
Adaptive Workload Allocation in Query Processing in Autonomous Heterogeneous
Environments

Anastasios Gounaris1 Jim Smith3 Norman W. Paton2 Rizos Sakellariou2 Alvaro A.A. Fernandes2

Paul Watson3

1 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki 541 24, Greece

gounaria@csd.auth.gr
2 School of Computer Science, University of Manchester,

Oxford Road, Manchester M13 9PL, UK
{norm,rizos,alvaro}@cs.man.ac.uk

3 School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, UK
{jim.smith,paul.watson}@ncl.ac.uk

Abstract The increasing prevalence of networked storage and computational resources, along
with middleware for managing resource access and sharing, raises the prospect that queries can
be run over resources obtained on demand, rather than on dedicated infrastructures. However, the
movement of query processing into non-dedicated environments means that it is necessary to take
account of the partial information and unstable conditions that characterise autonomous, shared,
distributed settings. Thus, query processing on grid platforms needs to be adaptive, revising eval-
uation strategies at query runtime in response to the evolving environment, such as changes to
machine load and availability. To address this challenge, adaptive techniques are described that:
(i) balance load across plan partitions supporting intra-operator parallelism; (ii) remove bottle-
necks in pipelined plans supporting inter-operator parallelism; and (iii) combine the two afore-
mentioned techniques. The approach has been empirically evaluated in a grid-enabled adaptive
query processor.

keywords adaptive query processing, dynamic resource allocation, load balancing, distributed
query processing, query optimization, grid computing.

1 Introduction

The increasing prevalence of networked storage and computational resources, along with modern
trends for accessing and sharing resources in wide area environments, such as grid platforms [18],
cloud computing (e.g., Amazon EC2) and peer-to-peer networks [36], raises the prospect that
queries can be run over machines and data stores obtained on demand. However, the movement of
query processing into non-dedicated environments means that it is necessary to take account of the
partial information and unstable conditions that characterise autonomous, shared, heterogeneous

1

settings. Thus, query processing on such environments needs to be adaptive, revising evaluation
strategies at query runtime in response to the evolving environment, such as changes to machine
load and availability.

Adaptive query processing (AQP) has attracted significant interest in recent years, and the
results yielded thus far can offer speedups of an order of magnitude in many cases [16, 6]. Nev-
ertheless, most of this research has concentrated on the cases in which the computational re-
sources available are pre-determined and their characteristics are stable and known before execu-
tion, both when these resources are co-located (e.g. [5, 29]), and when they are geographically
dispersed (e.g., [26, 48]). Unfortunately, these assumptions are not valid for query processing in
autonomous, heterogeneous environments, where dynamic outsourcing of processing tasks to non-
dedicated, heterogeneous computers can take place and the effectiveness of parallelism depends
more on the exploitation of the actual machine capabilities and efficient workload distribution,
than on the way data is partitioned in the storage software [40]. Consequently, adaptivity in such
environments places a greater emphasis on monitoring and learning the behavior of participating
machines, the actual communication bandwidth between them, and the impact of this behavior on
the progress of query execution on the fly. Moreover, it manifests itself mostly as changes in the
way available resources contribute to the query execution rather than as runtime modifications of
the query tree shape, and the order in which data or operators are processed. To date, although par-
allelism is the most commonly adopted approach to speeding up evaluation, adaptive techniques
dealing with issues such as which machines should be employed for parallel query execution in
heterogeneous settings, and how to distribute workload across heterogeneous machines, are still
in their infancy.

1.1 Problem Description

This work deals with workload allocation in the context of query processing in autonomous, het-
erogeneous environments (e.g., computational Grids, PlanetLab [12]). An amount of workload
is allocated to a computational resource, if at least one query plan fragment is executed on that
resource, either partially (e.g., as in the case of partitioned parallelism), or completely. Resources
are assumed to be autonomous, i.e., owned by third parties, in the sense that their actual capabil-
ities are unknown and can only be inferred by monitoring the progress of the execution of parts
of the query plan on them. Moreover, they are non-dedicated, and as such, there is no guarantee
that they can execute a query plan fragment exclusively, which may cause fluctuations in their
performance at runtime. Heterogeneity denotes the difference in the processing capabilities of the
resources available.

A basic difficulty in efficiently executing a query on an autonomous and heterogeneous plat-
form is that the unavailability of accurate statistics at compile time and evolving runtime conditions
may lead to sub-optimal execution of a query plan. Statistics may refer to the data being processed
(e.g., actual selectivities of predicates) or to the machines available (e.g., average processing time
of a foreign function). Typically, the former mostly impact on the construction of the query plan,

2

whereas the latter relate to scheduling and workload allocation decisions.
Common problems in workload allocation in wide-area settings stem from the different char-

acteristics of the machines contributing to the evaluation of a partitioned operator, the loads on
machines (which are autonomous and may run many other jobs), the bandwidth of the connec-
tions between machines providing raw data, the cost of processing foreign functions, and so on.
As so many important factors differ between machines and change with time, a challenge for the
query processor is to assign query fragments to resources in a way that takes into account the
differences and the runtime changes.

Adaptive workload allocation is particulary relevant to query plan execution where partitioned
parallelism is employed, since it is the main approach to attaining balanced execution (i.e., the
proportion of workload allocated to a resource is proportional to its, possibly changing, perfor-
mance). Adaptive load balancing becomes more complicated if the parallelised operations store
intermediate state, like the hash join and group-by relational operations; we call such operators
stateful. Let us assume, for example, that a query optimizer constructs a plan in which there is
a hash join parallelised across multiple sites. The smaller input is used to build the hash table,
which is probed by the other input. A hash function applied to the join attribute defines the site
for each tuple. In this case, any data repartitioning concerning the tuples not processed yet needs
to be accompanied by repartitioning of the state that has already been created within the instances
of the hash joins in the form of hash tables.

Dynamic data (and possibly state) repartitioning is just one aspect of the problem, addressing
what might be considered as horizontal imbalance, in which the completion of an operator within
a query plan is possible only on the completion of the slowest of the sibling partitions evaluating
the operator. In a pipelined plan, however, there can also be what might be considered as vertical
imbalance, in which an operator can only process data at the rate it is delivered by its children, and
can only deliver data at the rate it can be consumed by its parents (assuming that the size of buffers
between operators is small compared to the data set to be processed). In essence, addressing
vertical imbalance involves the identification of bottlenecks within pipelines, and their reduction or
removal by allocating additional resources to the associated operator(s), thus further increasing the
degree of parallelism. Bottlenecks may occur within a pipeline either as a result of inappropriate
scheduling decisions, or because appropriate decisions are overtaken by events in an intrinsically
unstable environment.

1.2 Outline of Contributions

Adaptive query processing techniques are inadequate for parallel execution over arbitrary hetero-
geneous networks [40], especially when several adaptivity strategies need to be combined; we
defer a detailed description of related work to Section 5. This paper presents a comprehensive, ef-
fective and efficient solution to the problems of imbalanced partitioned parallelism and existence
of bottlenecks mentioned above. The solution includes a technique that dynamically balances
intra-operator load across computational nodes both for stateful and stateless operations, and is

3

capable of changing the degree of parallelism and moving load to new resources on-the-fly to
overcome bottlenecks. In particular, the paper makes the following key contributions1:

• It describes an architecture for adaptive query processing (AQP) that (i) covers both data
and state repartitioning, and (ii) is capable of allocating new resources dynamically. The
architecture allows the development and application of different adaptivity functionalities
within the same context, which is a contribution in its own right. Key features of the ar-
chitecture are that it is non-centralised, and its components communicate with each other
asynchronously according to the publish/subscribe model [17]. Thus it can be applied to
loosely-coupled, autonomous environments such as the grid and cloud computing services.

• It presents an implementation of the architecture as extensions to the OGSA-DQP2 service-
based distributed query processor for the grid [1], which demonstrates the practicality of the
approach.

• It describes adaptive query processing strategies for balancing load and removing bottle-
necks within parallel query plans, and demonstrates their effectiveness in decreasing the
query response time in practice through a collection of experiments. The experiments fall
into three categories: large-scale ones run either (i) in the wild or (ii) on a cluster that aim to
show the effectiveness of the approach in practice, and (iii) small scale ones in a controlled
environment with few varying parameters that aim to provide insights into the details of the
strategies, such as the overheads incurred. The results of the empirical evaluation of the
prototype presented show that it can yield significant performance improvements in repre-
sentative scenarios. In addition, the overhead remains reasonably low, which is a significant
property when adaptivity is not required.

The rest of the paper is structured as follows. Section 2 describes an architecture for static
query processing that is extended with components that support the implementation of adaptive
behaviour. Sections 3 and 4 demonstrate adaptations to maintain load balance and to remove
bottlenecks, presenting respectively the techniques and their evaluation. Related work is in Section
5, and Section 6 concludes the paper.

2 Overview of Architecture

2.1 The Adaptivity Framework and its Components

This section discusses an architectural framework for AQP that is capable of accommodating vari-
ous kinds of adaptations (including adaptive data repartitioning and resource allocation). The core
idea is to separate the phases of collecting feedback from the execution and environment, analysing

1An early version of parts of this work has appeared in [20].
2OGSA-DQP is publicly available in open-source form from www.ogsadai.org.uk/dqp.

4

this feedback, and responding to changes based on the feedback analysis. Thus, AQP is decom-
posed into monitoring, assessment and response phases. In contrast, these are inherently present
and often conflated in existing AQP systems. We identify three different kinds of adaptivity com-
ponents, i.e., one component for each phase of the adaptivity cycle. Any AQP technique requires
at least one component of each different kind to cover all the adaptivity phases. Consequently, any
adaptation is based on collaboration of decoupled entities. A promising way to achieve this in a
service-based environment is through message exchange, and to this end, the components support
a publish/subscribe interface [17]. The functionality of the framework components is as follows.

Monitoring: a monitoring component acts as a source of notifications on the dynamic be-
haviour of distributed resources and of query execution. It may perform basic integration and
filtering of raw events both to avoid flooding the system with low-level notifications, and to pro-
vide support for higher-level notification specification (e.g., by sending a notification only if the
load of a machine and the amount of available memory have changed by more than 10%).

Assessment: The role of the assessment component is to establish whether there exist op-
portunities for improvement of plan performance (or any other QoS criteria), and whether there
is a problem with the current execution that needs to be addressed, in order to activate the re-
sponse mechanisms. It performs its task by correlating and analysing notifications from multiple
monitoring components.

Response: the response component is responsible for: (i) identifying valid responses to the
issues notified by the assessment component; (ii) evaluating the expected benefit and cost for each
valid response; (iii) selecting the most efficient one; and (iv) interacting with the evaluation engine
to enforce its decisions.

2.2 Extending Exchanges

As indicated in Section 1.1, the adaptations described in this paper are applicable to stateful (as
well as stateless) operators. This subsection describes how exchange operators handle the issues
arising by making use of underlying infrastructure for fault tolerance. The description of the
algorithms for fault tolerance is out of the scope of this paper; details can be found in [45]. Here,
we provide an overview of the parts that are used for query plan adaptation.

Exchanges [22] comprise two parts that can run independently: exchange producers and ex-
change consumers (Ex-Prod and Ex-Cons in Figure 1). The producers insert checkpoint tuples
into the set of data tuples they send to their consumers. They also keep a copy of the outgoing
data in their local recovery log. When the tuples between two checkpoints have finished their pro-
cessing and they are not needed any more by the operators higher in the query plan, e.g. through
having arrived at the next but one machine downstream, the checkpoints are returned in the form
of acknowledgment tuples. Figure 1 shows an example of the data and acknowledgement flows
when data is partitioned between two machines (that also hold the data initially). On receipt of the
acknowledgement tuples, the recovery logs are pruned accordingly.

In practice, the recovery logs contain, at any point, the tuples that have not finished their pro-

5

Ex−Cons Ex−Cons

Ex−ProdEx−Prod

Log Log

data flow

acknowledgement
flow

thread boundaries

Machine A Machine B

Figure 1: The enhanced exchanges

cessing by the evaluators to which they were sent, and thus include all the in-transit tuples and the
tuples that form operator state. This provides an opportunity to repartition state across consumer
nodes by extracting the tuples stored in the recovery logs, and applying the data repartitioning
policy to these tuples as well.

2.3 Extensions to the OGSA-DQP Distributed Query Processing System

This section describes static distributed query processing, as supported by the OGSA-DQP system
[1], and the extensions implemented to incorporate the aforementioned framework. As well as
supporting the evaluation of queries that access multiple service-wrapped databases (by way of
OGSA-DAI [2]) and computational web services, OGSA-DQP has itself been implemented as a
collection of interacting web services. The first service type is called the Grid Distributed Query
Service (GDQS) and encapsulates a query optimizer, which receives user queries in a declarative
language, and compiles and optimizes an execution plan for each query. The second type is the
Grid Query Evaluation Service (GQES), which resides at each site participating in the evaluation
of a distributed query, and encapsulates a query engine that receives and processes fragments of
the query plan, as constructed and scheduled by the GDQS. By combining these two types of
service, users and developers can integrate data from multiple databases.

For example, let us assume the existence of (i) two independent, grid-enabled bioinformatics
databases, each containing one table of relevance to the example, namely Classification and Se-
quence, and (ii) implementations of the BLAST protein sequence similarity function, wrapped as
Web Services. A non-trivial task is to integrate the data of the two remote data sources accessible

6

BLAST

SCAN

exchange

SCAN

hash join

projectproject

exchange

exchange

exchange

select Blast(S.ssequence)

from S in Sequence,
C in Classification

where S.sproteinid = C.cproteinid

Class Sequence

Figure 2: Example query plan.

over a grid, and call BLAST on the results produced. In OGSA-DQP, this task is declaratively
specified by the query in Figure 2. The figure also shows the query execution plan that performs
this task. The nodes of the plan are query operators, in this example, scans, projects, joins, ex-
changes (for data communication) and a call to a Web Service, the latter being enabled by the
operation call operator of OGSA-DQP. The operators may be executed on different machines, in
parallel. The scan operators rely on OGSA-DAI Data Services; in this paper, we assume that scans
are not parallelisable, i.e., data from any single table is accessed in an existing database, and not
(for example) striped across multiple machines.

Suppose that the optimizer decides, using the static scheduling algorithm described in [21],
that the join of the example query, implemented as a hash join algorithm, should be cloned (to
benefit from partitioned parallelism) at both sites holding stored data, which are X and Y, respec-
tively. Suppose further that it decides that the calls to BLAST are to be parallelised across these
two sites, X and Y, as well as a third one, Z. The fragments that each site receives are depicted in
Figure 3.

The evaluation of the query plan is achieved through orchestration of multiple GQESs, OGSA-
DAI data services and WSs wrapping foreign functions, coordinated by a GDQS. This type of
query processing is static because the GQES services are configured for each query at the set-up
phase and do not change during evaluation. For computations that are expected to last a relatively

7

BLAST

OGSA−DAI

contologyid cproteinid

WS

BLAST

WS

OGSA−DAI

BLAST

SCAN

WS

send results to the client

site Y

site Z

SCAN

hash join

project

exchange

exchange

exchange

site X

tuple
dataflow

service
call

exchange

hash join

project

exchange

exchange

sproteinid ssequence

exchangeexchange

Figure 3: Query plan distribution.

short period of time, or where the resources at their disposal are pre-determined and exclusively
reserved, statically composing and orchestrating services is sufficient, but this is not always the
case for database query processing. To implement the framework of Section 2.1, GQES have been
transformed into adaptive services.

Adaptive GQESs (AGQESs) instantiate this framework. Each AGQES consists of four com-
ponents: one query engine for implementing the query operators (the only component in static
GQESs), and one for each of monitoring, assessment and response, as illustrated in Figure 4.
Monitoring is based on self-monitoring operators, as reported in [19]. As such, the query engine
is capable of monitoring its own behaviour, and of producing low-level monitoring information
(such as the number of tuples each operator has produced to this point, and the actual time cost
of an operator). The MonitoringEventDetector component instantiates the monitoring component
of the framework and integrates the events produced by the query engine. The Diagnoser per-
forms the assessment phase, i.e., establishes whether there is an issue with the current execution
(e.g., load imbalance). The Responder is notified of any such issues and chooses how to react. Its
decisions may affect not only the local AGQES, but any AGQES participating in the evaluation.
The adaptivity notifications and subscription requests are transmitted across AGQESs as XML
documents over SOAP/HTTP.

The model above allows arbitrary connections of the adaptivity components. However, in the

8

Monitoring Event Detector

Responder

Diagnoser

Q
ue

ry
 E

ng
in

e
Monitoring Event Detector

Responder

Diagnoser

Q
ue

ry
 E

ng
in

e

new monitoring
events subscribe

send notifications

send notifications

subscribe

send notifications

AGQES

adapt execution

submit plan
fragment

subscribe

subscribe

AGQES

submit plan
fragment

subscribe

events
new monitoring

execution
adapt

Figure 4: Instantiating the adaptive architecture for dynamic load balancing.

strategies investigated in this paper, the configuration selected is as follows: there is a separate
MonitoringEventDetector on each participating site, and a single, globally accessible Diagnoser
and Responder for each query to which MonitoringEventDetectors are subscribed. Also, since the
operators of the query plan and their ordering are not modified during the adaptations examined,
there is no need to establish a connection between a Responder and the optimiser within the GDQS,
which is called to build the initial plan. Nevertheless, these are not limitations of the framework;
there is no restriction on the number and the kind of subscription requests an adaptivity component
can make. Additionally, in the generic case, a Responder can communicate with the compile-time
optimiser of the system through the GDQS service interface, for instance to select an alternate
realization of a part of the query plan.

3 Adapting to Load Imbalance and Bottlenecks

3.1 Approach to Load Balancing

Load imbalance with respect to the execution of a plan fragment over a fixed set of resources may
be the result of uneven load distribution in the case of homogeneous machines; however, in the
case of heterogeneous machines, it might be the result of a distribution that is not proportional to
the capabilities of the machines employed (both because the machines are different and because
their capabilities are subject to dynamic changes). In other words, load balancing is related to the

9

suitability of the allocation in terms of the rate with which the nodes can actually process the data
supplied.

To achieve load balance during execution we configure the AGQESs in the following way.
The MonitoringEventDetector is active in each site evaluating a query fragment, receiving raw
monitoring events from the local query engine. There also needs to be a single activated Diagnoser
and Responder; the components subscribe to each other, as illustrated in Figure 4.

3.1.1 Monitoring

The query engine generates notifications of the following two types:

• M1, which includes notifications containing information about the processing cost of a tu-
ple. Such notifications are generated by the exchange operators that form the local root of
subplans (i.e., exchange producers) and include: (i) the cost of processing an incoming tu-
ple in milliseconds; (ii) the average waiting time of the subplan leaf operator for this tuple,
which corresponds to the idle time that the relevant thread has spent; and (iii) the current
selectivity.

• M2, which includes notifications containing information about the communication cost of
an outgoing buffer of tuples. Such notifications are generated by exchanges that form the
local root of subplans, and include: (i) the cost of sending a buffer in milliseconds; (ii) the
recipient of the buffer; and (iii) the number of tuples that the buffer contains.

These notifications, which contain low-level information on plan progress, are sent to a Moni-
toringEventDetector component that:

• groups the notifications of type M1 by the identifier of the operator that generated the noti-
fication, and the notifications of the type M2 by the concatenated identifiers of the producer
and recipient of the relevant buffer;

• computes the running average of the cost over a window of a certain length, discarding the
minimum and maximum values as outliers; and

• generates a notification to be sent to subscribed Diagnosers, if these average values change
by a specified threshold thresM.

The default configuration is characterised by the following parameters:

• the monitoring frequency for the query engine is one notification for each 10 tuples produced
(for the type M1) and one notification for each buffer sent (for the type M2);

• the low level notifications from the query engine are sent to the local MonitoringEventDe-
tector;

10

• the window over which the average is calculated (in the MonitoringEventDetector) contains
the last 25 events; and

• the threshold thresM to generate notifications for Diagnosers is set to 20%. This means that
the average processing cost of a tuple needs to change by at least 20% before the Diagnoser
is notified.

3.1.2 Assessment

Assessment is carried out within a Diagnoser. A Diagnoser gathers information produced by
MonitoringEventDetectors to establish whether there is load imbalance. Let us assume that a
subplan p is partitioned across n machines, and pi, i = 1 . . . n, is the subplan fragment sent to the
ith AGQES. The MonitoringEventDetectors notify the cost per tuple c(pi) for each such subplan,
as explained earlier. The Diagnoser is also aware of the current tuple distribution policy, which
is represented as a vector W = (w1, . . . , wn), where wi represents the proportion of tuples that
is sent to pi. To balance execution, the objective is to allocate a load w

′
i to each AGQES that is

inversely proportional to c(pi). The Diagnoser computes the balanced vector W
′
= (w

′
1, . . . , w

′
n).

However, it only notifies the Responder with the proposed W
′

if there exists a pair of wi and w
′
i

for which |wi−w
′
i |

wi
exceeds a threshold thresA. This is to avoid triggering adaptations with low

expected benefit.
The cost per tuple for a subplan, c(pi), can be computed in two ways:

• A1, which takes into account only the notifications of type M1 that are produced by the
relevant subplan instance; or

• A2, which additionally takes into account the notifications of type M2 that are produced by
the subplans that deliver data to the relevant subplan instance, and contain the communica-
tion costs for this delivery.

The default configuration is characterised by the following parameters:

• the threshold thresA to generate notifications for Responders is set to 20%; and

• the communication cost between subplans in the same machine (i.e., when the exchange
producer and consumer reside on the same machine) is considered to be zero.

3.1.3 Response

The Responder receives notifications about imbalance from the Diagnosers in the form of pro-
posed enhanced workload distribution vectors W

′
. To decide whether to accept the proposed

change to the distribution vectors, it contacts all the evaluators that produce data to estimate the
progress of execution in line with [9]. If the progress of execution is below a configurable thresh-
old (which denotes the minimum interval before expected completion at which adaptations are

11

allowed to take place), the Responder notifies the evaluators that need to change their distribution
policy, and the Diagnosers that need to update their distribution vectors.

The data distribution can change in two ways:

• R1, in which the tuples in the recovery logs (i.e., the tuples already buffered to be sent, and
the tuples already sent to their consumers but not processed) are redistributed in accordance
with the new data distribution policy. We call this redistribution retrospective, as it applies
both to new tuples being received for distribution, and also to tuples already forwarded
through this redistribution point, as long as the tuples have not been finished with by the
operators we are redistributing to; and

• R2, in which the buffered tuples and the recovery logs are not affected. We call this redis-
tribution prospective, as it applies only from the present point onwards.

In the R1 case, operator state (in the form of buffers of exchange producers, incoming queues
of exchange consumers, hash tables of hash-based operators, etc.) is effectively recreated in other
machines. This may be useful when adaptations need to take effect as soon as possible, and it is
imperative for redistributing tuples processed by stateful operators (to ensure result correctness).
In other words, if the plan partition affected by the rebalancing contains operators such as group
by and operators that build partitioned hash tables, retrospective redistribution is the only valid
option; otherwise, it is optional.

3.2 Approach to Bottleneck Reduction

The previous form of adaptivity dealt with the balanced execution across the n instances of a
subplan (or partition) p to which intra-operator parallelism has been applied. In general, a query
execution plan QEP consists of a set of m such partitions, P = {p1, p2, ..., pm}. If there are
no blocking operators, all the partitions are executed concurrently; in an efficient plan, they are
expected to take approximately the same length of time to evaluate when fully utilizing local
resources. If this is not the case, then one or more of the partitions forms a bottleneck [46], and
the execution of the whole plan slows down. This may be for several reasons, such as suboptimal
initial resource scheduling decisions. For example, if an expensive operator has been allocated the
same resources for the same number of tuples as an inexpensive one, then the throughput of these
two operators will vary significantly and the query execution time will largely be determined by
the completion time of the costliest operator. Several approaches could be taken to removing such
bottlenecks (e.g. changing which analyses are allocated to which machines, changing the order
in which the operators are applied with a view to reducing the number of calls to costly operators
[24]). The approach examined in this work increases the degree of parallelism of the costliest
partition, so that the difference between its predicted time cost and that of the other partitions
decreases, if the communication cost is not the dominant cost in the query plan.

As such, the adaptivity policy to tackle bottlenecks focuses on the efficiency of vertical (pipelined)
parallelism within the query plan, whereas the policy to tackle imbalanced execution deals with the

12

efficiency of horizontal (partitioned) parallelism. The requirements on the adaptivity components
remain the same: each site participating in query execution holds a MonitoringEventDetector, and
there is a single, globally accessible Diagnoser and Responder. Additionally, both policies rely on
the same monitoring information, which has been described in Section 3.1.1, thus providing an ex-
ample of component reuse across different AQP techniques. Monitoring information of both types
M1 and M2 are used when adapting to bottlenecks. The descriptions of the distinct assessment
and response phases are presented below.

3.2.1 Assessment

The role of assessment in this adaptivity strategy is to identify the costliest parallelisable partition,
and to establish whether the response component should be asked to consider increasing its degree
of intra-operator parallelism. To this end, a sequence of steps is followed:

1. The average cost of processing an incoming tuple by the ith instance of the jth partition
is denoted cj

i . This is included in the monitoring information collected and its inverse is
equal to the throughput of the partition instance. For each updated value of cj

i received from
a MonitoringEventDetector, the estimated response time for the relevant partition instance
pj

i , Cj
i , is computed. To do this, we need the number of tuples that this partition is expected

to process, N j
exp, and a workload distribution vector W j = {wj

1, w
j
2, ..., w

j
n}, which con-

tains the proportion of the tuples that each partition instance receives. N j
exp depends on the

selectivities of its children. The following formula holds: Cj
i = cj

i ·N j
exp · wj

i .

2. The estimated cost Cj for a partition pj is computed using the formula: Cj = max(Cj
i), i =

1, ..., n, where n is the number of instances of the partition (i.e., its current degree of intra-
operator parallelism).

3. The partitions are sorted by their cost. If the costliest one does not contain an operator that
must be run on a specific machine, such as scan, it is considered to be parallelisable. Then a
heuristic is applied that guarantees that the intra-operator parallelism is increased only if the
communication cost does not dominate (if it does, increasing the intra-operator parallelism
is not expected to yield any benefits):

Cj
max > (1 + thresA) · avg(communication cost).

The average communication costs can be extracted from monitoring notifications of type
M2 that have already been sent to the Diagnoser. thresA is set to 0.05 in the experiments.

A further control heuristic is used in some of the experiments. In a pipeline that contains
multiple parallelisable partitions, assessment may be conducted either as soon as a bottleneck is
detected involving any of the pipelined partitions, or it can be deferred until throughput informa-
tion is available for all partitions in the pipeline. This heuristic is intended to avoid premature

13

commitment of additional resources to resolve a bottleneck that may not be the bottleneck for the
whole query.

Given that the cost estimates rely on the load distribution vector, as shown in the first step,
there is a danger, if the vector is not balanced in the way discussed in the previous section, that a
specific partition may erroneously seem to be a bottleneck point. To avoid that, it is preferable to
combine the adaptivity policies and proceed to bottleneck removal only when load balancing has
been achieved.

3.2.2 Response

The set of actions that the Responder takes to respond to bottleneck diagnosis can be deemed
to be a superset of the actions required in the case of load imbalance. During its creation by
the GDQS coordinator service, the Responder is also notified of all the machines available. The
Responder reacts to bottlenecks only if the execution is not very close to completion (this is a
tunable parameter set to 95% in the experiments), as in the load balancing strategy. The actual
response is activated only if there are machines available, and consists of the following three
steps:

1. An AGQES is created remotely by the Responder. Subsequently, the partitioned subplan is
sent to the new AGQES. However, this remains temporarily idle because the other AGQESs
have not yet been notified of its existence.

2. A notification is sent to the AGQESs that consume data from the new evaluator, for them to
update their catalogs and wait for data.

3. A notification is sent to the AGQESs that send data to the new evaluator (i) to inform their
relevant exchange producers that data can be sent to the new AGQES; and (ii) to modify the
data partitioning policy of the AGQESs that send data to take into account the new consumer.
This is similar to the response form for imbalanced execution. The new consumer is initially
assigned a proportion of the complete workload which is equal to the average proportion of
the pre-existing AGQESs. The dynamic balancing mechanism presented in Section 3.1 can
correct bad initial decisions. All responses carried out in the experiments are prospective.

Essentially, in this approach, bottleneck is implicitly defined as the costliest plan partition,
which is actually the case for parallel (pipelined) execution in heterogeneous settings [46]; in such
settings, the costliest partition defines the query response time. The approach presented increases
the partitioned parallelism until the communication cost, or the cost to retrieve data from non-
parallel physical storage infrastructure, starts to dominate.

14

4 Evaluation

This section presents experimental results of the prototype developed. Using a real prototype,
rather than simulating the behavior of the system and the environment, is, in our view, a strong
advantage of this work, since end users are mostly interested in the actual impact of the adaptiv-
ity techniques on the system performance. Several experimental settings have been chosen that
complement each other and examine the system from different perspectives. In experiments “in
the wild” (i.e., in real, wide area environments), the system is deemed as a black box. Such ex-
periments can reveal its actual high level behaviour, but cannot be easily repeated and interpreted
in detail, due to the large number of varying factors. On the other hand, small scale experiments
provide useful insights into the low-level details of the adaptivity techniques. A middle solution
is to run experiments in a cluster setting. In this section, all three approaches have been followed.
The configurable parameters are those mentioned in Section 3, unless explicitly redefined.

As discussed previously, the responses of both adaptations manifest themselves at the operator
level; however, although in the case of adaptations for load balancing, the effectiveness of the
adaptations can be evaluated in experiments that involve a single (parallelised) operator (e.g.,
as in [42]), in the case of bottlenecks, the effectiveness of the adaptations can be measured in
experiments that involve pairs of (parallelised) operators. As such, in terms of query plans, the
experiments have deliberately been designed to enable fine-grained analyses of the adaptations by
using simple queries.

4.1 Evaluation in the wild

This section describes some performance results obtained for adaptive load balancing imple-
mented using the infrastructure described in Section 3.1. The results have been obtained using
PlanetLab [12], a resource currently comprising hundreds of machines world-wide that serves as
a shared evaluation environment for wide area distributed experiments. As PlanetLab resources
are used concurrently by multiple users, it provides an excellent way to test adaptivity techniques
“in the wild”, though the corollary is that it does not provide a controlled setting for repeatable
experiments.

A user at a participating institution who wishes to perform an experiment in the PlanetLab
environment is allocated a slice. Such a slice gives the user an account on each machine in a
subset of the machines in PlanetLab. Upon logging-in to such an account, a user’s processes are
isolated from those of other users in a separate virtual environment, or sliver. While monitoring
utilities, such as ps and top do not show individual processes belonging to other users, the overall
load on the machine is visible, and is typically both significant and variable. Broadly speaking,
multiple concurrent users of a single machine each have the impression of exclusive access to a
machine of varying performance, which is somewhat less powerful than the actual machine. Thus,
PlanetLab provides the right kind of unpredictability to experimentally evaluate the adaptivity
measures described in this paper.

15

The experiments used a slice containing 55 machines: 21 machines in the UK, 18 machines
elsewhere in Europe, 8 machines in Asia, and 8 machines in the US. However, for the duration of
these particular experiments the number of these machines which were accessible varied between
about 20 and 30. The script driving the queries selects for each run those machines that are
running and have been most responsive to an hourly probe. The result is that different subsets
of the machines are used for different runs. The specifications of machines in the slice vary, for
instance: in cpu speed between 1 and 3GHz; in memory between 512MB and 2GB; and in cache
size between 256 and 2048KB. However, apart from the fact that many of the machines have some
trade off in their parameters, e.g., lower speed but more memory, the overall load appears to be
both high and variable. This makes it generally difficult to select a favoured set of machines purely
from their static specification.

4.1.1 Experiment 1: Runs on the PlanetLab

The experiments explore load balancing for a query that invokes external operations using data
from a table in which one attribute, sequence, represents a gene sequence; in the experiments, the
table contains 100,000 tuples. In addition, operation calls analysis1 and analysis2, which have
identical cost and are stateless, are implemented as web services, which are available at multiple
sites, thereby supporting partitioned parallelism. Each operation performs a complex analysis as
might occur in a practical bioinformatics scenario.

In this environment, the performance of the following pipeline example query is measured:

Q1: select analysis1(s.ssequence),
analysis2(s.ssequence)

from Sequence s;

The AGQESs and associated software were installed on each available machine in the Plan-
etLab slice. One of these machines also hosts the benchmark database. Each of the remaining
available machines in the PlanetLab slice hosts a service exporting operation analysis1 or analy-
sis2. Each query is initiated from a user workstation at Newcastle and the query results returned
to the same machine.

The query compiler generates first a logical plan of the form shown in Figure 5(a). The plan
defines the organization of the key data processing operators required to perform the query. The
data is accessed by a scan operator and forwarded via two operation call operators to a print which
outputs the result to the user. From the logical plan, the compiler generates a physical plan, by
dividing the logical plan into partitions which can be parallelized. In this case, as shown by the
dotted boxes, there are four partitions. The compiler recognizes that there must be a single instance
of print, which just returns the results to the client, and that while the number of instances of scan is
fixed by the number of copies of the data source, there can independently be multiple instances of
each of the operation call partitions, depending on the number of instances of the relevant service
that are available. Additionally, the physical plan contains instances of an exchange operator,

16

which implements data redistribution as required. The scheduler then decides how many copies of
each partition should be included in the plan to be submitted for execution. In the executable plan
shown in Figure 5(b), while a single copy of the scan partition is allocated, corresponding to the
single data source, each of the operation call partitions is replicated for each machine hosting the
relevant operation. The exchange operators are parameterized so as to implement an even round-
robin redistribution of tuples. This redistribution can be adjusted at runtime by the adaptivity
support to achieve a balance when the multiple destinations are found to have unequal throughput.

PRINT

ANALYSIS2

ANALYSIS1

SCAN

ANALYSIS2

ANALYSIS1

round−robin

round−robin

PRINT

SCAN

(a) Logical plan (b) Executable plan

Figure 5: Planning a query containing two operation calls.

Figure 6 shows the impact of runtime adaptivity where increasing numbers of machines are
used to parallelise the analysis operations (for example, if there are 4 compute machines, there are
2 instances of each of analysis1 and analysis2). The query uses low cost versions of analysis1 and
analysis2, in which there is little scope for parallelism providing speedup because the evaluation
of the operation calls is not a substantial portion of the overall cost of the query. Indeed, little or
no speedup is exhibited. However, the inclusion of a slow machine in the schedule has a much
more detrimental effect on the statically scheduled plan, when compared to the adaptive system,
which gives three times better performance. This demonstrates that adaptive load balancing can
be used to provide more predictable performance in an unpredictable environment.

Figure 7 shows the impact of runtime adaptivity for more costly versions of analysis1 and
analysis2, in which a significant portion of the overall query cost can be reduced by partitioned
parallelism. There is obvious performance degradation in the cases where adaptivity is disabled.
In these cases, the scheduler can only make an initial placement, based on static parameters, in
this case allocating the divisible portions of the computations evenly amongst the available ma-
chines. When this is done, the outcome is unpredictable, as the chance selection of a single heavily
loaded machine may significantly increase response times. When adaptivity is enabled, by con-
trast, load is redistributed dynamically throughout the computation based on recently measured
performance, allowing profitable use of the available machines and some speedup. In both the

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

number of machines

Adaptivity disabled
Imbalance adaptivity

Figure 6: Results for low-cost operation calls.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

number of machines

Adaptivity disabled

Imbalance adaptivity

Figure 7: Results for costly operation calls.

18

experiments, the variability of the capabilities of the participating machines can be seen to make
static allocation a risky proposition, while autonomic rebalancing is able to mitigate this risk by
continually readjusting the computation in order to exploit the changing set of machines that are
performing well.

Evaluation of the bottleneck removal strategy is deferred to the next subsection, which employs
a cluster as the platform for experiments, to render the regeneration of a bottleneck across multiple
runs feasible.

4.2 Evaluation in a Cluster

4.2.1 Experiment 2: Effectiveness of bottleneck removal.

The experiments in this section have been conducted using an unloaded cluster consisting of 12
860MHz PCs, each with 512Mb of memory, connected using a 100Mb/s Ethernet. One of the
nodes is used as a coordinator (where queries are compiled and to which results are delivered).
Queries are scheduled with a single node used for database access, with different nodes used for
each operation call in a query.

Experiment 2.1: Resolving a single bottleneck. The aim of this experiment is to establish how
effective bottleneck removal is in the context of a single bottleneck. The following query is used:

Q2: select analysis1(s.ssequence)
from Sequence s;

The difference with Q1 is that there is just one call to an analysis service. The query is initially
compiled in such a way that Sequence is accessed on a single node and a single analysis1 is made
available on a different node. Varying numbers of the remaining nodes are made available for
absorbing the imbalance. The call to analysis1 is the bottleneck in this plan, even when it is fully
parallelised for any number of available machines considered in the experiment.

Figure 8 shows the impact of increasing the number of nodes with which to absorb the imbal-
ance, running over a collection of 100,000 Sequences. The non-parallel case is with 2 machines,
as one machine is used for scanning the Sequences. The figure is normalised such that 1 represents
the cost of evaluating the query with adaptivity disabled. In essence, bottleneck removal has been
successful at reducing the effects of the bottleneck, with significant speedups. This indicates that
the bottleneck has been detected in a timely manner. Moreover, the graph in Figure 8 is close to
what someone would expect for the case where the degree of parallelism was set to its optimal
at compile time rather than at runtime, which means that the adaptivity loop and the message ex-
change between components is efficient since it (i) does not prevent quick adaptations; and (ii)
incurs a low overhead. The overall overhead will be examined more thoroughly in subsequent
experiments.

19

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

number of machines

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

bottleneck adaptivity

Figure 8: Performance of Q2 with bottleneck adaptivity for 100,000 tuples

Experiment 2.2: Resolving Multiple Bottlenecks. The aim of this experiment is to assess the
effectiveness of the strategy given bottlenecks at different points in a pipeline.

Initially, the case is considered in which there are different levels of bottleneck at different
points in the pipeline. Q1 is used in this experiment:

In the first experiment, analysis2 has been slowed down so that each call takes 5 times as long
as analysis1. Figure 9 shows the impact of increasing the number of nodes with which to absorb
the imbalance, running over a collection of 100,000 Sequences, for both deferred and non-deferred
bottleneck resolution. The first opportunity for adaptation is with a parallelism level of 4, where a
single machine is available for absorbing the bottleneck.

The curve for non deferred bottleneck resolution improves on the performance of the static
case where there are significant numbers of machines available for absorbing the bottleneck. How-
ever, the plan has (by chance) been compiled in such a way that the partition containing analysis2
is the parent of that containing analysis1, which in turn is the parent of the scan of Sequence. As
a result, the (non-deferred) adaptive query processor obtains throughput figures for the evaluation
of analysis1 before it obtains the corresponding figures for analysis2, and thus may allocate nodes
to the partition for analysis1 that are then no longer available for resolving the bottleneck based
on analysis2 when it is subsequently shown to be the principal bottleneck. As a result, where
only 4 processors are available for evaluating the query the single processor that is available for
absorbing the bottleneck is assigned to analysis1, and there is little improvement in performance.

20

2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

number of machines

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

bottleneck adaptivity: not deferred
bottleneck adaptivity: deferred

Figure 9: Performance of Q1 with deferred and non-deferred bottleneck adaptivity. The call to
one of the analysis is 5 times slower than to the other.

With deferred bottleneck resolution, a more suitable allocation is made when a single machine is
available for absorbing imbalance. Where larger numbers of machines are available to absorb the
bottleneck, both adaptive strategies improve significantly on the static case.

In a second experiment, the case is considered in which the same level of bottleneck exists at
different points in the pipeline. That is, analysis2 has been configured so that each call takes as
long as for analysis1. Figure 10 shows the impact of increasing the number of nodes with which
to absorb the imbalance, running over a collection of 100,000 Sequences for both deferred and
non-deferred bottleneck resolution.

The first opportunity for adaptation is with a parallelism level of 4, where a single machine is
available for absorbing the bottleneck. Both adaptivity strategies allocate this node to the pipelined
partition associated with one of the calls to the analysis tool. However, this has little effect on
overall response time, as the bottleneck remains associated with the other call to analysis. Where
there is a parallelism level of 5, with two machines available for absorbing the bottleneck, the
deferred approach appropriately allocates two machines for each of the partitions associated with
the calls to the analysis operation, and obtains a significant speedup. However, the non-deferred
approach allocates both the additional machines to the partitions nearest the scan, and thus leads
to little overall performance improvement. With the higher levels of parallelism, both adaptive
strategies significantly improve on the static case. Where the total number of machines is 7 and 8
(i.e., there are, respectively, 4 and 5 machines available to absorb the bottleneck), the non-deferred

21

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

number of machines

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

bottleneck adaptivity: not deferred
bottleneck adaptivity: deferred

Figure 10: Performance of Q1 with deferred and non-deferred bottleneck adaptivity. The response
time of both the analysis tools per call is equal.

case has made better allocations of operation calls to machines than the deferred case; this does
not result from any fundamental property of the methods – allocation decisions are made on the
basis of dynamic feedback from monitoring of parallel plan fragments. Such dynamic feedback
provides an evolving view of the behaviour of a complex software system, and at any point in
time may give a somewhat misleading picture to the diagnoser and responder. The lesson learnt
from this experiment is that when there is a very limited number of additional machines available,
deferred adaptivity should be preferred to non-deferred, as it may lead to more efficient use of
those machines.

4.2.2 Experiment 3: Combining and Comparing the Adaptivity Strategies.

This section compares the use of the techniques for adapting to load imbalances and bottlenecks,
both together and separately.

The experiment uses Q2, in an environment in which machines 3, 5, 7, 9 and 11 perform
operation calls approximately 2.5 times more slowly than those allocated to machines 2, 4, 6, 8
and 10, where machines are made available in the experiments in numerical order.

Figure 11 shows the impact of increasing the number of nodes with which to evaluate Q2
running over a collection of 100,000 Sequences. The plots on the graph have legends of the form
initial-allocation: environment-description: strategies-enabled, where:

• initial-allocation is either one or all, to indicate if the plan is initially scheduled with the

22

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

number of machines

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)
all: balanced: none
all: imbalanced: none
all: imbalanced: imbalance
one: imbalanced: bottleneck
one: imbalanced: bottleneck+imbalance

Figure 11: Performance of Q2 for different adaptive strategies.

call to analysis1 on a single machine or on every machine available.

• environment-description is either balanced or imbalanced, indicating whether or not the
operation calls allocated to odd numbered nodes have been slowed down; and

• strategies-enabled is either none, bottleneck, imbalance or imbalance+bottleneck, indicat-
ing which of the adaptivity strategies are enabled. When both are enabled, bottleneck re-
moval is applied after the execution has been balanced.

The following observations can be made for the different traces in Figure 11:

1. all: balanced: none. This configuration is essentially the best case performance on the
available hardware, as the query is evaluated with maximum parallelism on an otherwise
unloaded machine. No adaptivity strategies are enabled or required.

2. all: imbalanced: none. This configuration shows the effect of the introduction of imbalance
in the absence of the adaptation that seeks to restore balanced load. Where three machines
are available for running the query, performance is degraded by the even distribution of
work across the two machines running analysis1, one of which is significantly slower than
the other. Although increasing parallelism improves performance from the worst case by
reducing the size of the dataset(s) allocated to the slowest machine(s), this only slightly

23

improves on the performance of the static case with the level of parallelism available. Note
that the reasonably strong performance with two processors is just chance – had response
times of operations been slowed down on even numbered rather than odd numbered nodes,
the poorest performance would have been for 2 machines rather than 3.

3. all: imbalanced: imbalance. This configuration shows the effect of the adaptation designed
to remove imbalance on the configuration at (2). Overall, the adaptations have been effec-
tive, providing steadily improving performance with increasing levels of parallelism, even
though odd numbered machines are significantly slower than their even numbered coun-
terparts. By sending the appropriate amount of tuples to slower machines, performance
improvements are observed for all machine additions. However, these improvements are
less significant when adding slower machines, as shown by the changing angle of gradient
in the graph.

4. one: imbalanced: bottleneck. This configuration shows how the bottleneck imbalance strat-
egy adds parallelism to the call to analysis1 from an initial allocation to a single node. This
configuration is closest to (2), with the only difference being that in this case the parallelism
is added by bottleneck adaptation rather than by the scheduler before query evaluation. The
bottleneck adaptation is effective at exploiting the available parallelism, but as in the static
case suffers significantly from the presence of slower machines.

5. one: imbalanced: bottleneck+imbalance. This configuration shows the effect of the in-
troduction of imbalance adaptivity to configuration (4). For all parallel configurations, the
combined adaptivity strategies improve significantly on the behaviour obtained in configu-
ration (4), although the combination does not quite match the behaviour of configuration (3)
where the available computational resources are the same. This is because the incremental
introduction of parallelism inevitably leads to slower exploitation of the available machines,
and because the interplay of the two adaptivity strategies requires greater numbers of adap-
tations to arrive at a steady state; the difference equals to the number of machines available
minus one.

Overall, the improvement in the response time of the query due to the adaptivity techniques
is shown by comparing (2) and (3); and (4) and (5). The former refers to the results of the online
balancing technique, whereas the latter relates to the combination of bottleneck removal with
balancing. Finally, the difference between (2) and (4), and (3) and (5) denotes the overhead of the
bottleneck removal strategies.

The overheads are illustrated more explicitly in Figure 12. To derive the overhead of the two
adaptivity techniques running in combination, the first and the third plots need to be compared.
Their difference corresponds to the cost of monitoring, assessing and responding in both ways
examined. The first two plots give the overhead of the balancing strategy (i.e., overhead because

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

number of machines

all: balanced: none
all: balanced: bottleneck+imbalance

one: balanced: bottleneck+imbalance

Figure 12: Overheads for different adaptive strategies.

of monitoring, assessing and modifying the workload distribution), whereas the overhead of the
stand-alone bottleneck removal technique can be derived from the second and the third plots.

4.3 Evaluation in a small scale controlled environment

The experiments presented in this section explore the costs and benefits of redistributing the tuple
workload on the fly to keep the evaluation balanced across evaluators. Throughout this section,
experiments are carried out in a small-scale homogeneous environment into which imbalances are
introduced, to allow detailed study of the behaviour of the adaptive techniques in a controlled
setting.

Two example queries are used, Q2 and Q3, which is as follows:

Q3: select i.ORF2

from Sequence s, Interaction i

where i.proteinid=s.proteinid;

The tables Sequence and Interaction are from the OGSA-DQP demo database and they contain
data on proteins and results of a bioinformatics experiment, respectively (the Sequence collection
used in the experiments is slightly modified to make all the tuples the same length to facilitate
result analysis). Unless otherwise stated, Sequence in this experiment contains 3000 tuples and
Interaction contains 4700 tuples.

25

Both Q2 and Q3 are compiled in such a way that each table is accessed from a single node.
Partitioned parallelism is used in Q2 for the calls to analysis1 and in Q3 for the join. The join is
implemented as a blocking hash join algorithm, with the hash table being cloned to all participating
nodes. The pipeline fragment that is subject to adaptivity consists of a scan operator, sending data
to the hash join to probe the already built table, and subsequently to return the results through a
print. As such, the adaptable query plan fragments of Q2 and Q3 are quite similar; in the former
the middle operator is an operation call accessing analysis1, whilst in the latter it is a hash join.

In the previous experiments it was shown that the adaptations described can be applied to a
large number of machines. However, to enable carefully controlled experiments to be conducted,
and to ease interpretation of the behaviour of the system for specific kinds of adaptation, two
machines are used in this experiment for the evaluation of analysis1 in Q2, and the join in Q3,
unless otherwise stated. The data are retrieved from a third machine. All machines are identical,
run RH Linux 9, are connected by a 100Mbps network, and are autonomously exposed as grid
resources. It was ensured that they were unloaded at the time of the experiments to allow a detailed
analysis of the behaviour of the adaptive techniques. The third machine retrieves and sends data
to the first two as fast as it can.

For each result, the query was run three times after the system has been warmed up to en-
sure that in all cases the standard deviation remains below 5%, and the average is presented here.
Finally, we have used two methods to create artificial load for machine perturbation: (i) by pro-
gramming a computation to iterate over the same function multiple times, and (ii) by inserting
sleep() calls. In the previous experiments, only the former method has been adopted.

4.3.1 Experiment 4: Behaviour of load balancing strategy.

The objective of this experiment is to understand how effective the load balancing strategies de-
scribed in Section 3.1 are, by measuring the performance of different configurations in a controlled
environment.

Experiment 4.1 Alternative forms of response. The objective of this experiment is to compare
alternative strategies in the presence and absence of imbalance.

The following configurations are considered:

• no ad / no imb: there is no imbalance between the performance of the analysis1 services in
the two machines, and adaptivity is not enabled (bottomline case);

• ad / no imb: there is no imbalance between the two services, and adaptivity is enabled, so
that the overhead can be revealed;

• no ad / imb: one WS call is costlier than the other, thus there is imbalance between the two
services. Adaptivity is not enabled, so that the performance degradation due to imbalance
can be revealed; and

26

Query-
Response

no ad / no
imb

ad / no imb no ad / imb ad / imb

Q2 - R2 1 1.059 3.53 1.45

Q2 - R1 1 1.15 3.53 1.57

Q3 - R1 1 1.11 1.71 1.31

Table 1: Performance of queries in normalised units.

• ad / imb: there is imbalance between the two services, and adaptivity is enabled, so that the
improvements due to adaptivity can be revealed.

To create the imbalance in the first experiment, we set the cost of the WS call in Q2 in one
machine to be exactly 10 times more than in the other for the whole duration of the query. As
will be discussed later, this slows down the overall execution on one machine by a factor of 3.5
approximately. The responses are prospective (response type R2 in Section 3.1). The first row of
Table 1 shows how the system behaves under different configurations.

The results are normalised, so that the response time corresponding to no ad / no imb is set
to 1 unit for each query. The scale of degradation due to imbalance is given by the difference
of the normalised performance from 1. The “unnecessary” adaptivity overhead is the overhead
incurred when adaptivity is not needed (i.e., there is no imbalance)3, which can be computed by
the difference of the second and the third column of Table 1 (1st row). This difference is 5.9%,
and is due to the publishing of monitoring messages. When one WS is perturbed and there are no
adaptivity mechanisms, the response time of the query increases 3.53 times (4th column in Table
1). For this type of query, the cost to evaluate the WS calls is the highest cost; however, it is not
dominant, as there is significant I/O and communication cost. Thus, a 10-fold increase in the WS
cost, results in 3.53-fold increase in the query response time. The adaptive system manages to
drop this increase to 1.45 times, performing significantly better than without adaptivity.

The 2nd row in Table 1 shows the results for the same experimental setup, except that the
adaptation is retrospective (type R1 of response). When the adaptivity is not enabled (no ad /
imb), the response time remains stable as expected (3.53 units). However, the average overhead
(ad / no imb) is nearly three times more (15.3% of the execution). This is because it is now more
costly to perform log management, as the tuples already sent to remote evaluators need to be
discarded and redistributed in a tidy manner. On average, the size of the state recreated is 10%
of the overall size (3000 tuples) approximately. Because of the larger overhead, the degradation
of the performance in the imbalanced case (ad / imb) is larger than for prospective response (1.57
times from 1.45).

3Without adaptivity, the machines finish at the same time (the difference is in the order of fractions of seconds). This,
in general, cannot be attained in a distributed setting. In more realistic scenarios, adaptivity is very rarely “unnecessary”,
even when distributed services are expected to behave similarly, but these experiments aim to show the actual overhead.

27

10 times 20 times 30 times
0

1

2

3

4

5

6

7

8

9

10

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

Figure 13: Performance of Q2 for prospective adaptations.

The same general pattern is observed for Q3 as well, using the second method to create im-
balance artificially. The factor of performance degradation due to imbalance is less than 1 in these
runs (0.71), to give an example of small imbalances. In this case, the perturbation is caused in
one machine by the insertion of a sleep(10msecs) call before the processing of each tuple by the
join. The 3rd row of Table 1 shows the performance when the adaptations are retrospective. The
overhead is 11%, and adaptivity, in the case of imbalance, makes the system run 1.31 times slower
instead of 1.71.

Experiment 4.2 Varying the Size of Perturbation The objective of this experiment is to compare
the strategies for different levels of imbalance.

We reran Q2 for the cases in which the perturbed WS is 10, 20 and 30 times costlier, and
adaptations are prospective. When the perturbed WS is 30 costlier, the increase in the overall
query response time is close to an order of magnitude. Figure 13 shows that the improvements
in performance are consistent over a reasonably wide range of perturbations. When the WS cost
on one of the machines becomes 10, 20 and 30 times costlier, the response time becomes 3.53,
6.66 and 9.76 times higher, respectively, without dynamic balancing. With dynamic balancing,
these drop to 1.45, 2.48 and 3.79 times higher, respectively, i.e., the performance improvement is
of several factors, consistently.

Experiment 4.3 Effects of Different Policies The objective of this experiment is to compare

28

10 times 20 times 30 times
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

A1 − R2
A1 − R1
A2 − R2

Figure 14: Performance of Q2 for different adaptivity policies.

assessment and response policies.
Thus far, the assessment has been carried out according to the type A1, in which communi-

cation cost is not taken into account. The next experiment takes a closer look at the effects of
different adaptivity policies. Three cases are examined: (i) when the Diagnoser does not take into
account the communication cost to send data to the subplan examined for imbalance, and no state
is recreated (type A1 of assessment combined with type R2 of response); (ii) when the Diagnoser
does not take into account the communication cost to send data to the subplan examined for imbal-
ance, and state is recreated (type A1 of assessment combined with type R1 of response); and (iii)
when the Diagnoser does take into account the communication cost to send data to the subplan
examined for imbalance, and no state is recreated (type A2 of assessment combined with type R2
of response).

There are two important factors that impact on the implications of communication costs,
namely the execution model and the network capacity with regard to the computational require-
ments of the query. When communications tasks overlap with expensive computational tasks, then
the communication cost is hidden regardless of the plan topology, and since communication costs
does not dominate, it can be omitted during the assessment/response phases. In other execution
models (e.g., synchronous data delivery where the processing and transmission of data occurs se-
quentially) this might not be the case, even if the communication cost does not dominate. Our
framework supports both cases during assessment; however its instantiation, which is an exten-
sion to the OGSA-DQP system, fits better to the first scenario. In essence, in our prototype, when

29

the communication cost is not considered (assessment A1), an assumption is made that the cost
for sending data overlaps with the cost of processing data due to pipelined parallelism. Such an
assumption is valid, and indeed, this is verified by the experimental results discussed next.

The performance of the three configurations for Q2 is shown in Figure 14. Although all of
them result in significant gains compared to the static system, some perform better than others.
From this figure we can observe: (i) that, taking into consideration the pipelining, performing
the assessment of type A1 has an impact on the quality of the decisions and results in better
repartitioning (see the difference between the leftmost and the rightmost bar in each group); and
(ii) that retrospective adaptations (R1 response) behave better than the prospective ones for bigger
perturbations (see the difference between the leftmost and the middle bar in each group). The
latter is also expected, as the overhead for recreating state remains stable independently of the size
of perturbations, whereas the benefits of removing tuples already sent to the slower consumers,
and re-sending them to the faster ones increases for bigger perturbations. Also, from Figure 14, it
can be seen that the bars referring to retrospective adaptations remain similar with different sizes
of perturbation, which means that the size of performance improvements increases with the size
of perturbations. This happens for two complementary reasons: (i) the higher the perturbation, the
more tuples are evaluated by the faster machine, in a way that outweighs the increased overhead
for redistributing tuples already sent or buffered to be sent; and (ii) for any of these perturbations,
only a very small portion of the tuples is evaluated by the slower machine, which makes the
performance of the system less sensitive to the size of perturbation of this machine.

Experiments with Q3 lead to the same conclusions. Figure 15 shows the behaviour of the join
query when the sleep() process sleeps for 10, 50 and 100 msecs, respectively, and adaptations are
of type A1 of assessment and R1 of response. As already identified in Figure 14, retrospective
adaptations are characterised by better scalability, and their performance is less dependent on the
perturbation.

Table 2 corresponds to Figure 14 and shows the ratio4 of the number of tuples sent to the two
evaluators calling the WSs. The ratio is significantly higher for retrospective adaptations, which
means that the system manages, in practice, to reroute data according to the performance of the
evaluators. For prospective adaptations, for this demo query, although the monitoring information
is the same, rerouting is not as effective. This is because the dataset is relatively small, and
by the time load imbalance has been detected, a significant number of tuples has already been
sent to its consumers. In retrospective adaptations, these tuples are redistributed, whereas such a
redistribution cannot happen in the prospective ones. However, as will be demonstrated later, this
is mitigated when the dataset size increases.

Experiment 4.4 Varying the dataset size. The objective of this experiment is to explore the
effect of dataset size on the effectiveness of the adaptive load balancing.

From the figures presented up to this point, retrospective adaptations outperform the prospec-
4ratio = number of tuples sent to the faster machine / number of tuples sent to the slower machine.

30

10msec 50msec 100msec
0

1

2

3

4

5

6

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

Figure 15: Performance of Q2 for retrospective adaptations.

Case A1-R2 A1-R1 A2-R2
10 times 5.58 11.21 3.16

20 times 4.95 11.42 4.33

30 times 4.55 16.45 3.89

Table 2: Ratio of tuples sent to the two evaluators.

31

10 times 20 times 30 times
0

1

2

3

4

5

6

7

8

9

10

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

Figure 16: Performance of Q1 for prospective adaptations and double data size.

tive ones, but suffer from higher overhead. The reason why prospective adaptations exhibit worse
performance is that a significant proportion of the tuples have been distributed before the adapta-
tions can take place. Intuitively, this can be mitigated in larger queries. Indeed, this is verified by
increasing the dataset size of Q2 from 3000 tuples to 6000, and making one WS call 10, 20 and 30
times costlier than the other, while the adaptations are prospective. Figure 16 shows the results,
which are very close to those when adaptations are retrospective (i.e., Figure 14 for Q2 and Figure
15 for Q3 compared to Figure 13), and lead to better performance improvements.

In summary, there is a trade-off between retrospective and prospective adaptations. The former
are costlier but the latter suffer from poor performance when the time to process the tuples that
have been distributed in a suboptimal manner is significant compared to the overall remaining
execution time. An interesting extension to our work, left for the future, is to develop a cost
model that quantifies these trade-offs with a view to deciding whether to employ retrospective or
prospective adaptations on the fly.

Experiment 4.5 Varying the number of perturbed machines. The objective of this experiment
is to identify the effectiveness of the different approaches where varying numbers of machines
exhibit reduced performance.

Figure 17 shows the performance of Q2 for different numbers of perturbed machines when
adaptations are retrospective (three machines have been used for WS evaluation in this experi-
ment). Perturbations are inserted by making selected WS calls 10 times costlier than the others.

32

0 1 2 3
1

1.5

2

2.5

3

3.5

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

Figure 17: Performance of Q2 for retrospective adaptations.

Without load balancing, the presence of an imbalance affecting any node substantially delays com-
pletion of the query. By contrast, when load balancing is enabled, performance degrades gracefully
in the presence of perturbed machines until such time as all machines are perturbed, and there is
no way to avoid substantially reduced performance.

4.3.2 Experiment 5: Impact of monitoring frequency

The objective of this experiment is to complement the discussion of Experiment 4.1 on the over-
heads associated with adaptive load balancing and discuss the impact of monitoring frequency.

Experiment 5.1 Monitoring overhead for different frequencies of monitoring.
Figure 18 presents the behaviour of the system for Q2, when the WS cost on one machine is

10 times greater than on the other, and the frequency of generating raw monitoring events from
the query engine varies between 0 (i.e., no monitoring to drive adaptivity) and 1 notification per
10, 20 and 30 tuples produced. Both the adaptation quality (2nd and 4th plots) and the over-
head incurred (1st and 3rd plots) are rather insensitive to these monitoring frequencies. This is
because (i) the mechanism to produce low-level monitoring notifications has been shown to have
very low overhead [19], and (ii) the adaptivity components filter the notifications effectively. On
average, between 100 and 300 notifications are generated from the query engine, but the Mon-
itoringEventDetector needs to notify the Diagnoser only around 10 times, 1-3 of which lead to

33

0 1/30 1/20 1/10
1

1.5

2

2.5

3

3.5

frequency(ratio of number of tuples monitored/number of tuples)

re
sp

on
se

 ti
m

e
(n

or
m

al
is

ed
 ti

m
e

un
its

)

no imbalance/stateless adaptations
imbalance/stateless adaptations
no imbalance/stateful adaptations
imbalance/stateful adaptations

Figure 18: Effects of different monitoring frequencies in Q2.

actual rebalancing. Thus the system is not flooded by messages, which keeps the overhead low.

4.3.3 Experiment 6: Changing Load

The objective of this experiment is to understand how effective the load balancing strategies are in
the context of rapidly changing loads instead of loads which are stable during the whole duration
of the query execution.

Experiment 6.1 The effectiveness of load balancing for different levels of change in imbalance.
Thus far, the perturbations have been stable throughout execution. A question arises as to

whether the system can exhibit similar performance gains when perturbations vary in magnitude
over the lifetime of the run. In these experiments the perturbation varies for each incoming tuple
in a normally distributed way, so that the mean value remains stable. Figure 19 shows the results
when the differences in the two WS costs in Q2 vary between 25 and 35 times, between 20 and
40 times, and between 1 and 60 times, and the adaptations are stateless. The leftmost bar in each
group in the figure corresponds to a stable cost, which is 30 times higher (e.g., bar A1-R2, 30times
in Figure 14 for prospective adaptations), and is presented again for comparison purposes. For the
ranges explored, the system is effective and efficient in handling different levels of imbalance and
different frequencies in which imbalance occurs.

34

prospective retrospective
0

0.5

1

1.5

2

2.5

3

3.5

4

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

[30,30]
[25,35]
[20,40]
[1,60]

Figure 19: Performance of Q2 under changing perturbations.

4.4 Generalization to larger queries

The plans of the example queries comprise up to three operators, at most two of which can be
parallelized. However, the results presented can be generalized to arbitrarily larger queries in terms
of degree of operator parallelism, or number of operators in the query plan, or their combination.
This is because the response phase of the adaptations impacts solely on individual operators; thus
it is independent of the size of the query plan. Moreover, the assessment phase during operator
load balancing involves the estimation of a vector with length equal to the degree of the operator
parallelism; practically, this cost is negligible even for very large degrees. In bottleneck reduction,
the assessment phase includes sorting the partition instances and then the partitions by their cost;
again, typically, this cost is not significant. Aggregate monitoring costs may increase significantly
for larger queries. However, our framework naturally supports the case in which each operator is
subscribed to a different assessment/response component, thus achieving scalability. As such, the
impact of monitoring on the total response time is expected to be similar to that reported in the
previous sections.

5 Related Work

Adaptive query processing is an active research area [16, 6]; solutions have been developed to
compensate for inaccurate or unavailable data properties (e.g., [4, 29, 32, 5]), to manage bursty
data retrieval rates from remote sources (e.g., [25]), and to provide prioritized results as early as

35

possible (e.g., [41]). In works such as [32, 5], the focus is on changing the query plan at runtime
in light of new statistical information becoming available. In summary, current adaptive query
processing techniques assume centralized processing (even when data are retrieved from remote
sources) and either change the query plan on the fly (e.g., [30]) or continuously reroute tuples
through operators; Eddies [4] is a pioneer of the latter approach. The adaptations considered in
this paper are finer grained than most approaches that involve reoptimization, and adaptations seek
to respond to inaccurate or unstable resource properties for distributed queries rather than to inac-
curate statistics about the data to be processed. As such, one can see this work as complementing,
rather than superceding, or being superceded by, the work to date on adaptive reoptimization. The
reality of work in adaptive query processing is that individual papers tend to consider only one
kind of adaptation in response to one kind of challenge. Our paper describes two related kinds
of adaptation (to address load imbalance and bottlenecks) and a specific kind of challenge (uncer-
tain or changing resource properties or query resource requirements in distributed systems). Both
the kinds of adaptation considered and the challenge dealt with have been overlooked by other
interesting adaptive proposals [16]. To the best of our knowledge, our work is the first that consid-
ers adaptations to changing machine capabilities by deciding on the workload allocation and the
number of the machines employed on the fly and is tailored to partitioned pipelined execution over
heterogeneous resources. An interesting direction for future work is to investigate the combination
of adaptations to updated information about both data and resources and changes to both the query
plan shape and the workload allocation.

In a distributed setting, [27] deals with adaptations to changing statistics of data from re-
mote sources, whereas our proposal, complementarily, focuses on changing resources. Moreover,
sources in [27] only provide data, and do not otherwise contribute to the query evaluation, which
takes place centrally. Eddies [4] are also used in centralised processing of data streams to adapt
to changing data characteristics (e.g., [8]) and operator consumption speeds. When Eddies are
distributed, as in [48, 53], changes to consumption speeds may indicate changing resource per-
formance. Nevertheless, our approach differs in several significant aspects: (i) the emphasis is on
parallel query processing, and thus in the case of adaptive load balancing on changing the routing
of data within rather than between operators; (ii) there is the potential to add to the resource pool
during query evaluation, as in the case of adaptive bottleneck resolution; although proposals based
on Eddies may dynamically reduce the number of tuples that ever pass through the operator that is
responsible for a bottleneck, the option of allocating additional resource to the evaluation of that
operator is not considered. The use of Eddies in parallel query processing is discussed in [39],
where an Eddy operator splits output tuples over several query evaluators and merges incoming
responses from those evaluators; in the case of hash joins, the dynamic redistribution of data is
avoided by allocating the complete hash table to multiple parallel evaluators. Such an approach
should be effective for join queries in which one operand is very much smaller than the other,
although a central Eddy operator may be a bottleneck for higher levels of parallelism.

There are, however, two particularly relevant pieces of work on adaptive load balancing. For

36

data and state repartitioning, the most relevant work is the Flux operator for continuous queries
[42], which extends exchanges and uses partitioned parallelism. Flux operates in the same context
as the work supported in our paper, i.e., heterogeneous machines, although with an emphasis on
stream query processing, but it does not address bottlenecks and it does not consider employing
additional machines on the fly. Flux differs from the adaptive load balancing approach described
here by moving operator state between sibling operator fragments, rather than by resending data
from upstream caches. We see the following benefits from the use of upstream caches: (i) the
work required to extract the data for reallocation does not further load the machine(s) that have
been detected as the source of the problem; (ii) extraction of state for reallocation from buffers
is independent of the algorithm storing the state, reducing development costs because there is no
need for different state-extraction functionality to be written for different stateful operators; (iii)
the cache provides support for fault tolerance with quite modest overheads [45], whereas the fault
tolerance scheme associated with Flux does substantial amounts of redundant work [43]. Also,
our paper investigates the relative merits of different state movement strategies (prospective and
retrospective) that can have a significant impact on performance. A more direct comparison of the
performance of different load balancing strategies can be found in [38].

A further strategy for adapting to load imbalance is part of the Data In The Network (DITN)
proposal [40]. In DITN, redundant plan fragments are executed when a fragment is late com-
pleting. In such an approach, however, adaptation may take place after a prolonged period of
imbalance; as a result, DITN is expected to be less responsive to changes in load balance than
the approaches of Flux or OGSA-DQP, but there is no risk of the strategy thrashing (by adapting
repeatedly to an unstable environment). In addition, there are circumstances in which DITN does
significant additional work during query evaluation to reduce the level of coupling between plan
fragments, which means that overheads can be significant.

Rivers [3] follow a simpler approach than Flux, but are capable of performing only data (and
not state) repartitioning. State management has also been considered in [15], but only with a
view to allowing more efficient, adaptive tuple rerouting within a single-node query plan. Finally,
[54] has examined possible operator state management techniques to be used in any single-node
adaptation.

There are also several pieces of work of relevance to bottleneck resolution. For example,
adapting the allocation of plan fragments to resources has been considered in the Aurora dis-
tributed stream query processing system; the relevant paper discusses a wide range of options, but
does not provide a detailed description of algorithms or evaluation results [10]. In the follow-on
project, Borealis [51], operators may be reallocated between pairs or groups of similar rather than
heterogeneous nodes, although there is no discussion of parallel query evaluation. The operator
reallocations should help to resolve bottlenecks, although bottlenecks are not explicitly diagnosed,
as they are in this paper.

Some forms of reoptimisation of parallel plans, including using new machines on the fly,
are presented in [34], although this approach is less general than that presented here, since it

37

can be applied only to a limited range of unary operators. In addition, some proposals defer
the machine scheduling decisions until more accurate information about data statistics becomes
available; however they suffer from significant limitations such as assuming that all machines
available have the same characteristics (e.g., [23]) or do not consider intra-operator parallelism
(e.g., [52, 37]). In [25], substitution of data sources on the fly is supported to tackle data source
failure; by contrast, the work described in this paper applies to resources that provide both data
and computations, and adapts principally to improve performance rather than to provide fault
tolerance.

In general, work on distributed query processing over wide-area autonomous environments
has resulted in many interesting proposals such as WSMS [46], ObjectGlobe [7], Garlic [28] and
Mariposa [47], but has directed fairly little attention towards issues of intra-query adaptivity. In
the Grid setting, Polar* [44], OGSA-DQP [1], GridDB [31] and GridDB-Lite [33] are examples
of grid-enabled database systems that support access to distributed data resources, and exploit
the parallelism available through heterogeneous infrastructures to meet demanding application
requirements. However, none of the systems mentioned above tackles the adaptivity issues in-
vestigated in this work. Finally, the work in [49, 50] examine wide-area query processing from
another perspective, focusing on the communication costs and the efficient network utilization.
Our work can take communication costs into account but the adaptations are designed with a view
to reducing the overall response time.

Recently, new paradigms for parallel data processing have emerged, such as MapReduce
[13, 14] that perform load balancing at a higher level. Our techniques operate under assump-
tions that are different from those of MapReduce, and that bear directly on how to address the
issues of load rebalancing and bottleneck removal. Most notably, in MapReduce, good knowledge
about the properties of the data to be processed and the computational requirements of the the
number of machines allocated to the map and reduce tasks is assumed. This knowledge drives the
static decisions on the way source data is partitioned across nodes and the degree of partitioned
parallelism. By contrast, our system is tailored to more autonomous environments, where this
knowledge is incomplete, data cannot be removed from store before query execution to facilitate
processing and these decisions are taken –and continuously refined– on the fly in response to the
feedback collected at runtime. MapReduce relies on independent parallelism, whereas our work
deals with the other two aspects of parallelism in query plans, namely partitioned and pipelined
parallelism. In MapReduce, it is assumed that there is full control on the source data; by contrast,
in our work we assume that the data sources are autonomous, and the place from where they can
be retrieved is fixed. This has an impact on the way load balancing is enforced. MapReduce can
effectively parallelise the process of retrieving data from source, and can achieve load balancing
by allocating large chunks of data to separate machines in a way that faster machines process
more chunks. In our approach, we perform load balancing at a finer level of granularity as tuples
are routed to the machines according to their processing speed, which is monitored at runtime.
In summary, MapReduce is geared towards the efficient parallelisation of independent tasks in

38

a managed environment assuming full control of input data and adequate knowledge about the
computational requirements of the task to be executed. Our solutions refer to a more wild setting,
in which data is retrieved from predefined sources, there is no a-priori knowledge about the com-
putational requirements of the task, and, as such, the only way to achieve good performance is
to respond to empirical evidence collected on the fly by adapting sensibly. Finally, it is an open
issue as to whether, and to which extent, query processing can benefit from the map-reduce frame-
work. Unary operators such as selection and group by can be easily re-implemented as map-reduce
functions, but this is may not be the case for other query operators. Such issues are examined in
[11, 35].

6 Conclusions

The volatility of the environment provided for parallel query processing over heterogeneous and
autonomous wide-area resources makes it imperative to adapt to changing resource properties, in
order to avoid serious performance degradation. This paper proposes two solutions, one for dy-
namic load balancing through data and operator state repartitioning, and another for dynamic bot-
tleneck resolution through resource allocation. Both solutions are instantiated in the context of the
same generic architectural framework for constructing adaptive techniques. They are implemented
through extensions to a distributed query processor for service-based grids. The implementation
is particularly appealing for environments such as the grid and cloud computing, as it is based
on loosely-coupled components, engineered as web services, which communicate asynchronously
and support the publish / subscribe model. For state repartitioning, and with a view to software
component reuse, the approach adopted uses recovery logs that are kept for the purposes of fault
tolerance guarantees. The results of the empirical evaluation are promising: performance is sig-
nificantly improved in a variety of contexts (by an order of magnitude in some cases), while the
overhead remains low enough to allow the benefits of adaptation to outweigh its cost for a wide
range of scenarios. The results of this work pave the way towards further research in this area.
Of particular interest are the topics of combining the adaptivity strategies of this paper with ones
that modify the query plan on the fly, and of configuring the numerous tunable parameters of these
strategies in an optimal, or near-optimal, way. These topics are left for future work.

Acknowledgements This work has been supported by the Engineering and Physical Sciences
Research Council Distributed Information Management and e-Science programmes. This work
was conducted while the first author was with the University of Manchester, UK.

References

[1] M.N. Alpdemir, A. Mukherjee, N.W. Paton, P. Watson, A.A.A. Fernandes, A. Gounaris, and
J. Smith. Service-based distributed querying on the grid. In Proc. 1st ICSOC, pages 467–482.

39

Springer, 2003.

[2] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N.P. Chue Hong, B. Collins, N. Hard-
man, A.C. Hulme, A. Knox, M. Jackson, A. Krause, S. Laws, J. Magowan, N.W. Paton,
D. Pearson, T. Sugden, P. Watson, and M. Westhead. The design and implementation of
Grid database services in OGSA-DAI. Concurrency: Practice and Experience, 17:357–376,
2005.

[3] R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Patterson, and
K. Yelick. Cluster I/O with River: Making the fast case common. In Proc. of the Sixth
IOPADS Workshop, pages 10–22, 1999.

[4] R. Avnur and J. Hellerstein. Eddies: continuously adaptive query processing. In Proc. of
ACM SIGMOD 2000, pages 261–272, 2000.

[5] S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-Optimization. In Proc. ACM SIGMOD,
pages 107–118, 2005.

[6] Shivnath Babu and Pedro Bizarro. Adaptive query processing in the looking glass. In CIDR,
pages 238–249, 2005.

[7] R. Braumandl, M. Keidl, A. Kemper, Kossmann Kossmann, A. Kreutz, S. Seltzsam, and
K. Stocker. ObjectGlobe: Ubiquitous query processing on the Internet. VLDB Journal,
10(1):48–71, August 2001.

[8] S. Chandrasekaran and M. Franklin. PSoup: a system for streaming queries over streaming
data. VLDB Journal, 12:140–156, 2003.

[9] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Estimating progress of
execution for sql queries. In Proc. of ACM SIGMOD, pages 803–814, 2004.

[10] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

[11] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and Douglas Stott Parker Jr. Map-reduce-
merge: simplified relational data processing on large clusters. In SIGMOD Conference, pages
1029–1040, 2007.

[12] David E. Culler. Planetlab: An open, community-driven infrastructure for experimental
planetary-scale services. In USENIX Symposium on Internet Technologies and Systems,
2003.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. In OSDI, pages 137–150, 2004.

40

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

[15] Amol Deshpande and Joseph M. Hellerstein. Lifting the burden of history from adaptive
query processing. Proc. of 30th VLDB Conf., pages 948–959, 2004.

[16] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. Adaptive query processing.
Foundations and Trends in Databases, 1(1):1–140, 2007.

[17] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[18] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, second edition, 2003.

[19] A. Gounaris, N. W. Paton, A. A. A. Fernandes, and Rizos Sakellariou. Self monitoring query
execution for adaptive query processing. Data and Knowledge Engineering, 51(3):325–348,
2004.

[20] A. Gounaris, N. W. Paton, R. Sakellariou, and A. A. A. Fernandes. Adapting to changing
resource performance in grid query processing. In 1st Int. Workshop on Data Management
in Grids, pages 30–44. Springer-Verlag, 2005.

[21] A. Gounaris, R. Sakellariou, N.W. Paton, and A.A.A. Fernandes. A novel approach to re-
source scheduling for parallel query processing on computational grids. Distributed and
Parallel Databases, 19(2-3):87–106, 2006.

[22] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System. In Proc.
SIGMOD, pages 102–111, 1990.

[23] Abdelkader Hameurlain and Franck Morvan. CPU and incremental memory allocation in
dynamic parallelization of SQL queries. Parallel Computing, 28(4):525–556, April 2002.

[24] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Optimizing queries
with expensive predicates. In SIGMOD Conference, pages 267–276, 1993.

[25] Z. Ives. Efficient Query Processing for Data Integration. PhD thesis, University of Wash-
ington, 2002.

[26] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An adaptive query execution
system for data integration. In Proc. of ACM SIGMOD 1999, pages 299–310, 1999.

[27] Z. Ives, A. Halevy, and D. Weld. Adapting to source properties in processing data integration
queries. In Proc. of ACM SIGMOD, pages 395–406, 2004.

41

[28] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. Garlic: a new flavor of feder-
ated query processing for db2. In Proc. of ACM SIGMOD, pages 524–532, 2002.

[29] N. Kabra and D. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution
plans. In Proc. of ACM SIGMOD, pages 106–117, 1998.

[30] Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S. Colby, and Guy M.
Lohman. Adaptively reordering joins during query execution. In ICDE, pages 26–35, 2007.

[31] D.T. Liu and M.J. Franklin. GridDB: A Data-Centric Overlay for Scientific Grids. In Proc.
VLDB, pages 600–611. Morgan-Kaufmann, 2004.

[32] V. Markl, V. Raman, D.E. Simmen, G.M. Lohman, and H. Pirahesh. Robust query processing
through progressive optimization. In Proc. ACM SIGMOD, pages 659–670, 2004.

[33] S. Narayanan, T.M. Kurc, and J. Saltz. Database Support for Data-Driven Scientific Appli-
cations in the Grid. Parallel Processing Letters, 13(2):245–271, 2003.

[34] K. Ng, Z. Wang, R. Muntz, and S. Nittel. Dynamic query re-optimization. In Proc. of 11th
SSDBM, pages 264–273, 1999.

[35] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. In SIGMOD Conference, pages
1099–1110, 2008.

[36] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly, 2001.

[37] Fatma Ozcan, Sena Nural, Pinar Koksal, Cem Evrendilek, and Asuman Dogac. Dynamic
query optimization in multidatabases. IEEE Data Eng. Bull., 20(3):38–45, 1997.

[38] Norman W. Paton, Jorge Buenabad Chávez, Mengsong Chen, Vijayshankar Raman, Garret
Swart, Inderpal Narang, Daniel M. Yellin, and Alvaro A. A. Fernandes. Autonomic query
parallelization using non-dedicated computers: an evaluation of adaptivity options. VLDB
J., accepted for publication, 2009.

[39] F. Porto, V.F.V. da Silva, M.L. Dutra, and B. Schulze. An adaptive distributed query process-
ing grid service. In Proc. 1st Data Management in Grids Workshop, pages 45–57. Springer-
Verlag, 2005.

[40] V. Raman, W. Han, and I Narang. Parallel querying with non-dedicated computers. In Proc.
VLDB, pages 61–72, 2005.

[41] V. Raman, B. Raman, and J. Hellerstein. Online dynamic reordering for interactive data
processing. Proc. of 25th VLDB Conference, pages 709–720, 1999.

42

[42] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux: An adaptive partitioning
operator for continuous query systems. In Proc. of ICDE, pages 25–36, 2003.

[43] M.A. Shah, J.M. Hellerstein, and E.A. Brewer. Highly available fault-tolerant, parallel
dataflows. In Proc. SIGMOD, pages 827–838, 2004.

[44] J. Smith, A. Gounaris, P. Watson, N.W. Paton, A.A.A. Fernandes, and R. Sakellariou. Dis-
tributed query processing on the grid. Intl. J. High Performance Computing Applications,
17(4):353–368, 2003.

[45] Jim Smith and Paul Watson. Fault-tolerance in distributed query processing. In Proc. 9th
IDEAS, pages 329–338, 2005.

[46] Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Query opti-
mization over web services. In VLDB, pages 355–366, 2006.

[47] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl
Staelin, and Andrew Yu. Mariposa: A wide-area distributed database system. VLDB Journal,
5(1):48–63, 1996.

[48] F. Tian and D. DeWitt. Tuple routing strategies for distributed eddies. In Proc. of 29th VLDB
Conference, pages 333–344, 2003.

[49] Xiaodan Wang, Randal Burns, and Andreas Terzis. Throughput-optimized, global-scale join
processing in scientific federations. In NETB’07: Proceedings of the 3rd USENIX inter-
national workshop on Networking meets databases, pages 1–6, Berkeley, CA, USA, 2007.
USENIX Association.

[50] Xiaodan Wang, Randal C. Burns, Andreas Terzis, and Amol Deshpande. Network-aware
join processing in global-scale database federations. In ICDE, pages 586–595, 2008.

[51] Y. Xing, S. Zdonik, and J-H Hwang. Dynamic Load Distribution in the Borealis Stream
Processor. In Proc ICDE, pages 791–802, 2005.

[52] Min J. Yu and Phillip C.-Y. Sheu. Adaptive join algorithms in dynamic distributed databases.
Distributed and Parallel Databases, 5(1):5–30, 1997.

[53] Y. Zhou, B.C. Ooi, K-L Tan, and W.H. Tok. An Adaptable Distributed Query Processing
Architecture. Data & Knowledge Engineering, 53(3):283–309, 2005.

[54] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic plan migration for
continuous queries over data streams. In Proc. ACM SIGMOD, pages 431–442, 2004.

43

