic data set
which consists of 500 streams. The window size is 30. We apply 300 updates and
every 30 time instances we measure the silhouette coefficient of the clustering
produced by CTCS and k-medoid. Parameter k of k-medoid is set to the actual
number of clusters in each update. Figure 5(a) depicts the results. CTCS achieves
silhouette coefficients more than 0.6 in all cases. Moreover, we compare the actual
clustering with the clusterings of CTCS and k-medoid by using the Jaccard and
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Update 0 30 60 90 120 150 180 210 240 270 300
No. Clusters 6 7 5 6 5 4 6 7 8 7 6

CTCS 3 6 6 4 5 4 6 7 8 4 6

Table 3. Number of clusters over time (SYNTH)

Rand coefficients [11]. These coefficients range from 0 up to 1. Values close to
1 indicate high correlation between the two clusterings, whereas values close 0
indicate low correlation. Figures 5(b) and (c) depict the results for the Jaccard
and Rand coefficient respectively. Jaccard and Rand coefficients are 1 in some
cases which means that CTCS gives the actual clustering (ground truth).

To better comprehend the results, we study the number of clusters that
CTCS detects. Table 3 shows the number of actual clusters and the number of
clusters determined by CTCS. Associating the results of Figure 5 and Table 3, we
observe that when CTCS detects the number of clusters, the silhouette coefficient
of the clustering is more than 0.85 and the Jaccard and Rand Coefficient is more
than 0.8. In cases where CTCS misses one or two clusters, silhouette, Jaccard
and Rand coefficient are good (more than 0.78, 0.67 and 0.81 respectively) which
means that CTCS has recognized two clusters as one or the opposite. The results
of k-medoid are as good as CTCS but notice that CTCS algorithm automatically
detects the number of clusters.

In the next experiment, we examine the quality of the results in a real data
set. Figure 6 shows the results with respect to the number of streams. For each
run, a number of updates are applied and the average results are given. We
set the parameter k of k-medoid equal to the number of clusters of CTCS in
each update. As the number of streams increases, the two clusterings have less
correlation (Figure 6 (b)). However the silhouette coefficient of CTCS is better
than that of k-medoid and it is above 0.6 in all cases which indicates a good
clustering.
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Fig. 7. CPU cost vs a) number of streams and b) window size for STOCK.
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Fig. 8. CPU cost vs number of streams for SYNTH.

Next, we study the CPU cost of the proposed method with respect to the
number of streaming time series and the window size (Figure 7(a) and (b) re-
spectively). The average CPU cost is given. It is evident that CTCS outperforms
k-medoid. Especially, k-medoid is highly affected by the number of streams (the
CPU axis is shown in logarithmic scale), whereas CTCS can handle a large
number of streams in less than 1 second.

Finally, we examine the scalability of the proposed method. Figure 8(a) de-
picts the CPU cost with respect to the number of streams for the SYNTH data
set. The number of streams varies between 100 and 10000. CTCS outperforms
k-medoid in all cases. CTCS algorithm has two basic steps: a) the incremental
computation of the PLA of a stream and the update of cluster data that the
stream belongs to before and after the update (streams update) and b) the con-
tinuous update of the clustering (clusters update). Figure 8(b) shows the CPU
cost of the two steps separately. It is evident, that the major overhead of the
method is the first step, since the clustering update requires 2.5 sec at most.
Notice that in each update all the streaming time series are updated and this is
the worst scenario, thus the time of the streams update is expected to be smaller
in a realistic scenario.
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5 Conclusions

In this paper, a novel method has been proposed towards efficient continuous
clustering of streaming time series. The proposed algorithm, CTCS, uses the
PLAs of the streaming time series in order to achieve a trend-based clustering.
Trends are automatically detected and PLAs are updated incrementally. More-
over, a new distance function, DPLA, is proposed. Additionally, CTCS does not
require the number of clusters, since split and merge criteria are used to adjust
the number of clusters automatically. Performance evaluation results illustrate
the superiority of the proposed method against the k-medoid algorithm con-
cerning the CPU cost and the quality of the produced clustering. Moreover, it
demonstrates the capability of the proposed method to detect the number of
clusters. Future work may include the use of a distance function that obeys the
triangular inequality, towards exploiting indexing schemes to improve perfor-
mance.
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