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Topology control algorithms
for wireless sensor networks: A critical survey

Alexis Papadimitriou and Dimitrios Katsaros and Yannis Manolopoulos

Abstract— In a densely deployed wireless sensor network, a
single node has many neighboring nodes with which direct
communication would be possible when using sufficiently large
transmission power. This is, however, not beneficial; high trans-
mission power requires lots of energy, many neighbors are a
burden for a MAC protocol, and routing protocols suffer from
volatility in the network when nodes move around. To overcome
these problem topolgy control can be applied. The idea is to
deliberately restrict the set of nodes that are considered neighbors
of a given node. This article surveys the most popular and
efficient topology control algorithms for wireless ad hoc sensor
networks.

I. I NTRODUCTION

The rapid technological advances in low-power hardware
design have enabled the development of tiny battery-powered
sensor nodes which are able to compute, sense physical
“parameters” and communicate with each other. A wireless
sensor network (WSN) is a network of large numbers of
sensors nodes, where each node is equipped with limited on-
board processing, storage and radio capabilities [1]. Sensor
nodes are quasi stationary, densely deployed and with limited
capabilities. Nodes sense and send their signals towards a
data center which is called “information sink”. The design of
protocols and applications for such networks has to be energy
aware in order to prolong the lifetime of the network because
it is quite difficult to recharge node batteries. Additionally,
it has to take into account the multi-hop communication
nature. Communication in a WSN between any two nodes
that are out of one another’s transmission range is achieved
through intermediate nodes, which relay messages to set up a
communication channel between the two nodes.

One typical characteristic of ad hoc wireless sensor net-
works is the possibility of deploying many nodes in a relatively
small area. While a dense deployment offers advantages such
as sufficient coverage control, there are also disadvantages
due to the large number of nodes. Many nodes interfere with
each other, there are a lot of routes, nodes might use large
transmission power to send packets to relatively remote sensor
nodes, and so on.

Many of these problems can be alleviated bytopology con-
trol techniques; instead of using the possible connectivity of
a network to its maximum possible extent, a deliberate choice
is made to restrict the topology of the network. Topology
control for ad hoc networks aims to achieve network-wide
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or session-specific objectives, such as reduced interference,
reduced energy consumption, and increased network capacity,
while maintaining network connectivity.

II. PHYSICAL TOPOLOGY CONTROL

DIMITRIS-THA TO PROSESO EGO SIMERA.

III. G RAPH-BASED TOPOLOGY CONTROL

Sparsing a topology can be efficiently done locally if
information about distances between nodes and their relative
positions is available. Several constructions for such proximity
graphs exist with different properties. In the next subsec-
tions, we describe the Relative Neighborhood Graph (RNG),
Grabriel Graph (GG), and Localized Minimum Spanning Tree
(LMST).

A. Relative Neighborhood Graph

The relative neighborhood graph (RNG) [2] of a point set
is a straight line graph that connects two points from the point
set if and only if there is no other point in the set that is closer
to both points than they are to each other. A triangu-lation of
a point set is a maximal set of nonintersect- ing line segments
(called edges) with vertices in the point set.

The relative neighborhood graph of a graph G = (V, E),
denoted by RNG(G), is the set of all edges uvε E such that
there is no vertex or pointw whereuw ε E, wv ε E and
||uw|| < ||uv|| and ||wv|| < ||uv||.

u v

w

Fig. 1. Construction of RNG: Shaded region must not contain another node
for two nodesu andv to be connected.

B. Gabriel Graph

Gabriel Graph has been introduced by Gabriel and Sokal
in [3]. Formally, given a graphG = 〈V,E〉 and two vertices
v1 and v2 in V , we say thatv1 and v2 are adjacent if the
closed disc of diameterv1v2 does not contain other vertices
of V . In the context of sensor networks, we extend the basic
adjacency concept above and we say that a sensor nodesi
is connectedwith a sensor nodesj , who lies within thesi’s
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transmission range, if there not exist another nodesk which
is contained by the closed disc of diametersisj . This simple-
yet-effective method is used by algorithm GG to find logical
neighbors of a given sensor node.

To depict GG’s distributed operation, the logical neighbors
of a given sensor node are found according to the following
steps:

1) each sensor node broadcasts its location – at the end,
every node in the sensor network knows its neighbors
and their locations;

2) each sensor nodesi determines its logical neighbor
set Li by computing the closed discs of diameters
equal to the distance between the location ofsi and
each other physical node belonging to thesi’s physical
neighborhood setPi – for each physical neighborsj
in Pi, if the disc of diametersisj does not contain
other physical neighbors ofPi thensj becomes a logical
neighbor ofsi.

C. Localized Minimum Spanning Tree

Li et al. [4] proposed the algorithmLocal Minimum Span-
ning Tree(LMST), which computes a “power-reduced” net-
work topology by constructing a minimum spanning tree over
the network in a fully-distributed manner. The aim of this
approach relies in the evidence that the power-reduced network
is less energy-consuming than the original network.

IV. H IERARCHICAL NETWORKS

The clustering formation procedure involves the election
of a cluster head(CH) node in each cluster, in order to
coordinate the cluster nodes. Cluster head is responsible for
getting the measured values from its cluster’s nodes, aggregate
them and send the aggregates to the sink(s) through other
cluster heads. Several studies [5], [6] indicate that clustering
increases thenetwork lifetime. Although the definition of the
network lifetime depends on the applications’ semantics, a
widely accepted definition is the time until the first/last node
of the network depletes its energy [7].

A. Hierarchical networks by dominating sets

The network node clustering technique has been widely
investigated in the context of mobile ad hoc networks [8],
[9], [10], [11], [12], [13], [14], [7]. The proposed protocols
are distributed, localized and select the most significant nodes
as cluster heads. In order to achieve this they compute a dom-
inating set (DS). In [9], the author assumes quasi-stationary
nodes with real-valued weights, while the Weighted Clustering
Algorithm (WCA [11]) combines several properties in one
parameter that is used for clustering. With Max-Min D-cluster,
the authors [8] propose a new distributed cluster head election
procedure, where no node is more than d (d is a value selected
for the heuristic) hops away from the CH.

Wu & Li [14] proposed a distributed algorithm to find a
connected dominating set (CDS) in order to design efficient
routing schemes for a MANET. Every node v exchange its
neighbor list with all its neighbors. A node set itself as a

dominating node if it has at least two unconnected neighbors.
In order to reduce the size of a CDS, some extension rules
are proposed by the authors. According to first rule, a node
deletes itself from the CDS when its close neighbor set
(includes all its direct neighbors as well as itself) is completely
included in the neighbor set of a neighboring dominating
node and it has smaller ID than the neighboring dominating
node. According to second rule, a node deletes itself from
the CDS when its open neighbor set (includes all its direct
neighbors) is completely included in the neighbor sets of
a two connected neighboring dominating nodes and has the
smallest ID. Stojmenovic [13] proposed an algorithm for
improving the performance of the protocol that has been
proposed in [14]. Nodes classified as follows. A node is called
intermediate if there are two neighbors that are not directly
connected. Intergateway node is called a node that is not
deleted from dominating nodes after applying Rule 1 from
Wu & Li protocol, while gateway is called a node that is
not deleted after applying Rule 2. The author replaced node
IDs with a record that includes node’s degree and node’s
x,y coordinates. The only nodes that allowed to retransmit a
message are intergateway and gateway nodes. Finally, before
a node rebroadcast a message it computes the number of
one-hop neighbors that have been covered from the previous
rebroadcasting. In case there are uncovered neighbors, then
proceed broadcasting.

A high degree of localization is presented by the protocol
proposed in [12]. The authors focus on reduction of the
duplicate message retransmissions while the messages are
being forwarded to the destination nodes, in order to achieve
efficient flooding in mobile wireless networks. The relay points
of a given source or retransmitting nodeu are defined by the
authors of [12] as follows. A node is assumed “covered” if it
received a message originated atu either directly or through
retransmissions by other nodes. Relay points ofu are one-
hop neighbors ofu that cover all the two-hop neighbors of
u. The proposed algorithm includes three phases. Initially,
each nodeu starts with an empty multipoint relay set. In the
second phase, nodeu selects as multipoint relays those one-
hop neighbors that are unique neighbors of some nodes inu’s
two-hop neighborhood and add them in multipoint relay set.
In the second phase, while there are uncovered nodes from
the multipoint relay set inu’s two-hop neighborhood, then for
each one-hop neighbor not included in multipoint relay set
compute the number of two-hop neighbors that it covers and
are uncovered yet. Finally, add in multipoint relay set the node
with the biggest number.

B. Comparison of dominating sets and LMST

In this subsection we perform a comparison of the main
dominating set-based clustering topology control algorithms
and of the LMST, along with a dynamic dominating set-
based topology control algorithm, namelyNIDD. Firstly, we
present the primitive for estimating the importance of a sensor
node in participating in the CDS. The construction of the CDS
is done “on-the-fly”, i.e., after the broadcast of the original
message by the source sensor node, and it is not calculated in
advance; so we term this as thedynamic CDS.
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1) Measuring sensor node importance:An ad hoc WSN
is abstracted as a graphG(V,E), whereV is the set of its
nodes, andE is the set of radio connections. An edgee =
(u, v), u, v ∈ E exists if and only ifu is in the transmission
range of v and vice versa. All links are bidirectional. The
network is assumed to be in a connected state. The set of
neighbors of a nodev is represented byN1(v), i.e.,N1(v) =
{u : (v, u) ∈ E}. The set of two-hop nodes of nodev, i.e., the
nodes which are the neighbors of nodev’s neighbors except for
the nodes that are the neighbors of nodev, is represented by
N2(v), i.e.,N2(v) = {w : (u,w) ∈ E, wherew 6= v andw /∈
N1 and (v, u) ∈ E}. We defineN12(v) asN12(v) = N1(v)∪
N2(v).

Definition 1 (Local network view w.r.t. nodev): The local
network view, denoted asLNv, of a graphG(V,E) w.r.t. a
nodev ∈ V is the induced subgraphof G associated with the
set of vertices inN12(v).

A path from u ∈ V to w ∈ V has the common meaning
of an alternating sequence of vertices and edges fromu to
w. The length of a path is the number of intervening edges.
We denote bydG(u,w) the distancebetweenu andw, i.e.,
the minimum length of any path connectingu and w in G,
where by definitiondG(v, v) = 0, ∀v ∈ V and dG(u,w) =
dG(w, u), ∀u,w ∈ V . Note that the distance is not related to
network link costs (e.g., latency); it is a purely abstract metric.

Let σuw = σwu denote the number of shortest paths from
u ∈ V to w ∈ V (by definition,σuu = 0 ). Let σuw(v) denote
the number of shortest paths fromu to w that some vertex
v ∈ V lies on. Then, we define thenode importanceindex
NI(v) of a vertexv as:

Definition 2: TheNI(v) of a vertexv is equal to:

NI(v) =
∑

u6=v 6=w∈V

σuw(v)

σuw

. (1)

Large values for theNI(v) indicate thatv can reach other
nodes on relatively short paths, or thatv lies on considerable
fractions of shortest paths connecting other nodes (Figure2).
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Fig. 2. Calculation ofNI for two sample graphs. The numbers in
parentheses denote theNI index of the respective node.

2) The distributed broadcast protocol:Exploiting the
NI(·) of each sensor, we design a broadcasting protocol to
disseminate messages over the entire sensor network; we name
this protocol asNIDD, after the initials of the words Node
Importance Data Dissemination protocol.

STEP 1. Assuming that nodev has just gathered the
collection of its neighbors and their neighbors by “Hello”
messages, it calculates theNI(·) for all sensors over its 2-hop
neighborhood graphLNv. ←֓

STEP 2.Then, it sorts its neighbors in descending value of
theirNIv(·) index. ←֓

STEP 3. Indicate which neighbors are covered by the
retransmission ofv itself. ←֓

If node v does not have links to all the other nodes of the
sensor network, then there exists at least on nodeu, such that
u ∈ N12(v), but u /∈ N1(v). Therefore, broadcast byv does
not cover its 2-hop neighborhood. Ifv is the message source,
it executes STEP 4a, whereas ifv was designated to broadcast,
it executes STEP 4b.

STEP 4a. While its 2-hop neighborhood is not covered,
examine one-by-one the members of the list obtained in
STEP 2. If the currently examined 1-hop neighboru covers at
least one (not covered yet) 2-hop neighbor, then designate the
1-hop neighbor as a forwarding node. Keep examining the next
1-hop neighbor of the list, till the neighborhood is covered.←֓

STEP 4b. If there are any 1-hop neighbors which have
already broadcast the message, then find which part of the
2-hop neighborhood is not covered yet. While this part of
the 2-hop heighborhood is not covered, examine one-by-one
the members of the list obtained in STEP 2 (skipping any
nodes that have already broadcast). If the currently examined
1-hop neighboru covers at least one (not covered yet) 2-hop
neighbor, then designate the 1-hop neighbor as a forwarding
node. Keep examining the next 1-hop neighbor of the list, till
the neighborhood is covered. ←֓

STEP 5. Retransmit the message, augmented by the list of
neighbors designated as forwarding nodes. ←֓

It is relatively easy to prove that:
Proposition 1: The broadcasting nodes form a CDS.
3) Simulation results:We performed simulation experi-

ments for the protocols using the size of the generated CDS as
a measure of the communication complexity. We believe this
metric is representative of the latency metric, since a smaller
dominating set implies less broadcasting nodes, thus smaller
probability of collisions, shorter message routes and smaller
processing and communication times. Besides this metric has
been used in earlier studies as well, e.g., [14], [15], [16].We
assume that we are able to determine an assignment of time
slots to the sensor nodes such that no interference occurs, i.e.,
no two nodes transmit in the same time slot. Such a scheme
can be found using the D2-coloring algorithm from [17].

We created network topologies, modelling features such as
the existence and “strength” of clusters, density of nodes etc.
We observed that the topologies generated with procedures
like that in [13], or with procedures that distribute nodes
randomly in the plane with random velocities and speeds,
are alike the Random Graph Model of Erdös-Ŕenyi. Although
this model is quite useful, we argue that it is not suitable
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for ad hoc network graphs, because these graphs are not
formed uniformly at random, but present agroup/cluster-based
behaviour. Thus, we had to resort to richer graph models that
model the existence of clusters, like that of Pennock [18].

The parameters of the network topology generator are:

• gn: the number of network nodes (default value:100).
• gc: the number of network clusters (default value:7).
• gd (density): a float depicting the fraction of edges

relative to the edges of a complete graph withgn nodes;
small values ofgd simulate a small transmission radius.
gd controls the average node degree (default value:10).

• ga ∈ [0.5 . . . 0.99] (assortativity): a float depicting the
fraction of edges which exist inside the clusters, relative
to the total number of edges present in the graph (default
value: 70%). Large values (> 85%) simulate clusters
with very dense linkage inside them and only a few
links toward other clusters, whereas values around0.50
completely “blur” the existence of clusters.

As competing methods, we implemented two baseline
schemes [14], i.e., the basic scheme without the two rules
(Rule 1 and Rule 2) indicated asWL and a scheme in-
corporating these rules (WL 1+2). We also implemented the
MultiPoint Relaying method [15] (MPR), and its superior
extension [16] (AHBP). Finally, we implemented a high per-
formance broadcasting algorithm [13] (SSZ), and the localized
minimum spanning tree broadcasting algorithm [4] (LMST).
All protocols use 2-hop information, except fromSSZand
LMST.

Impact of the number of nodes. We can easily figure
out (Figure 3) the linear dependence of the CDS size on
the network size and the efficiency of theNIDD protocol,
which always performs from 4% to 10% better than the second
best performing algorithm no matter what the scale of the
network is (in terms of number of nodes). Moreover, the
performance gap betweenNIDD and its competitors widens
as the network size grows.
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Impact of the number of clusters.The general trend (see
Figure 4) is that the larger the number of clusters is the smaller
the generated CDS is. This trend is followed by all methods
and it is explained by the fact that a large number of cluster
implies smaller clusters with more dense linkage between the

nodes of the clusters (since the density and the assortativity
is the same).NIDD is the most efficient algorithm and it is
not affected significantly by the number of clusters.
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Impact of the strength of clusters. We evaluated the
impact of the clusters’ “strength” (assortativity) on the size
of the CDS (Figure 5).NIDD exhibits an immunity on this
parameter, which is a desirable feature for a broadcasting
algorithm, since (ideally) we are interested in making locally
optimal decisions, irrespectively of the existence or not of
clusters. For the degenerate casega = 0.90,NIDD as well as
the rest of the protocols take advantage of the well-clustered
network in creating a very small forward-node set.
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C. Hierarchical networks by clustering

Apart from this family of algorithms, a second family
provided mechanisms to address the energy consumption prob-
lem due to the repetitive communication by the same nodes,
i.e., the cluster heads. This family of protocols essentially
proposed ways to “rotate” the role of cluster head among
nodes of clusters, e.g., the SPAN [19], the LEACH [5], and
the HEED [6]. The proposed methods use the residual energy
of each node in order to direct its decision about whether it
will elect itself as a cluster head node or not. However, this
family’s methods ignore topological features of the nodes.

LEACH [5] is an energy efficient protocol designed for
sensor networks with continuous data delivery mechanism
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and no mobility. Sensor nodes elect themselves as cluster
heads with some probability and broadcast their decisions.
The remaining nodes join a cluster, of which the cluster head
is closest in terms of the communication energy cost. Then
the role of cluster head is periodically rotated among the
nodes to balance energy consumption, since cluster heads have
the extra burden of performing a long-range transmission to
a distant sink node. Thus, LEACH counteracts the problem
of non-uniform energy drainage by role rotation. HEED [6]
introduces a variable known as cluster radius which defines the
transmission power to be used for intracluster broadcast. The
initial probability for each node to become a tentative cluster
head depends on its residual energy, and final cluster heads
are selected according to the intracluster communication cost.
HEED relies on the assumption that cluster heads can commu-
nicate with each other and form a connected graph; realizing
this assumption in practical deployments could be tricky.
In [20], the authors use LEACH-like clustering and multi-
hop forwarding for both intracluster and intercluster commu-
nication. They provide also methods in order to compute the
optimal values of the algorithm parameters a priori. Chang and
Tassiulas [21] proposed methods in order to maximize overall
network lifetime by distributing energy consumption fairly. In
this protocol, nodes adjust their transmission power levels and
select routes to optimize performance. In [22], a multilevel
hierarchical structure is proposed where cluster heads are
selected according to their residual energy. Buttyan et al.[23]
propose a Position-based Aggregator Node Election (PANEL)
in Wireless Sensor Networks. PANEL is an energy-efficient
protocol that ensures load balancing in the sense that each node
is elected aggregator (CH) nearly equally frequently. However,
PANEL uses the geographical position information of the
nodes to determine which of them should be the aggregators,
which is a restriction in WSNs, since the geographical position
is difficult to obtained without the use of GPS-like hardware
or central coordination.

In [24], the authors propose a new energy efficient clustering
approach (EECS) for single-hop wireless sensor networks,
which is more suitable for the periodical data gathering
applications. EECS extends LEACH algorithm by dynamic
sizing of clusters based on cluster distance from the base
station. In the cluster head election phase, unlike LEACH,
the cluster head is elected by localized competition and itsno
iteration property makes it differ from HEED. This competi-
tion involves candidates broadcasting their residual energy to
neighboring candidates. If a given node does not find a node
with more residual energy, it becomes a cluster head. However,
EECS protocol does not consider the structural characteristics
of network topology and thus cluster heads elected based on
residual energy. The strategy proposed in [25] is not scalable as
it requires all nodes in the WSN to be in direct transmission
range of the base station. The authors proposed a strategy
to save energy in continuous data collection applications in
WSN by exploiting the spatiotemporal correlation. Thus, the
sink node partitions the sensor nodes with similar measured
values into clusters and the sensor nodes within a cluster are
scheduled to work alternatively in order to reduce energy dis-
sipation. Youssef et al. [26] proposed MOCA, a randomized,

distributed Multi-hop Overlapping Clustering Algorithm for
organizing the sensors into overlapping clusters. However, the
major goal of the clustering process is to ensure that each
node is either a cluster head or withink hops from at least
one cluster head, wherek is a preset cluster radius.

V. SNA-BASED APPROACHES TO TOPOLOGY CONTROL

The area of Social Network Analysis is a broad, diverse and
theoretically varied field, with a long and rich history. Infor-
mally, asocial networkis a collection of ‘actors’ (i.e., network
nodes), a set of relational information on pairs of actors (i.e.,
wireless links), and possible attributes of the actors and/or of
the links. The notion of a social network and the methods of
social network analysis (SNA) is a quite old discipline and they
have attracted significant interest initially from the social and
behavioral communities, later from the data mining, and only
recently from the networking community. This interest stems
from the focus of SNA to relationships among entities and
on the patterns and implications of these relationships. SNA
could be viewed as another network measurement task, while
the traditional tasks of network measurement deal with issues
such as traffic monitoring, latency, bandwidth, congestion. The
analysis of the ‘social’ aspects of a network is the study
and exploitation of the structural information present in the
network, such as existence and strength of communities, node
centralities, network robustness to node removal, topology
evolution over time, and so on.

A. Topology control with Edge Betweenness Centrality

During past years,vertex betweennesshas been studied in
the vest of a measure of the centrality and influence of nodes
in networks [27], [28]. Given a nodevi, vertex betweenness is
defined as the number of shortest paths between pairs of nodes
that run throughvi. Vertex betweenness is a measure of the
influence of a node over the information flow among nodes
of the network, especially in scenarios such that information
flowing over the target network primarily follows shortest
available paths.

In order to compute betweenness centrality, Brandes [29]
proposes an efficientbackwards algorithmwhich starts from
leaf nodes of a tree of shortest paths and progressively
accumulates the leaf-nodes’ betweenness values moving bask
towards the root node of the tree.

Girvan-Newman algorithm [30] extends the definition of be-
tweenness centrality from network vertices to network edges,
via introducing the concept ofEdge Betweenness(EB). Let
G = 〈V,E〉 be a connected undirected graph, andvi and vj
two nodes inG, respectively. Letσvivj

denote the number of
shortest paths between nodesvi and vj . Let σvivj

(e) denote
the number of shortest paths betweenvi and vj which go
through e ∈ E. Betweenness centrality of an edgee ∈ V ,
denoted byEB(e), is defined as follows:

EB(e) =
∑

viǫV

∑

vjǫV

σvivj
(e)

σvivj

(2)

In its original implementation [31], which focuses on un-
weighted, undirected networks, EB analysis makes use of
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algorithmBreadth-First Search(BFS). Girvan-Newman algo-
rithm [30] works in the opposite way. Instead of trying to
construct a measure that determines edges that are the “most
central” for network communities, it focuses on edges that are
the “least central” for network communities, i.e. edges that are
“most between” for network communities. Communities are
detected by progressively removing edges from the original
graph, rather than by adding the strongest edges to an initially
empty network. In our research, we do not use the centrality
measure to find communities but instead to select the most
important edges, energy-wise, to propagate messages.

Specifically, steps that are used to compute the edge be-
tweenness centrality index are the following:

1) compute shortest paths through the network by means
of Dijkstra’s algorithm [32];

2) for each edge, compute the edge betweenness centrality
index like in [31].

VI. D ISCUSSION

DIMITRIS-THA TO PROSTHEESO EGO SIMERA.
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