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Abstract 
This work introduces probabilistic model checking 

as a viable tool-assisted approach for systematically 
quantifying DoS security threats. The proposed 
analysis is based on a probabilistic attacker model 
implementing simultaneous N zombie participants, 
which subvert secure authentication features in 
communication protocols and electronic commerce 
systems. DoS threats are expressed as probabilistic 
reachability properties that are automatically verified 
through an appropriate Discrete Time Markov Chain 
representing the protocol participants and attacker 
models. The overall analysis takes place in a mature 
probabilistic model checking toolset called PRISM. We 
believe that the applied quantitative verification 
approach is a valuable means for comparing protocol 
implementations with alternative parameter choices, 
for optimal resistance to the analyzed threats. 
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1. Introduction 

 
Formal techniques for the analysis of security 
protocols assume the existence of an intruder model 
that allows studying the possibility of secrecy and 
authentication failures. All these approaches adopt the 
basic assumptions of the general Dolev and Yao 
intruder model [4] that are summarized as follows: (i) 
The encryption method used is unbreakable (ii) The 
intruder can prevent any message from reaching its 
destination and (iii) The intruder can create messages 
of his own. However, existing formal approaches focus 
only on secrecy and authentication guarantees and do 

not address the need for quantitative verification of 
potential availability threats. In this article, we review 
the few quantitative analyses found in the related 
bibliography and subsequently we introduce our own 
approach.  

Our proposal is based on a probabilistic attacker 
model that combines appropriate attack actions, which 
make it possible to reveal potential Denial of Service 
(DoS) threats. Moreover, the applied probabilistic 
analysis exploits pre-assigned cost values that quantify 
the resource expenditure for the associated operations. 
This allows comparing the total cost to the attacker 
against the cost to the legitimate participants in case of 
an existing DoS threat. Thus, it is possible to 
determine the minimum resource requirements for an 
attacker to accomplish the attack and this is useful for 
developing measures for optimal resistance to the 
analyzed threat. 

The DoS threat is expressed as a probabilistic 
reachability property that is automatically verified 
(according to [8] and [9]) with respect to an 
appropriate Discrete Time Marcov Chain (DTMC) 
representing the protocol participants and attacker 
models. The analysis takes place in a probabilistic 
model checking toolset called PRISM [13]. 

Our approach is described in terms of the performed 
analysis for the Host Identity Protocol (HIP) base-
exchange. We realized that an attacker model 
embedding three basic attack tactics [3] that 
successfully incarnate simultaneous N zombie 
participants breaks the employed DoS resistance 
mechanism. Appropriate queries expressed in 
Probabilistic Computation Tree Logic (PCTL) provide 
illuminating probabilistic estimates together with the 



attacker and protocol participants’ costs for the 
analyzed DoS threat. 

In section 2 we review the related work. Section 3 
provides a brief introduction to probabilistic model 
checking and defines the DoS resistance property, in 
terms of a general probabilistic attacker model. Section 
4 introduces the PRISM model for the used attacker. 
Section 5 provides a description of the HIP Base 
Exchange and outlines its implementation into the 
PRISM model checker. In section 6 we present the 
results of the performed PCTL queries that provide 
estimates for the analyzed DoS threat. We conclude 
with a summary of the overall analysis approach and a 
comment on its usability and its potential impact. 
 
2. Related Work 
 
The importance of enabling availability analysis for a 
given cryptographic protocol was first shown in [12]. 
In that work the author examines DoS in the context of 
the resource intensive task of authentication and 
develops a framework for weighting the cost to the 
defender against the cost to the attacker. 

Recently, the approach of [12] formed the basis for 
the analysis framework of [15] that according to the 
authors provides a more accurate representation of 
computational cost. However, quantitative evaluation 
takes place by simulation of the developed Timed 
Colored Petri Net model, without having exploited the 
formal analysis capabilities of the employed toolset. 

An interesting stochastic modelling and analysis 
approach for quantifying the availability of software 
systems under DoS threats is the one introduced in 
[10]. In that work, the authors formulate the analyzed 
system in terms of an appropriate semi-Markov 
process (SMP). The whole approach requires 
stochastic modeling and analysis competence, since it 
is not carried out within an automated analysis tool like 
PRISM. Furthermore, the performed system-level 
analysis does not take into account any resource 
expenditure for the considered states and thus it is not 
possible to evaluate the message processing costs for 
DoS threats upon a security protocol model. 

The most closely related work found in the 
bibliography is the one published in [1]. In that work, 
the authors specify in probabilistic rewriting logic a 
DoS resistant 3-way handshaking in TCP. In the 
VESTA toolset, the developed algebraic specification 
generates a timed probabilistic model, which is then 
analyzed by Monte Carlo simulation using a sequence 
of interrelated statistical hypothesis tests, to check on 
the generated sample if the quantitative property of 
interest is satisfied. This reflects the so-called 

statistical model checking approach. Compared to the 
probabilistic model checking analysis that is proposed 
in our work, this approach does not produce the same 
accurate results [14]. Moreover, the aforementioned 
analysis does not take into account message processing 
costs as we do and for this reason it is not possible to 
weight the cost to the honest participants against the 
cost to the attacker. For the resource intensive 
authentication features of modern security protocols 
this may be a significant analysis limitation. 

 
3. Preliminaries of Probabilistic Model 
Checking  
 
Probabilistic model checking is based on labelling 
transitions between model states with information 
about the likelihood that they will occur ([8], [9]). 

In the PRISM language, a probabilistic model is 
defined as a set of m modules M1,  . . ., Mm, where 
module Mi is a pair (Vari, Ci) with Vari a set of integer-
valued local variables with finite range and Ci a set of 
commands. We denote by Var the set of all local 
variables in the model, i.e. 
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Each variable v∈ Var has an initial value v . Each 
command c ∈ Ci takes the form (g, (λ1, u1), . . ., (λnc, 
unc)), comprising a guard g and a set of pairs (λj, uj) 
where λj ∈ IR > 0 and uj is an update for each 1 ≤ j ≤ 
nc. A guard g is a predicate over the set of all local 
variables Var and each update uj corresponds to one 
possible transition of module Mi. If Vari contains ni 
local variables v1, . . ., vni, then an update takes the 
form ( 1
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exprj is an expression in terms of the variables in Var. 
When in an update the values of some variables in Vari 
remain unchanged, the model description may omit 
this information. In a DTMC specification, the values 
λj determine the probability of the corresponding 
transition and for this reason λj ∈ (0, 1] for 1 ≤ j ≤ nc 
and 1
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Definition 1. A DTMC is a tuple (S, s , P, L) where:  
- S is a finite set of states 
- s  ∈ S is the initial state 
- P: S × S→[0, 1] is the transition probability 

matrix such that ∑ ∈
=

Ss
ssP

'
1)',(  for s∈ S 

- L: S → 2AP is a labelling function mapping 
states to sets of atomic propositions from a 
set AP with the properties of interest 

Terminating states are modelled by a single transition 
going back to the same state with probability 1.  



In order to be able to determine the probability that 
paths in a DTMC are taken, a probability measure 
Probs is formally defined (definition is omitted) on the 
set Paths of all infinite paths starting in state s ∈ S. In 
this way, it is possible to quantify the probability that a 
DTMC behaves in a specified fashion by identifying 
the set of paths which satisfy the property specification 
and assuming that this probability is measurable using 
the measure Probs. 

The DTMC model corresponding to a PRISM 
language description is constructed as the parallel 
composition of its modules by computing the reachable 
state space of the model and discarding any 
unreachable states ([8], [9]). In every state, there is a 
set of commands (belonging to any of the modules) 
which are enabled. The choice between which 
command is performed is probabilistic, with each 
enabled command selected with equal probability. 
PCTL property specifications [13] are checked by 
applying appropriate model checking algorithms on the 
model by induction over their syntax. The underlying 
computation in PRISM involves a combination of (i) 
Graph-theoretical algorithms, for reachability analysis 
and qualitative probabilistic model checking; (ii) 
Numerical computation (iterative solvers), for 
quantitative probabilistic model checking that in the 
case of a DTMC implies the solution of linear equation 
systems. 

 

Definition 2. The syntax of PCTL is as follows: 
Φ ::= true | α | ¬Φ | Φ ˄ Φ | P~p[φ], for state 
formulae and φ ::= ΧΦ | Φ U≤ k Φ, for path formulae 

that are evaluated over states and paths of a DTMC 
respectively, where α is an atomic proposition, ~ ∈ {<, 
≤, ≥, >}, p ∈ [0, 1] and k ∈ ℵ ∪ {∞}.  
 
To specify a property, we always use a state formula: 
path formulae only occur as the parameter of the P~p[⋅] 
operator. In a DTMC, a state s satisfies P~p[φ] if the 
probability of taking a path from s satisfying φ is in the 
interval specified by ~p. This is quantified by the 
probability measure Probs that is defined over Paths. 
As path formulae we allow the X (‘next’) and U≤ k 
(‘bounded until’ implying property compliance within 
k time-steps) operators which are standard in temporal 
logic. The unbounded until is obtained by taking k 
equal to ∞, i.e. Φ U Ψ = Φ U≤ ∞ Ψ. Path formulae may 
also contain the operators ◊ (eventually) and  
(always) in their bounded and unbounded variants: 
 P~p[◊≤ k Φ] ≡ P~p[true U≤ k Φ] 
 P~p[◊ Φ] ≡ P~p[true U≤ ∞ Φ] 
 P~p[ ≤ k Φ] ≡ P  ~ 1-p[◊≤ k ¬Φ] 
 P~p[  Φ] ≡ P  ~ 1-p[◊¬Φ] 

where < ≡ >, ≤ ≡ ≥, ≥ ≡ ≤ and > ≡ <. 
Apart from quantitative assertions, in PCTL we 

can also express properties which evaluate to a 
numerical value. These properties are specified in the 
form P=?[φ]. 

In addition to the aforementioned features, a reward 
structure for a DTMC allows the specification of two 
distinct types of rewards, namely state or cumulative 
rewards and transition or instantaneous rewards. Also, 
the logic PCTL is extended to allow specification of 
reward properties. In our problem, rewards represent 
costs, i.e. consumption of an exhaustible resource that 
depending on the modelled DoS threat it may be 
communication capacity (bandwidth), memory or 
processing power. 
 
4. The Probabilistic Attacker Model 
 
The strong assumptions of the typical Dolev - Yao 
attacker have been effective in the analysis of security 
guarantees that are formulated as safety properties 
(secrecy and authentication), but they are not entirely 
suitable for the analysis of security guarantees like 
DoS resistance that involves liveness [5]. A typical 
Dolev - Yao attacker has full control over the 
communication channels between the protocol 
participants and it is treated as a nondeterministic 
process that may attempt any possible attack. A 
protocol is considered secure if no possible 
interleaving of actions results in a security breach. 
However, the presence of non-determinism means that 
certain liveness properties cannot be established unless 
fairness is assumed. From this perspective, as far as 
fairness can be viewed as an abstraction of a 
probabilistic behaviour, it seems more natural to invest 
on a probabilistic model checking approach and to not 
adopt fairness assumptions, which are not valid for all 
attacker abilities considered in typical Dolev - Yao 
style analyses. Some other facts that make the use of 
probabilistic model checking a preferable choice are: 
• The requirement to model the ability of an attacker 

to send randomly chosen messages or to model 
some sophisticated (yet probabilistic polynomial-
time) computation to derive an attack from 
eavesdropped messages. 

• The need to model probabilistic selection of 
implementation parameters, whose values affect the 
protocol’s security. 

• The need to capture the DoS faithfully, i.e. in terms 
of relative probabilities of certain observations by 
the attacker that depend solely on potentially 
probabilistic behaviours of the protocol participants 
(like for example the probability for a participant to 



resubmit a service request that was previously 
dropped from the server’s queue). 

Our proposal for the DoS attacker model uses the 
open-ended attack tactics base we proposed in [3], 
from where the analyst selects the right set of abilities 
for his DoS problem. The selected attack actions are 
combined into a single PRISM module and the analyst 
assigns to the performed operations cost values that 
depend on the operation’s resource expenditure, as 
well as on some resource constraint for the attacker. A 
similar cost assignment approach is applied to the 
honest protocol participants. In all cases, the assigned 
values refer to the same exhaustible resource, which 
can be either, participants’ bandwidth (communication 
capacity), memory or processing power. 

A DoS attacker uses a fixed number N of 
compromised machines that are commonly called 
zombie machines, because they are identical to the 
machines used by honest protocol participants. The 
zombie participants create bogus protocol messages 
capable of tricking some honest protocol participant 
into fully expediting resources, before determining that 
the opened protocol sessions are bogus. Alternatively, 
instead of considering N zombie machines we may 
consider a powerful attacker with identity spoofing 
abilities that allow him to incarnate the collective 
behaviour of N zombie participants. We assume the 
same resource expenditure for the attacker and the 
honest participants for the same operations and we 
assign the corresponding costs by taking into account 
the resource constraints assumed for the modelled 
protocol participants.  

Definition 3. The DoS resistance property is defined 
as the low probability for an attacker representing the 
modelled DoS threat to eventually prevent - with 
disproportionaly low cost- honest participants from 
using the protocol’s services. 

In this sort of analysis it is very important to 
discover appropriate designs or parameter choices, 
such that every time a legitimate participant takes part 
in some action that requires the use of significant 
amount of resources, the attacker cannot fraudulently 
cause him to reach that step without spending a 
significant amount of its own resources. 

DoS protection is usually based on an appropriate 
cookie-based [7] or client puzzle mechanism [2], 
where a protocol participant passes a “cookie” (e.g. an 
unforgeable keyed hash value of the information 
identifying the connection) or a puzzle to another 
participant, in order to establish mutual trust, possibly 
in the form of some shared-secret. The idea is that the 
responder should remain stateless (protection against 
memory exhaustion) and refuse to perform expensive 

cryptographic operations (protection against 
processing power exhaustion), until it has verified the 
honesty of the initiator. In this setting, there are three 
key strategies by which an attacker can implement a 
DoS threat: 
• Counterfeiting: The attacker sends invalid cookies, 

puzzles or puzzle solutions. 
• Time Shifting: The attacker is prepared for an 

attack by computing fake shared secrets (either by 
solving puzzles or manipulating cookies), in order 
to expend them in a massive DoS attack. 

• Message replays: The attacker may send the same 
valid cookie or puzzle solution many times. 

The aforementioned strategies assume that the 
attacker model performs three basic operations, i.e. 
message interception, message projection and message 
concatenation, mentioned in decreasing order of 
processing demands. The analyst implements a DoS 
threat by selecting the right set of attack tactics 
(deflection, message integrity violation and straight 
replay) from the ones formalized by us in [3] and 
composes them into a single PRISM module with 
appropriate cost values for the performed operations. 

Figure 1 provides a high level view of the analyzed 
DoS threat upon the HIP base-exchange. The attacker 
(At) intercepts the message traffic between the initiator 
(I) and the responder (R) and alters the puzzle 
contained in msgR by simple message concatenations, 
in order to create N zombie messages that are 
subsequently sent to the initiator. The attack tactics 
used in the attacker model are the message integrity 
violation combined with multiple straight message 
replays. 
 

 
Figure 1. A DoS threat with message counterfeiting 

for N zombie participants 
 

5. The HIP base exchange 
 
The main goal of HIP [6] is the separation of host 
identifiers from locations in the IPv4 and IPv6 



Internet. HIP also plays the role of a security protocol 
that defines host identifiers for naming the 
communication endpoints and performs authentication 
and IPsec security associations between them. The HIP 
base-exchange is built around a classic authenticated 
Diffie - Hellman key exchange, in an attempt to 
establish session keys between the communication 
endpoints. 

 

Table 1: HIP Base Exchange notation 
HITI I identity tag 
HITR R identity tag 
gR pre-computed part of R1 
sigR signature of R 
sigI signature of I 
C puzzle nonce 
K puzzle difficulty 
J puzzle solution 
LSBk returns the k least significant bits  
Ke,Ks generated Diffie-Hellman keys 
Ex message x encrypted with Ke  
HKs cryptographic hash with key Ks 
HMAC HMAC based message authentication 

code with key Ks 
 
In HIP, the host identity (HI) of the protocol 

participants plays the role of a public key: the used 
identifier can be used to verify signatures without 
access to certificates or a public-key infrastructure. It is 
usually represented by the host identity tag (HIT), 
which is a 128-bit hash of the HI. As shown in Figure 
2 and Tale 1, the HIP base-exchange includes four 
messages that are supposed to provide a certain degree 
of DoS protection. The Initiator first sends the message 
I1 with the HITI and the HITR tags, to the Responder. 
We note that all messages contain the Initiator and 
Responder identity tags (HITI, HITR) in the header. 

  

 
Figure 2. The HIP base-exchange 

 

Message R1 is partially pre-computed by the 
Responder, even before the receipt of I1. The pre-

computed part (gR) includes (i) the HITR, (ii) the 
Responder’s Diffie-Hellman key, (iii) the Responder 
HI, (iv) the proposed cryptographic algorithms for the 
next steps of the base-exchange, (v) the proposed 
Encapsulating Security Payload (ESP) transforms and 
(vi) an echo request field. 

The Responder signs the pre-computed part of R1 
with sigR. All other parts of R1, i.e. the cryptographic 
puzzle and the HITI fields are populated after 
receiving an I1 and they are not protected by the 
signature sigR. A host may receive more than one R1 
messages, either due to having sent multiple I1s or due 
to a replay of an old R1. 

The used puzzle has three components: the puzzle 
nonce C, the difficulty level k and the corresponding 
solution J. The puzzle solution is verified as follows: 
we compute the SHA-1 hash of the concatenation of C, 
HITI, HITR and J and then we check that the k low-
order bits of the hash are all zeros. 

LSBk(SHA-1(C | HITI | HITR | J), k) == 0 
While the Initiator performs a brute-force search for 

J that takes O(2k) trials, the Responder verifies the 
solution by computing a single hash (protection against 
processing power exhaustion). On receiving R1 the 
Initiator checks that it has sent a corresponding I1 and 
verifies the signature using the Responder HI. Then, it 
solves the puzzle and creates the message I2 that 
includes HITI, HITR and a signed part gI. The signed 
part contains (i) the puzzle and its solution, (ii) the 
Initiator’s Diffie-Hellman key Ke, (iii) the HIP and 
ESP transforms proposed by the Initiator, (iv) the 
Initiator HI (public key) encrypted using Ke shown as 
E1, (v) the HIP and ESP transforms proposed by the 
Initiator, (vi) a security parameter index for the 
Responder-to-Initiator security associations and (vii) 
the echo response generated for the received echo 
request. 

On receiving I2, the Responder verifies the puzzle 
solution, decrypts E1 that contains the Initiator HI, 
verifies the signature on I2 and computes the session 
key Ks. For the Initiator, the HIP base-exchange is 
concluded by the receipt of R2, which allows the 
verification of the HMAC and the signature. If a host 
decides to drop a security association, it deletes the 
corresponding HIP state, including the keying material.  

Our PRISM model includes four modules: (i) the 
Medium (m), representing the communication channel 
used by the protocol participants to exchange 
messages, (ii) the Initiator (I), (iii) the Responder (R) 
and (iv) the Attacker (At). In their parallel 
composition, the aforementioned modules interact by 
updates to their local variables. These updates 
correspond to the modelled state transitions. 



 

 

Figure 3. Global variables of the HIP model 
 

Figure 3 introduces the global declarations of the 
model. Assuming that the communication channel acts 
as a message buffer, we modelled (omitted module 
code) three possible states for module m, namely (i) no 
messages, (ii) message origin I or At and (iii) message 
origin R or At. Two variables are related to HIP 
implementation parameters: (i) proc_limit represents 
the number of messages that are served simultaneously 
by the Initiator and (ii) B denotes the maximum 
number of messages in Initiator’s admission queue. 
Finally, M expresses the number of distinct 
counterfeited messages created by At in the way shown 
in Figure 1. The global declarations of Figure 3 also 
include the message processing costs for the 
considered participants. The shown values are based 
on the considered message processing demands (data 

taken from related HIP performance studies [11]) and 
on the relative differences between the interacting 
participants regarding their processing capacity 
(number of instructions processed per second). 

The PRISM module incarnating the analyzed DoS 
threat (omitted code) exploits the fact that the puzzle 
sent to I is not included in the pre-computed signed 
part of R1. The puzzle is generated on demand based 
on a random nonce and a parameter k that adjusts the 
puzzle difficulty and in effect influences I’s cost to 
compute the solution. The protocol requirement for 
generation of fresh puzzles protects it from time 
shifting and message replay DoS threats, but at the 
same time makes it vulnerable to the counterfeiting 
DoS threat shown in Figure 1. 

 

 
Figure 4. Probability to eventually reach a state where the Initiator is not available (DoS attack) 

 

6. Verification Results 
 
Figure 4 illustrates the probability to reach a state 
where the Initiator is not available. If At eventually 

brings the system into a state such that I processes 
simultaneously proc_limit counterfeited messages with 
wrong puzzles and its admission queue includes B 
messages in total then any valid R1 message will be 



dropped. According to definition 3, if At brings the 
system into this situation with high probability and the 
cumulated processing cost is disproportionaly low 
compared to the cost to I, we have proved an 
outstanding case of DoS threat. For the generated 
DTMC, the PCTL query 

Q1: P=? [true U fail=2] 

evaluates the probability of taking a path that 
eventually reaches such a state that implies variable 
fail having value 2. The results shown in Figure 4 
reveal an unacceptably high probability (P=0.895) to 
eventually reach a state that reflects the discussed 
situation. 

A more illuminating view of the variation of the 
probability to reach a state, where I is not available, is 
given in Figure 5 with the experiment: 

Q2: P=? [true U msgs_in_service=proc_limit & 
msgs_in_queue=B] 

where proc_limit is varied between 0 and 200 with 
step 50 and B is varied between 0 and 400 with step 
50.   

 

 
Figure 5. Probability for reaching a state, where I is 
unavailable for different values of proc_limit and B 

 

We note that the system’s DoS resistance is 
improved for allowed queue lengths of 250 messages 
or more, under the condition that I will not process 
simultaneously more than 50 messages.   

However, a complete view for the protocol’s DoS 
resistance is obtained only when having the results of 
the following reward queries regarding I and At 
processing costs. Query Q3 provides for different 
values of puzzle difficulty k the expected cumulated 
processing cost to I, when having reached some state 
in which it is not available any more. We note that in 
any protocol implementation the puzzle difficulty is 
originally selected by R. 

Q3: R[Initiator_cost]=? [true U msgs_in_queue=B & 
k=puz_dif] 

Figure 6 shows the obtained results for B varied 
between 0 and 100 with step 20 and assigned puzzle 

difficulty k selected from the values 1, 10, 15, 20, 25 
(puz_dif). For allowed queue lengths between 0 and 
60 the cumulated processing cost for I can be 
dramatically increased, especially when the used 
puzzle difficulty is a number greater than 20. 

 

 
Figure 6. Expected cumulated processing cost for I 

when becoming unavailable 
 

Reward queries Q4 and Q5 complete the picture for 
the system’s DoS resistance according to definition 3. 
The graphs shown in Figures 7 and 8 provide a 
comparative view of the expected cumulated 
processing cost to At against the cost incurred to the I 
when becoming unavailable: 

Q4: R[Initiator_cost]=? [true U msgs_in_queue=B & 
k=puz_dif] 
Q5: R[Attacker_cost]=? [true U msgs_in_queue=B & 
k=puz_dif] 

As before, B varied between 0 and 100 with step 20 
and we generated results for puzzle difficulty 15 and 
25 (puz_dif). 
 

 
Figure 7. Expected processing costs for I and At for 

k=15 
 

The shown results provide valuable insight regarding 
the severity of the demonstrated DoS threat for 
different combinations of puzzle difficulty, the number 
of messages simultaneously processed by I and its 
allowed queue length. Our At module counterfeits 
partially signed messages dispatched by R and replays 
the counterfeited messages, in order to trick I into 
solving wrong puzzles. If the bogus puzzles are based 



on previously eavesdropped puzzles, then an efficient 
approach for deamplification of the demonstrated 
attack is the use of puzzle difficulty values between 10 
and 18, together with appropriate adjustments in the 
allowed queue length for I and the number of messages 
simultaneously processed. 
 

 
Figure 8. Expected processing costs for I and At for 

k =25 
 

An alternative countermeasure with considerable 
implementation cost is the use of an R1 generation 
counter per host identity ([6]). This monotonically 
increasing counter will indicate the current generation 
of puzzles and a host will accept puzzles from the 
same generation, but it may be also possible to accept 
puzzles from earlier generations. Again, our 
quantitative verification approach is a valuable means 
in the design of such countermeasures. 
 
7. Conclusion 
 

Secure authentication features of modern 
communication and electronic commerce protocols 
have the potential to be turned into denial-of-service 
(DoS) exploits. This article introduces probabilistic 
model checking as a viable tool-assisted approach for 
systematically quantifying DoS security threats. Our 
approach is based on a general probabilistic attacker 
model encompassing the most common DoS attack 
strategies. We formulated the DoS resistance property 
as a quantifiable measure that depends (i) on the 
probability to reach a state where some protocol 
participant becomes unavailable and (ii) the 
requirement for the attacker to cause this event with 
disproportionaly low cost compared to the cost 
incurred to the victim. 

We developed a probabilistic model for the HIP 
base-exchange protocol that uses a client puzzle 
mechanism for protection against DoS. The obtained 
results provide valuable insight regarding the severity 
of the demonstrated DoS threat in different protocol 
implementation cases. We believe that the proposed 
approach can be utilized in the design of new security 
protocols and protocol implementations. 
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