
Multi-objective optimization of data flows
in a multi-cloud environment

Efthymia Tsamoura
Aristotle University of
Thessaloniki, Greece

etsamour@csd.auth.gr

Anastasios Gounaris
Aristotle University of
Thessaloniki, Greece

gounaria@csd.auth.gr

Kostas Tsichlas
Aristotle University of
Thessaloniki, Greece

tsichlas@csd.auth.gr

ABSTRACT

As cloud-based solutions have become one of the main choices
for intensive data analysis both for business decision making
and scientific purposes, users face the problem of choosing
among different cloud providers. In this work, we deal with
data analysis flows that can be split in stages, and each stage
can run on multiple cloud infrastructures. For each stage,
a cloud provider may make a bid in the form of a continu-
ous function in the time delay-monetary cost domain. The
goal is to compute the optimal combination of bids accord-
ing to how much a user is prepared to pay for the total
time delay to execute the analysis task. The contributions
of this work are (i) to provide a solution that can be com-
puted in pseudo-polynomial time and with bounded relative
error for the generic case; (ii) to provide exact polynomial
solutions for specific cases; and (iii) to experimentally eval-
uate our proposal against other techniques. Our extensive
results show that we can yield improvements up to an order
of magnitude compared to existing heuristics.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

1. INTRODUCTION
Data analysis tasks are typically represented as directed

acyclic graphs (DAGs), which can be naturally split in mul-
tiple stages. In the past, data-driven analysis almost exclu-
sively relied on database technologies, and the tasks were
query execution plans consisting of operators from the ex-
tended relational algebra. Nowadays, data-driven decision
support and scientific research involves more complex DAG
flows that encompass data/text analytics, machine learning
operations, and so on [6]. Additionally, cloud computing has
emerged as a cost-effective solution to perform data analytics
without requiring the investment on large-scale proprietary
computing infrastructures; rather users pay only for the re-
sources they use. Another attractive feature of cloud com-
puting is elasticity, which allows for dynamic allocations of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DanaC’13, June 23, 2013, New York, NY, USA
Copyright 2013 ACM 978-1-4503-2202-7/13/06 ...$15.00.

machines in order to cope with user and task requirements.
This setting naturally gives rise to new problems in the opti-
mization of data analysis processes, the objectives of which
need to account for both performance and monetary cost.

Our setting is depicted in Fig. 1. We assume that our
analysis process is a DAG that is split into stages, which
will be referred to as strides. For each stride, each cloud
provider may provide a bid, which includes the expenses
involved and the profit. Because of elasticity and virtualiza-
tion, each cloud host can offer multiple combinations of size
and number of virtual machines at a different cost, and each
such combination may result in different expected execution
time. In the generic case, the complete offer per provider per
stride is described by a continuous function. In addition, we
assume that each user specifies her/his own function that
represents the worst acceptable trade-off. We further as-
sume that the total monetary cost of the data analysis pro-
cess is the sum of the cost of each stride; similarly, the total
time delay is the sum of the delays in each stride. We take a
user-oriented approach, and our goal is to compute the com-
bination of the bid points, so that there is exactly one bid
point from each stride, and the total monetary cost max-
imizes the difference from the user-supplied function. We
define user satisfaction as that difference (see Fig. 1), which
captures the savings from the worst acceptable payment.

The problem above involves the computation of the pareto
frontier and is NP-hard [5]. A simpler version of this prob-
lem has been investigated in the context of the Mariposa
distributed query processing system [7, 5]. The major dif-
ference from our work is that, in Mariposa, the bid of each
provider for each stride is a single point rather than a con-
tinuous function, implying that there is no provision of elas-
ticity. Our contribution is that we provide solutions for the
extended case described above. We begin with the assump-
tion that the cloud host bids are piece-wise non-increasing

stride 1

stride 2

stride 3

stride 4

cost

delay

provider 1

provider 2

cost

delay

user-supplied function

bids per stride

total cost-delay

pareto curve

max user satisfaction

Figure 1: An analysis DAG (left) and example user
and provider cost-delay functions (right).

linear functions, and we distinguish between convex and
non-convex user-supplied functions. Finally, we generalize
for the case, where the cloud provider functions are arbi-
trary non-increasing functions, and we also briefly discuss
the case, where the functions are stepwise ones. Our the-
oretical results are that, in the generic case, we can find a
solution with bounded relative error in pseudo-polynomial
time, but we can also find exact solutions in a range of other
more specific cases. Our evaluation results show that we can
increase the user satisfaction by up to an order of magnitude.

The structure of the paper is as follows. We briefly re-
view Mariposa in Sec. 2 and we formally state the problem
in Sec. 3. Our solutions for convex and non-convex user-
supplied trade-off functions are given in Sec. 4 and 5, respec-
tively. The experimental analysis is in Sec. 6. We discuss
the related work in Sec. 7 and we conclude in Sec. 8.

2. BACKGROUND
The Mariposa optimization algorithm and its extension

in [5] form the basis of our work, on top of which we build our
solutions. Mariposa’s greedy algorithm aims at maximizing
the user satisfaction in the case where each cloud provider
makes a single bid per stride in the form of a point (c, d)
in the 2-dimensional time delay-monetary cost space [7]. To
avoid the exponential complexity of examining each combi-
nation of bids per stride, the algorithm first computes the
bids that constitute the vertices of the pareto curve of each
stride separately [5], which has a polynomial cost. In this
way, no dominated bids are considered, i.e., bids for which
there is at least one other bid with the same or smaller time
delay and monetary cost. Then, those vertices are examined
in order of their time delay. At the first step, the bids that
minimize the time delay for each stride are chosen. In each
iteration, one of the bids is replaced by its subsequent one
in the relevant convex pareto curve; the choice is based on
the gradient of the convex pareto curve.

In summary, the theoretical results regarding Mariposa’s
solution are firstly, that an optimal solution can be found in
polynomial time under convex user-supplied trade-off func-
tions (with the help of the greedy algorithm) and, secondly,
the problem is NP-hard under non-convex user functions
[5]. The former result implies that the optimal solution in
that case lies on the convex pareto frontier rather than the
complete pareto curve. The second result states that, if the
user function is not convex, the optimal solution may lie
anywhere on the pareto curve, which renders the problem
intractable. In that case, the optimal point can be found in
pseudopolynomial time with the help of dynamic program-
ming; however it is shown that it can be approximated in
polynomial time and the approximation has a bounded rel-
ative error.

3. PROBLEM FORMULATION
Our problem is formally stated as follows (see also Table

1 for the notation). A data analysis task is divided in N
horizontal strides, and each one of the M cloud providers
makes a bid in the form of a piecewise linear function of time
delay d denoted as li,j(d), 1 ≤ i ≤ N, 1 ≤ j ≤ M ; we will
relax this restriction later. Each bid function contains mi,j

linear segments. Also, the user provides a worst acceptable
trade-off budget function u(d). We want to maximize user
satisfaction, which is formally stated as:

u(d⋆)− c⋆ = argmax{u(d)− c}, (1)

Table 1: Notation Table
Symbol Description

N Number of horizontal strides
M Number of cloud providers
u(d) Non-increasing user-supplied worst acceptable payment

as a function of execution time d

S Set of feasible solutions, i.e., combinations of bids
s = (d, c) A feasible solution of S with total time delay d and total

monetary cost c

d, d, Minimum and maximum delay of a feasible solution
s⋆ = (d⋆, c⋆) Optimal solution with total delay d⋆ and total cost c⋆

S Set of solutions returned by our solutions
P Pareto curve of S
CP Convex Pareto curve of S
Pi Pareto curve of the bids in the i-th stride
CPi Convex Pareto curve of the bids in the i-th stride
li,j(d) Non-increasing piecewise linear bid function of the j-th

provider for the i-th stride
mi,j Number of linear segments of li,j
(dk−1

i,j
, c

k−1

i,j
),

(dk
i,j , c

k
i,j)

Endpoints of the k-th line segment of li,j(d), 1 ≤ k ≤

mi,j

λk
i,j The slope of the k-th line segment of li,j(d)

λmax Maximum slope of li,j(d)
Ii Intersection points of li,j bid functions ∀j

Vi The set of endpoints that belong to CPi

vi,k k − th point in Vi

ǫ Pareto relative approximation error

In Eq.(1), d⋆ and c⋆ are the delay and the monetary cost of
the optimal solution s⋆ of a flow, respectively. The delay d
and the cost c of a solution s = (d, c), in turn, are given by
the sum of the delay1 and cost values for each stride. The
monetary cost and the time delay are expressed in cost and
time units, respectively. Those can be real-world ones, such
as dollars and minutes, or logical.

4. CONVEX USER FUNCTIONS
As stated in Sec. 2, when each provider submits a single-

point bid per stride, the problem is tractable if the user
trade-off function is linear or convex, and, in that case, the
optimal solution lies on the convex Pareto curve CP of the
global solution set S. Moreover, the solution can be com-
puted polynomially with the help of a greedy algorithm ([5]).
In this section, we claim that we can compute the optimal
solution in polynomial time, even when the providers submit
continuous piecewise linear bid functions.

Our solution is termed as Continuous Bid-Convex User
function (CBCU). It reduces the continuous bid functions
to a set of single-point bids, and then it applies the greedy
algorithm of [5]. More specifically, from the piecewise linear
bid function for each stride, CBCU selects only the set Vi,
which comprises the endpoints of all segments and their in-
tersection points that also belong to the convex pareto curve
of the i-th stride, CPi. In other words, the continuous bids
are reduced to a set of single-point bids that are also vertices
of CPi,∀i. The points in Vi are sorted in increasing delay,
decreasing cost order.

Theorem 1. CBCU returns the optimal solution for lin-

ear or convex user-supplied functions u.

Proof. The proof proceeds in the following steps. First,
we prove that the optimal solution that lies on CP can be
generated by considering individually each CPi. Then, we
prove that although we do not examine the entire curve but
only vertices, we do not miss the optimal solution. In the

1We ignore inter-stride communication costs, which is some-
thing we plan to investigate in the future.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

u

b

bsτ

bsτ+1

b

Convex Pareto curve of S

s
⋆

u′

cost

delay

Figure 2: A schematic interpretation of Theorem 1.

following, let S be the set of solutions returned by the algo-
rithm.

To begin with, we prove that a solution that belongs
to CP consists solely of bids belonging to each CPi, i =
1, . . . , N . We know that any vertex of CP is the optimal
solution of a scalar objective delay/cost function w1c+w2d,
w1, w2 ≥ 0. In our case, the optimization objectives are lin-
ear, and more specifically, the delay and cost of a solution
are the sum of the delay and cost values of each constituting
bid. Thus, we can optimize w1c + w2d by optimizing each
stride separately, i.e., by choosing a bid point vi,j from each
stride that optimizes w1c+w2d. This also implies that each
bid point vi,j of a solution s must belong to CPi.

Next, we prove that CBCU can compute the complete CP .
We know that the edges of any convex Pareto curve (each
one of them is formed by taking two consecutive vertices
ordered by increasing delay) are in decreasing slope order.
This property also holds for the sequence of solutions S given
that (i) the greedy algorithm visits the strides after ordering
the corresponding edges ({vi,k}, {vi,k+1}) in decreasing slope
and (ii) in every iteration τ , it forms the solution sτ that
results in the maximum slope edge (sτ−1, sτ). This implies
that S is the convex pareto curve of S, since otherwise the
maximum slope edge would not have been chosen by the
algorithm.

The proof is completed by showing that the optimal solu-
tion belongs to S , i.e., the set of solutions returned by CBCU
when employed with input the sets Vi (endpoints). The lat-
ter is proved, in turn, if we show that the user satisfaction
for any point s in CP is not larger than the maximum of the
profit of two points sτ = (cτ , dτ) and sτ+1 = (cτ+1, dτ+1)
that satisfy the following properties: sτ and sτ+1 belong to
S and s lies on the line segment that passes through sτ and
sτ+1 (see also Fig. 2). Let u′ be the line segment that passes
through the points (dτ , u(dτ)) and (dτ+1, u(dτ+1)). Firstly,
the distance between u′ and s is not smaller than the dis-
tance between u and s, because u is convex. Secondly, the
distance between u′ and s is not larger the maximum of the
distances between points sτ and sτ+1 and u′: the maximum
user satisfaction corresponds to point sτ+1 if the slope of
the segment (sτ , sτ+1) is steeper than the slope of u′, and
to point sτ , otherwise. This completes the proof.

Corollary 1. The complexity of CBCU is in the worst

case O(
∑N

i=1
Vi).

Inputs
li,j : providers’ bid functions per stride
u: user trade-off function

Outputs
s: c⋆ +Nǫ′ or (1 + ǫ)c⋆ +Nǫ′ approximate solution.

1: {Start of bid sampling}
2: Compute the Pareto curve Pi of each stride i;
3: In each stride i sample along cost with fixed step ǫ′;

4: Let cǫ
′

i,1, c
ǫ′

i,2, . . ., c
ǫ′

i,k be the positions along the cost
axis that are considered.

5: for all cǫ
′

i,k do

6: Compute the delay dǫ
′

i,k = P−1
i (cǫ

′

i,k);

7: Form the bid pǫ
′

i,k = (dǫ
′

i,k, c
ǫ′

i,k); {Employing the
above steps we collect Ci/ǫ samples per stride,
where Ci is the maximum cost in stride i.}

8: end for
9: {End of bid sampling}
10: Employ the pseudopolynomial DP or the polynomial

algorithm of [5]; {Let S be the returned solutions
(each one of which belongs to the c⋆ +Nǫ′ or
(1 + ǫ)c⋆ +Nǫ′ Pareto curve of S.)}

11: return the solution s ∈ S that maximizes Eq.(1);

Figure 3: The steps of CBNU and DP algorithms.

Proof. In the worst case, the greedy algorithm may visit
exhaustively each set Vi. This may happen when, in every
iteration, the algorithm chooses bids from different strides.
Note that

∑N

i=1
Vi = O(

∑N

i=1

∑M

j=1
mi,j)

5. NON-CONVEX USER FUNCTIONS
In the case of non-convex budget functions, CBCU cannot

be applied, because it considers only points on the convex
pareto curve, which is suboptimal. The methods in [5] can-
not be directly applied either, because, in our case, the bids
are continuous (i.e., there is an infinite number of points
to consider). Therefore, our contrinution is that we pro-
pose a sampling algorithm that serves as the preliminary
step for computing approximate Pareto curves (and conse-
quently, approximate solutions). It results in solutions with
approximation errors c⋆ +Nǫ′ or (1+ ǫ)c⋆ +Nǫ′ when com-
bined with the pseudopolynomial or the ǫ-approximation
algorithm presented in [5], respectively. We will use the
acronyms CBNU (from Continuous Bid Non-convex User
function) and DP (from Dynamic Programming) to refer to
the combination of the proposed sampling algorithm with
the ǫ-approximation and the pseudopolynomial algorithms
of [5], respectively. We further assume that that the maxi-
mum slope of all piecewise linear bid functions is λmax.

The steps of the proposed algorithms are shown in Fig.
3. The Pareto curve Pi of each stride (line 2) is computed
in two steps. First, we form the set Ui by selecting the
non-dominated points from Ii and all the endpoints of that
stride. Ii is the set of points where the piecewise linear
functions li,j intersect. The points in Ui are then sorted in
increasing delay order. Second, we check if any such pair
(ui,k, ui,k+1), where ui,k, ui,k+1 ∈ Ui, is connected through
(a part of) any li,j . In that case, the whole set of points lying
on (ui,k, ui,k+1) belongs to Pi. During this process, the size

of the set ∆ of the sampled points is equal to
∑N

i=1
Ciǫ

′,

which is pseudopolynomial.
We prove the validity and the complexity of CBNU and

DP through a sequence of lemmas. Our primary concern is
the error induced by this sampling process, as well as how
this process affects the time and space complexity of the
algorithm.

Lemma 1. The error with respect to cost induced by the

sampling process of the pareto fronts of the strides is additive

and equal to Nǫ′/2, where ǫ′ is the sampling step and N is

the number of strides.
Proof. Since the sampling step is ǫ′, this means that the

choice for the optimal solution for S with respect to cost for
each stride is at most ǫ′/2 away from the optimal solution
with respect to the continuous space. As a result, we get a
total of Nǫ′/2 additive error.

This practically means that the cost of a solution returned
by DP with respect to the optimal is c⋆ + Nǫ′. CBNU re-
quires the existence of a delay unit. To ensure this, we make
use of the maximum slope λmax for the piecewise linear func-
tions per stride.

Lemma 2. The delay unit for ∆ is ǫ′

λmax
.

Proof. Since the maximum slope is λmax we get that for
cost change equal to ǫ′ the minimum delay change is equal

to ǫ′

λmax
because of the linearity of the bid functions.

Based on these observations we can now state the main
theorem of this section.

Theorem 2. The CBNU algorithm can compute an ap-

proximate solution with cost (1 + ǫ)c⋆ + Nǫ′ while the time

complexity is O(λmaxN|∆|
ǫǫ′

)
Proof. The error bound is directly derived by Lemma 1

and the approximate algorithm in [5]. The time complexity
is also derived from the complexity of the approximation
scheme in [5] and the fact that the number of generated

points in ∆ is
∑N

i=1
Ciǫ

′.

Generic functions. The above discussion can be ex-
tended also to arbitrary continuous functions for bids by
the cloud provides. The only change is that λmax is the
maximum gradient of these functions; the gradient is given
by the first derivative.

Stepwise functions. When the bids of the cloud providers
conform to a stepwise function, then, the leftmost endpoint
of each step segment dominates all the other points of that
segment, because it corresponds to the same delay with lower
cost. Consequently, we can discard all the other points, and
the problem is reduced to a problem where all bids per stride
are points. As such, the solutions in [5] apply.

Furthermore, if u is stepwise, the following theorem holds,
according to which it is adequate to build the minimum cost
plans with total delay equal to the delay of the rightmost
endpoints of the step segments in u.

Theorem 3. If the user budget function u is stepwise,

then we have to search for the optimal solution only at the

rightmost endpoints of the step segments.

Proof. Let (d, u(d)) be the rightmost point of a step
segment and (d′, u(d′) = u(d)), d′ ≤ d, be another point
lying on the same step. Since for two plans s and s′ of
the Pareto curve with total delay d and d′, respectively, the
cost of s is not higher than the cost of s′, then the distance
between the cost of plan s and u(d) is not lower than the
distance between the cost of plan s′ and u(d).

Max delay \ Alg. DP CBNU0.05 CBNU0.5 G−MPT G−MPM SA−MPT

N = 2

500 1 0.99 0.78 0.97 0.53 0.99
1000 1 0.98 0.61 0.96 0.45 0.99
10000 1 0.97 0.96 0.90 0.60 0.97
100000 1 0.92 0.90 0.70 0.90 0.91

N = 5

500 1 0.96 0.82 0.84 0.70 0.70
1000 1 0.91 0.80 0.66 0.52 0.72
10000 1 0.84 0.75 0.28 0.67 0.66
100000 1 0.88 0.97 0.24 0.34 0.52

N = 10

500 1 0.88 0.99 0.20 0.67 0.74
1000 1 0.87 0.53 0.17 0.80 0.29
10000 1 0.82 0.60 0.07 0.40 0.42
100000 1 0.83 0.70 0.05 0.20 0.30

N = 20

500 1 0.95 0.21 0.14 0.23 0.23
1000 1 0.85 0.67 0.27 0.21 0.21
10000 1 0.84 0.77 0.09 0.12 0.06
100000 1 0.83 0.63 0.22 0.18 0.12

N = 50

500 1 0.86 0.86 0.09 0.06 0.10
1000 1 0.91 0.54 0.42 0.46 0.38
10000 1 0.90 0.70 0.18 0.20 0.37
100000 1 0.92 0.49 0.18 0.23 0.30

Table 2: Normalized mean user satisfaction.

6. EVALUATION
In this section, we experimentally explore the performance

and efficiency of CBNU and DP for non-convex budget func-
tions; for convex budget functions CBCU is always opti-
mal and particularly inexpensive. Performance relates to
the magnitude of user satisfaction, while efficiency is eval-
uated by observing the running time spent to reach a so-
lution. We compare both CBNU and DP with state-of-
the-art algorithms that have been proposed in the litera-
ture for other multi-objective scheduling problems; these are
G−MPT, G−MPM and SA−MPT [3]. In contrast to our
work, their rationale is to employ single-criterion heuristics.
G−MPT and G−MPM return the minimum delay and min-
imum cost solution, respectively. SA−MPT performs bid
selection employing the simulated annealing meta-heuristic.

The experimental setting is as follows. We consider data
flows with N = {2, 5, 10, 20, 50} strides. The maximum
delay of each li,j may be up to 0.5K, 1K, 10K or 100K
time units, while the maximum cost is up to 0.3K, 0.4K,
0.6K, 1K, 5K or 50K cost units. To allow a fair compari-
son of the techniques, the bid line segments do not domi-
nate each other regardless of whether they are provided by
one or multiple cloud providers. The length of each line
segment is randomly selected from the following intervals
(in time units): [10, 60], [10, 100], [10, 200], [10, 500] and
[10, 1000] (and the maximum slope λmax 0.02, 0.04, 0.08,
0.14 or 0.20, respectively). I.e., for each possible assignment
of N , we produce 120 test cases. Regarding the user func-
tion u, its maximum delay (cost) is N times the maximum
delay (cost) of li,j . The maximum slope of each piece of u
is {0.20, 0.45, 0.70, 1.4, 3.4, 6.8}. Overall, for each value of
N we examine 720 combinations of user and bid functions.
In order to evaluate the impact of the approximation fac-
tor ǫ on the running time and performance of CBNU, we
conduct experiments with ǫ = 0.05 (CBNU0.05) and ǫ = 0.5
(CBNU0.5). The sampling step ǫ′ for DP and CBNU is fixed
to ǫ′ = 1 unit. The experiments are performed on a 40 core
Linux machine with 1TB memory, but each algorithm runs
as a single thread.

Tables 2 and 3 show the impact of the total number of
strides and the maximum delay on the performance and run-
ning time of DP, CBNU0.05, CBNU0.5, G−MPT, G−MPM,
SA−MPT algorithms, respectively. In both tables the val-
ues are normalized according to the behaviour of DP, which

Max delay \ Alg. DP CBNU0.05 CBNU0.5 G−MPT G−MPM SA−MPT

N = 2

500 1 12.500 0.990 10−8 10−8 6.250

1000 1 8.333 0.800 10−8 10−8 3.125

10000 1 5.263 0.625 10−8 10−8 0.338

100000 1 4.167 0.572 10−8 10−8 0.040
N = 5

500 1 4.297 0.538 10−8 10−8 0.046

1000 1 4.762 0.220 10−8 10−8 0.800

10000 1 1.639 0.152 10−8 10−8 0.103

100000 1 1.010 0.107 10−8 10−8 0.016
N = 10

500 1 8.333 0.147 10−8 10−8 0.633

1000 1 4.348 0.112 10−8 10−8 0.356

10000 1 0.935 0.067 10−8 10−8 0.045

100000 1 0.513 0.055 10−8 10−8 0.012
N = 20

500 1 10.000 0.107 10−8 10−8 0.337

1000 1 4.762 0.069 10−8 10−8 0.181

10000 1 0.606 0.032 10−8 10−8 0.022

100000 1 0.493 0.028 10−8 10−8 0.016
N = 50

500 1 12.500 0.093 10−8 10−8 0.132

1000 1 1.333 0.052 10−8 10−8 0.022

10000 1 1.449 0.017 10−8 10−8 0.017

100000 1 1.786 0.014 10−8 10−8 0.009

Table 3: Normalized mean running times.

has the minimum approximation error. Table 2 shows that
for flows with a few strides, we can build efficient solu-
tions with heuristic single-criterion algorithms. If addition-
ally, the maximum delay is small, SA−MPT’s performance
degradation is up to 3% only. However, DP can yield an
order of magnitude increase in the user satisfaction com-
pared to any heuristic solution, if the number of strides
increases. Compared to CBNU0.5, the increase is up to 5
times, whereas CBNU0.05 leads to satisfaction degradation
between 1% and 18%.

Regarding the running times (see Table 3), both G−MPT
and G−MPM are several orders of magnitude faster than
DP, since they simply select the minimum delay and mini-
mum cost bids from each stride. Also, CBNU0.05 may have
higher running time than DP in practice. This is due to
the bid scaling step that is within CBNU, as explained in
[5], which incurs significant overhead. Finally, CBNU0.5

and SA−MPT have approximately two orders of magnitude
lower running times than DP for large numbers of strides.
In absolute times, DP runs in the order of milliseconds for
N = 2, up to more than an hour for N = 50. This time
depends also on the maximum delay; if it is up to 1000 time
units, which seems to be a realistic option, DP’s running
time is a few dozens of seconds even for 20 strides, and a
few minutes for large flows of 50 strides.

In summary, the experiments above indicate that heuris-
tic solutions can reach efficient solutions only for very small
flows. DP outperforms CBNU0.05 both in terms of perfor-
mance and running time. Finally, for large flows and large
maximum delays, where DP’s optimization overhead is sig-
nificant, CBNU0.5 provides a good trade-off between perfor-
mance and running time.

7. RELATED WORK
Kllapi et al. have studied the problem of cloud resource

allocation under response time and monetary cost tradeoffs
and have proposed the G−MPT, G−MPM and SA−MPT
algorithms [3]. The two main differences from our work
is that, first, their proposed heuristic algorithm performs
single-criterion optimization, in contrast to our algorithms
which optimize accounting for both criteria. Second, the re-
source pricing scheme differs to ours; although in [3] the re-
sources have different processing/storage capabilities, their

usage is charged uniformly, that is, each resource is charged
based on the time it is used, while the monetary cost that
must be paid for a specific time period is the same for all
resources. As such, the solutions cannot extend to a multi-
cloud setting.

Our work also relates to the area of utility-driven resource
allocation. Depending on the utility functions, the objective
may be to maximize the profit (e.g., [4], [1]) or the user satis-
faction (e.g., [2]). Similarly to [3], the major difference from
our work is that there are no multiple resource providers
and both the monetary cost and the amount of allocated re-
sources are a linear function of the time period during which
the resources are occupied.

8. CONCLUSIONS
In this work, we provide solutions to the problem of al-

locating strides of data flows to cloud providers in order
to maximize user satisfaction assuming that each provider
makes a piece-wise linear continuous bid in the time delay -
cost space. To this end, we propose algorithms that either
compute the optimal trade-off, or provide an approximate
solution with bounded relative error. Our experiments show
that we can increase user satisfaction by up to an order of
magnitude compared to existing heuristic solutions. Note,
that our solutions also apply to the problem of profit max-
imization, if we assume that a cloud broker acts on behalf
of a federation of providers and the user input describes the
final amount to be paid by the user for different time delays.
A main direction for future work is to consider the cost of
shipping intermediate results across strides.

Acknowledgments. This research has been co-financed by
the European Union (European Social Fund - ESF) and
Greek national funds through the Operational Program ”Ed-
ucation and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program:
Thales. Investing in knowledge society through the Euro-
pean Social Fund.

9. REFERENCES
[1] G. Feng, S. Garg, R. Buyya, and W. Li. Revenue

maximization using adaptive resource provisioning in
cloud computing environments. In GRID, pages
192–200, 2012.

[2] J. P. Hansen, S. Ghosh, R. Rajkumar, and J. P.
Lehoczky. Resource management of highly configurable
tasks. In IPDPS, 2004.

[3] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and
Y. Ioannidis. Schedule optimization for data processing
flows on the cloud. In SIGMOD, pages 289–300, 2011.

[4] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou.
Profit-driven scheduling for cloud services with data
access awareness. Journal of Parallel and Distributed

Computing, 72(4):591–602, 2012.

[5] C. H. Papadimitriou and M. Yannakakis. Multiobjective
query optimization. In PODS, pages 52–59, 2001.

[6] A. Simitsis, K. Wilkinson, M. Castellanos, and
U. Dayal. Optimizing analytic data flows for multiple
execution engines. In SIGMOD, pages 829–840, 2012.

[7] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: a
wide-area distributed database system. The VLDB

Journal, 5(1), 1996.

