
A Probabilistic Attacker Model for Quantitative Verification of DoS Security
Threats

 Stylianos Basagiannis Panagiotis Katsaros Andrew Pombortsis

Nikolaos Alexiou

Department of Informatics, Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
tel.: +30-2310-998532, fax: +30-2310-998419

{basags, katsaros, apombo, nalexiou}@csd.auth.gr

Abstract
This work introduces probabilistic model checking

as a viable tool-assisted approach for systematically
quantifying DoS security threats. The proposed
analysis is based on a probabilistic attacker model
implementing simultaneous N zombie participants,
which subvert secure authentication features in
communication protocols and electronic commerce
systems. DoS threats are expressed as probabilistic
reachability properties that are automatically verified
through an appropriate Discrete Time Markov Chain
representing the protocol participants and attacker
models. The overall analysis takes place in a mature
probabilistic model checking toolset called PRISM. We
believe that the applied quantitative verification
approach is a valuable means for comparing protocol
implementations with alternative parameter choices,
for optimal resistance to the analyzed threats.

Key Words- Denial of Service, model checking,
security

1. Introduction

Formal techniques for the analysis of security
protocols assume the existence of an intruder model
that allows studying the possibility of secrecy and
authentication failures. All these approaches adopt the
basic assumptions of the general Dolev and Yao
intruder model [4] that are summarized as follows: (i)
The encryption method used is unbreakable (ii) The
intruder can prevent any message from reaching its
destination and (iii) The intruder can create messages
of his own. However, existing formal approaches focus
only on secrecy and authentication guarantees and do

not address the need for quantitative verification of
potential availability threats. In this article, we review
the few quantitative analyses found in the related
bibliography and subsequently we introduce our own
approach.

Our proposal is based on a probabilistic attacker
model that combines appropriate attack actions, which
make it possible to reveal potential Denial of Service
(DoS) threats. Moreover, the applied probabilistic
analysis exploits pre-assigned cost values that quantify
the resource expenditure for the associated operations.
This allows comparing the total cost to the attacker
against the cost to the legitimate participants in case of
an existing DoS threat. Thus, it is possible to
determine the minimum resource requirements for an
attacker to accomplish the attack and this is useful for
developing measures for optimal resistance to the
analyzed threat.

The DoS threat is expressed as a probabilistic
reachability property that is automatically verified
(according to [8] and [9]) with respect to an
appropriate Discrete Time Marcov Chain (DTMC)
representing the protocol participants and attacker
models. The analysis takes place in a probabilistic
model checking toolset called PRISM [13].

Our approach is described in terms of the performed
analysis for the Host Identity Protocol (HIP) base-
exchange. We realized that an attacker model
embedding three basic attack tactics [3] that
successfully incarnate simultaneous N zombie
participants breaks the employed DoS resistance
mechanism. Appropriate queries expressed in
Probabilistic Computation Tree Logic (PCTL) provide
illuminating probabilistic estimates together with the

attacker and protocol participants’ costs for the
analyzed DoS threat.

In section 2 we review the related work. Section 3
provides a brief introduction to probabilistic model
checking and defines the DoS resistance property, in
terms of a general probabilistic attacker model. Section
4 introduces the PRISM model for the used attacker.
Section 5 provides a description of the HIP Base
Exchange and outlines its implementation into the
PRISM model checker. In section 6 we present the
results of the performed PCTL queries that provide
estimates for the analyzed DoS threat. We conclude
with a summary of the overall analysis approach and a
comment on its usability and its potential impact.

2. Related Work

The importance of enabling availability analysis for a
given cryptographic protocol was first shown in [12].
In that work the author examines DoS in the context of
the resource intensive task of authentication and
develops a framework for weighting the cost to the
defender against the cost to the attacker.

Recently, the approach of [12] formed the basis for
the analysis framework of [15] that according to the
authors provides a more accurate representation of
computational cost. However, quantitative evaluation
takes place by simulation of the developed Timed
Colored Petri Net model, without having exploited the
formal analysis capabilities of the employed toolset.

An interesting stochastic modelling and analysis
approach for quantifying the availability of software
systems under DoS threats is the one introduced in
[10]. In that work, the authors formulate the analyzed
system in terms of an appropriate semi-Markov
process (SMP). The whole approach requires
stochastic modeling and analysis competence, since it
is not carried out within an automated analysis tool like
PRISM. Furthermore, the performed system-level
analysis does not take into account any resource
expenditure for the considered states and thus it is not
possible to evaluate the message processing costs for
DoS threats upon a security protocol model.

The most closely related work found in the
bibliography is the one published in [1]. In that work,
the authors specify in probabilistic rewriting logic a
DoS resistant 3-way handshaking in TCP. In the
VESTA toolset, the developed algebraic specification
generates a timed probabilistic model, which is then
analyzed by Monte Carlo simulation using a sequence
of interrelated statistical hypothesis tests, to check on
the generated sample if the quantitative property of
interest is satisfied. This reflects the so-called

statistical model checking approach. Compared to the
probabilistic model checking analysis that is proposed
in our work, this approach does not produce the same
accurate results [14]. Moreover, the aforementioned
analysis does not take into account message processing
costs as we do and for this reason it is not possible to
weight the cost to the honest participants against the
cost to the attacker. For the resource intensive
authentication features of modern security protocols
this may be a significant analysis limitation.

3. Preliminaries of Probabilistic Model
Checking

Probabilistic model checking is based on labelling
transitions between model states with information
about the likelihood that they will occur ([8], [9]).

In the PRISM language, a probabilistic model is
defined as a set of m modules M1, . . ., Mm, where
module Mi is a pair (Vari, Ci) with Vari a set of integer-
valued local variables with finite range and Ci a set of
commands. We denote by Var the set of all local
variables in the model, i.e.

U
m

i iVarVar
1=

=

Each variable v∈ Var has an initial value v . Each
command c ∈ Ci takes the form (g, (λ1, u1), . . ., (λnc,
unc)), comprising a guard g and a set of pairs (λj, uj)
where λj ∈ IR > 0 and uj is an update for each 1 ≤ j ≤
nc. A guard g is a predicate over the set of all local
variables Var and each update uj corresponds to one
possible transition of module Mi. If Vari contains ni
local variables v1, . . ., vni, then an update takes the
form (1

'
1 expr=v) ˄ . . . ˄ (

ii nnv expr' =), where each

exprj is an expression in terms of the variables in Var.
When in an update the values of some variables in Vari
remain unchanged, the model description may omit
this information. In a DTMC specification, the values
λj determine the probability of the corresponding
transition and for this reason λj ∈ (0, 1] for 1 ≤ j ≤ nc
and 1

1
=∑ =

cn

j jλ .

Definition 1. A DTMC is a tuple (S, s , P, L) where:
- S is a finite set of states
- s ∈ S is the initial state
- P: S × S→[0, 1] is the transition probability

matrix such that ∑ ∈
=

Ss
ssP

'
1)',(for s∈ S

- L: S → 2AP is a labelling function mapping
states to sets of atomic propositions from a
set AP with the properties of interest

Terminating states are modelled by a single transition
going back to the same state with probability 1.

In order to be able to determine the probability that
paths in a DTMC are taken, a probability measure
Probs is formally defined (definition is omitted) on the
set Paths of all infinite paths starting in state s ∈ S. In
this way, it is possible to quantify the probability that a
DTMC behaves in a specified fashion by identifying
the set of paths which satisfy the property specification
and assuming that this probability is measurable using
the measure Probs.

The DTMC model corresponding to a PRISM
language description is constructed as the parallel
composition of its modules by computing the reachable
state space of the model and discarding any
unreachable states ([8], [9]). In every state, there is a
set of commands (belonging to any of the modules)
which are enabled. The choice between which
command is performed is probabilistic, with each
enabled command selected with equal probability.
PCTL property specifications [13] are checked by
applying appropriate model checking algorithms on the
model by induction over their syntax. The underlying
computation in PRISM involves a combination of (i)
Graph-theoretical algorithms, for reachability analysis
and qualitative probabilistic model checking; (ii)
Numerical computation (iterative solvers), for
quantitative probabilistic model checking that in the
case of a DTMC implies the solution of linear equation
systems.

Definition 2. The syntax of PCTL is as follows:
Φ ::= true | α | ¬Φ | Φ ˄ Φ | P~p[φ], for state
formulae and φ ::= ΧΦ | Φ U≤ k Φ, for path formulae

that are evaluated over states and paths of a DTMC
respectively, where α is an atomic proposition, ~ ∈ {<,
≤, ≥, >}, p ∈ [0, 1] and k ∈ ℵ ∪ {∞}.

To specify a property, we always use a state formula:
path formulae only occur as the parameter of the P~p[⋅]
operator. In a DTMC, a state s satisfies P~p[φ] if the
probability of taking a path from s satisfying φ is in the
interval specified by ~p. This is quantified by the
probability measure Probs that is defined over Paths.
As path formulae we allow the X (‘next’) and U≤ k
(‘bounded until’ implying property compliance within
k time-steps) operators which are standard in temporal
logic. The unbounded until is obtained by taking k
equal to ∞, i.e. Φ U Ψ = Φ U≤ ∞ Ψ. Path formulae may
also contain the operators ◊ (eventually) and
(always) in their bounded and unbounded variants:
 P~p[◊≤ k Φ] ≡ P~p[true U≤ k Φ]
 P~p[◊ Φ] ≡ P~p[true U≤ ∞ Φ]
 P~p[≤ k Φ] ≡ P ~ 1-p[◊≤ k ¬Φ]
 P~p[Φ] ≡ P ~ 1-p[◊¬Φ]

where < ≡ >, ≤ ≡ ≥, ≥ ≡ ≤ and > ≡ <.
Apart from quantitative assertions, in PCTL we

can also express properties which evaluate to a
numerical value. These properties are specified in the
form P=?[φ].

In addition to the aforementioned features, a reward
structure for a DTMC allows the specification of two
distinct types of rewards, namely state or cumulative
rewards and transition or instantaneous rewards. Also,
the logic PCTL is extended to allow specification of
reward properties. In our problem, rewards represent
costs, i.e. consumption of an exhaustible resource that
depending on the modelled DoS threat it may be
communication capacity (bandwidth), memory or
processing power.

4. The Probabilistic Attacker Model

The strong assumptions of the typical Dolev - Yao
attacker have been effective in the analysis of security
guarantees that are formulated as safety properties
(secrecy and authentication), but they are not entirely
suitable for the analysis of security guarantees like
DoS resistance that involves liveness [5]. A typical
Dolev - Yao attacker has full control over the
communication channels between the protocol
participants and it is treated as a nondeterministic
process that may attempt any possible attack. A
protocol is considered secure if no possible
interleaving of actions results in a security breach.
However, the presence of non-determinism means that
certain liveness properties cannot be established unless
fairness is assumed. From this perspective, as far as
fairness can be viewed as an abstraction of a
probabilistic behaviour, it seems more natural to invest
on a probabilistic model checking approach and to not
adopt fairness assumptions, which are not valid for all
attacker abilities considered in typical Dolev - Yao
style analyses. Some other facts that make the use of
probabilistic model checking a preferable choice are:
• The requirement to model the ability of an attacker

to send randomly chosen messages or to model
some sophisticated (yet probabilistic polynomial-
time) computation to derive an attack from
eavesdropped messages.

• The need to model probabilistic selection of
implementation parameters, whose values affect the
protocol’s security.

• The need to capture the DoS faithfully, i.e. in terms
of relative probabilities of certain observations by
the attacker that depend solely on potentially
probabilistic behaviours of the protocol participants
(like for example the probability for a participant to

resubmit a service request that was previously
dropped from the server’s queue).

Our proposal for the DoS attacker model uses the
open-ended attack tactics base we proposed in [3],
from where the analyst selects the right set of abilities
for his DoS problem. The selected attack actions are
combined into a single PRISM module and the analyst
assigns to the performed operations cost values that
depend on the operation’s resource expenditure, as
well as on some resource constraint for the attacker. A
similar cost assignment approach is applied to the
honest protocol participants. In all cases, the assigned
values refer to the same exhaustible resource, which
can be either, participants’ bandwidth (communication
capacity), memory or processing power.

A DoS attacker uses a fixed number N of
compromised machines that are commonly called
zombie machines, because they are identical to the
machines used by honest protocol participants. The
zombie participants create bogus protocol messages
capable of tricking some honest protocol participant
into fully expediting resources, before determining that
the opened protocol sessions are bogus. Alternatively,
instead of considering N zombie machines we may
consider a powerful attacker with identity spoofing
abilities that allow him to incarnate the collective
behaviour of N zombie participants. We assume the
same resource expenditure for the attacker and the
honest participants for the same operations and we
assign the corresponding costs by taking into account
the resource constraints assumed for the modelled
protocol participants.

Definition 3. The DoS resistance property is defined
as the low probability for an attacker representing the
modelled DoS threat to eventually prevent - with
disproportionaly low cost- honest participants from
using the protocol’s services.

In this sort of analysis it is very important to
discover appropriate designs or parameter choices,
such that every time a legitimate participant takes part
in some action that requires the use of significant
amount of resources, the attacker cannot fraudulently
cause him to reach that step without spending a
significant amount of its own resources.

DoS protection is usually based on an appropriate
cookie-based [7] or client puzzle mechanism [2],
where a protocol participant passes a “cookie” (e.g. an
unforgeable keyed hash value of the information
identifying the connection) or a puzzle to another
participant, in order to establish mutual trust, possibly
in the form of some shared-secret. The idea is that the
responder should remain stateless (protection against
memory exhaustion) and refuse to perform expensive

cryptographic operations (protection against
processing power exhaustion), until it has verified the
honesty of the initiator. In this setting, there are three
key strategies by which an attacker can implement a
DoS threat:
• Counterfeiting: The attacker sends invalid cookies,

puzzles or puzzle solutions.
• Time Shifting: The attacker is prepared for an

attack by computing fake shared secrets (either by
solving puzzles or manipulating cookies), in order
to expend them in a massive DoS attack.

• Message replays: The attacker may send the same
valid cookie or puzzle solution many times.

The aforementioned strategies assume that the
attacker model performs three basic operations, i.e.
message interception, message projection and message
concatenation, mentioned in decreasing order of
processing demands. The analyst implements a DoS
threat by selecting the right set of attack tactics
(deflection, message integrity violation and straight
replay) from the ones formalized by us in [3] and
composes them into a single PRISM module with
appropriate cost values for the performed operations.

Figure 1 provides a high level view of the analyzed
DoS threat upon the HIP base-exchange. The attacker
(At) intercepts the message traffic between the initiator
(I) and the responder (R) and alters the puzzle
contained in msgR by simple message concatenations,
in order to create N zombie messages that are
subsequently sent to the initiator. The attack tactics
used in the attacker model are the message integrity
violation combined with multiple straight message
replays.

Figure 1. A DoS threat with message counterfeiting

for N zombie participants

5. The HIP base exchange

The main goal of HIP [6] is the separation of host
identifiers from locations in the IPv4 and IPv6

Internet. HIP also plays the role of a security protocol
that defines host identifiers for naming the
communication endpoints and performs authentication
and IPsec security associations between them. The HIP
base-exchange is built around a classic authenticated
Diffie - Hellman key exchange, in an attempt to
establish session keys between the communication
endpoints.

Table 1: HIP Base Exchange notation
HITI I identity tag
HITR R identity tag
gR pre-computed part of R1
sigR signature of R
sigI signature of I
C puzzle nonce
K puzzle difficulty
J puzzle solution
LSBk returns the k least significant bits
Ke,Ks generated Diffie-Hellman keys
Ex message x encrypted with Ke
HKs cryptographic hash with key Ks
HMAC HMAC based message authentication

code with key Ks

In HIP, the host identity (HI) of the protocol

participants plays the role of a public key: the used
identifier can be used to verify signatures without
access to certificates or a public-key infrastructure. It is
usually represented by the host identity tag (HIT),
which is a 128-bit hash of the HI. As shown in Figure
2 and Tale 1, the HIP base-exchange includes four
messages that are supposed to provide a certain degree
of DoS protection. The Initiator first sends the message
I1 with the HITI and the HITR tags, to the Responder.
We note that all messages contain the Initiator and
Responder identity tags (HITI, HITR) in the header.

Figure 2. The HIP base-exchange

Message R1 is partially pre-computed by the
Responder, even before the receipt of I1. The pre-

computed part (gR) includes (i) the HITR, (ii) the
Responder’s Diffie-Hellman key, (iii) the Responder
HI, (iv) the proposed cryptographic algorithms for the
next steps of the base-exchange, (v) the proposed
Encapsulating Security Payload (ESP) transforms and
(vi) an echo request field.

The Responder signs the pre-computed part of R1
with sigR. All other parts of R1, i.e. the cryptographic
puzzle and the HITI fields are populated after
receiving an I1 and they are not protected by the
signature sigR. A host may receive more than one R1
messages, either due to having sent multiple I1s or due
to a replay of an old R1.

The used puzzle has three components: the puzzle
nonce C, the difficulty level k and the corresponding
solution J. The puzzle solution is verified as follows:
we compute the SHA-1 hash of the concatenation of C,
HITI, HITR and J and then we check that the k low-
order bits of the hash are all zeros.

LSBk(SHA-1(C | HITI | HITR | J), k) == 0
While the Initiator performs a brute-force search for

J that takes O(2k) trials, the Responder verifies the
solution by computing a single hash (protection against
processing power exhaustion). On receiving R1 the
Initiator checks that it has sent a corresponding I1 and
verifies the signature using the Responder HI. Then, it
solves the puzzle and creates the message I2 that
includes HITI, HITR and a signed part gI. The signed
part contains (i) the puzzle and its solution, (ii) the
Initiator’s Diffie-Hellman key Ke, (iii) the HIP and
ESP transforms proposed by the Initiator, (iv) the
Initiator HI (public key) encrypted using Ke shown as
E1, (v) the HIP and ESP transforms proposed by the
Initiator, (vi) a security parameter index for the
Responder-to-Initiator security associations and (vii)
the echo response generated for the received echo
request.

On receiving I2, the Responder verifies the puzzle
solution, decrypts E1 that contains the Initiator HI,
verifies the signature on I2 and computes the session
key Ks. For the Initiator, the HIP base-exchange is
concluded by the receipt of R2, which allows the
verification of the HMAC and the signature. If a host
decides to drop a security association, it deletes the
corresponding HIP state, including the keying material.

Our PRISM model includes four modules: (i) the
Medium (m), representing the communication channel
used by the protocol participants to exchange
messages, (ii) the Initiator (I), (iii) the Responder (R)
and (iv) the Attacker (At). In their parallel
composition, the aforementioned modules interact by
updates to their local variables. These updates
correspond to the modelled state transitions.

Figure 3. Global variables of the HIP model

Figure 3 introduces the global declarations of the
model. Assuming that the communication channel acts
as a message buffer, we modelled (omitted module
code) three possible states for module m, namely (i) no
messages, (ii) message origin I or At and (iii) message
origin R or At. Two variables are related to HIP
implementation parameters: (i) proc_limit represents
the number of messages that are served simultaneously
by the Initiator and (ii) B denotes the maximum
number of messages in Initiator’s admission queue.
Finally, M expresses the number of distinct
counterfeited messages created by At in the way shown
in Figure 1. The global declarations of Figure 3 also
include the message processing costs for the
considered participants. The shown values are based
on the considered message processing demands (data

taken from related HIP performance studies [11]) and
on the relative differences between the interacting
participants regarding their processing capacity
(number of instructions processed per second).

The PRISM module incarnating the analyzed DoS
threat (omitted code) exploits the fact that the puzzle
sent to I is not included in the pre-computed signed
part of R1. The puzzle is generated on demand based
on a random nonce and a parameter k that adjusts the
puzzle difficulty and in effect influences I’s cost to
compute the solution. The protocol requirement for
generation of fresh puzzles protects it from time
shifting and message replay DoS threats, but at the
same time makes it vulnerable to the counterfeiting
DoS threat shown in Figure 1.

Figure 4. Probability to eventually reach a state where the Initiator is not available (DoS attack)

6. Verification Results

Figure 4 illustrates the probability to reach a state
where the Initiator is not available. If At eventually

brings the system into a state such that I processes
simultaneously proc_limit counterfeited messages with
wrong puzzles and its admission queue includes B
messages in total then any valid R1 message will be

dropped. According to definition 3, if At brings the
system into this situation with high probability and the
cumulated processing cost is disproportionaly low
compared to the cost to I, we have proved an
outstanding case of DoS threat. For the generated
DTMC, the PCTL query

Q1: P=? [true U fail=2]

evaluates the probability of taking a path that
eventually reaches such a state that implies variable
fail having value 2. The results shown in Figure 4
reveal an unacceptably high probability (P=0.895) to
eventually reach a state that reflects the discussed
situation.

A more illuminating view of the variation of the
probability to reach a state, where I is not available, is
given in Figure 5 with the experiment:

Q2: P=? [true U msgs_in_service=proc_limit &
msgs_in_queue=B]

where proc_limit is varied between 0 and 200 with
step 50 and B is varied between 0 and 400 with step
50.

Figure 5. Probability for reaching a state, where I is
unavailable for different values of proc_limit and B

We note that the system’s DoS resistance is
improved for allowed queue lengths of 250 messages
or more, under the condition that I will not process
simultaneously more than 50 messages.

However, a complete view for the protocol’s DoS
resistance is obtained only when having the results of
the following reward queries regarding I and At
processing costs. Query Q3 provides for different
values of puzzle difficulty k the expected cumulated
processing cost to I, when having reached some state
in which it is not available any more. We note that in
any protocol implementation the puzzle difficulty is
originally selected by R.

Q3: R[Initiator_cost]=? [true U msgs_in_queue=B &
k=puz_dif]

Figure 6 shows the obtained results for B varied
between 0 and 100 with step 20 and assigned puzzle

difficulty k selected from the values 1, 10, 15, 20, 25
(puz_dif). For allowed queue lengths between 0 and
60 the cumulated processing cost for I can be
dramatically increased, especially when the used
puzzle difficulty is a number greater than 20.

Figure 6. Expected cumulated processing cost for I

when becoming unavailable

Reward queries Q4 and Q5 complete the picture for
the system’s DoS resistance according to definition 3.
The graphs shown in Figures 7 and 8 provide a
comparative view of the expected cumulated
processing cost to At against the cost incurred to the I
when becoming unavailable:

Q4: R[Initiator_cost]=? [true U msgs_in_queue=B &
k=puz_dif]
Q5: R[Attacker_cost]=? [true U msgs_in_queue=B &
k=puz_dif]

As before, B varied between 0 and 100 with step 20
and we generated results for puzzle difficulty 15 and
25 (puz_dif).

Figure 7. Expected processing costs for I and At for

k=15

The shown results provide valuable insight regarding
the severity of the demonstrated DoS threat for
different combinations of puzzle difficulty, the number
of messages simultaneously processed by I and its
allowed queue length. Our At module counterfeits
partially signed messages dispatched by R and replays
the counterfeited messages, in order to trick I into
solving wrong puzzles. If the bogus puzzles are based

on previously eavesdropped puzzles, then an efficient
approach for deamplification of the demonstrated
attack is the use of puzzle difficulty values between 10
and 18, together with appropriate adjustments in the
allowed queue length for I and the number of messages
simultaneously processed.

Figure 8. Expected processing costs for I and At for

k =25

An alternative countermeasure with considerable
implementation cost is the use of an R1 generation
counter per host identity ([6]). This monotonically
increasing counter will indicate the current generation
of puzzles and a host will accept puzzles from the
same generation, but it may be also possible to accept
puzzles from earlier generations. Again, our
quantitative verification approach is a valuable means
in the design of such countermeasures.

7. Conclusion

Secure authentication features of modern
communication and electronic commerce protocols
have the potential to be turned into denial-of-service
(DoS) exploits. This article introduces probabilistic
model checking as a viable tool-assisted approach for
systematically quantifying DoS security threats. Our
approach is based on a general probabilistic attacker
model encompassing the most common DoS attack
strategies. We formulated the DoS resistance property
as a quantifiable measure that depends (i) on the
probability to reach a state where some protocol
participant becomes unavailable and (ii) the
requirement for the attacker to cause this event with
disproportionaly low cost compared to the cost
incurred to the victim.

We developed a probabilistic model for the HIP
base-exchange protocol that uses a client puzzle
mechanism for protection against DoS. The obtained
results provide valuable insight regarding the severity
of the demonstrated DoS threat in different protocol
implementation cases. We believe that the proposed
approach can be utilized in the design of new security
protocols and protocol implementations.

8. References

[1] Agha, G., Greenwald, M., Gunter, C. A., Khanna, S.,
Meseguer, J., Sen, K., Thati, P. “Formal modelling and
analysis of DoS using probabilistic rewrite theories”,
Proc. IEEE Work. on Foundations of Computer
Security (FCS '05), Chicago, 2005.

[2] Aura, T., Nikander, P., Leiwo, J., “DOS-resistant
authentication with client puzzles”, Proc. Security
Protocols Worksh., Cambridge, Springer LNCS 2133,
170-181, 2001.

[3] Basagiannis, S., Katsaros, P. and Pombortsis, A.
“Intrusion Attack Tactics for the model checking of e-
commerce security guarantees”, Proc. 26th Int. Conf. on
Computer Safety, Reliability and Security
(SAFECOMP), Springer LNCS 4680, 238-251, 2007.

[4] Dolev, D. and Yao, A. “On the security of public-key
protocols”, IEEE Trans. on Information Theory, 2 (29),
198-208, 1983.

[5] Gärtner, F. “Revisiting liveness properties in the context
of secure systems”, Proc. 1st Int. Conf. Formal Aspects
on Security, Springer LNCS 2629, 203-211, 2003.

[6] IETF - Network Working Group. Host Identity
Protocol. Internet Draft, Feb. 2007.

[7] Karn, P. and Simpson, A. Photuris: Session-key
management protocol, RFC 2522, IETF Network
Working Group, 1999.

[8] Kwiatkowska, M., Norman, G., Parker, D. “Stochastic
model checking”, In: Formal Methods for the Design of
Comp., Comm. & Software Systems: Performance
Evaluation, Springer LNCS 4486, 220-270, 2007.

[9] Kwiatkowska, M. “Quantitative verification: Models,
Techniques and Tools”, Proc. 6th joint meeting of the
Europ. Software Engineering Conf. and ACM
SIGSOFT Symp. on the Foundations of Soft.
Engineering (ESEC/FSE), ACM Press, 449-458, 2007.

[10] Madan, B. B., Goseva-Popstojanova, K., Vaidyanathan,
K., Trivedi, K. S. “Modeling and quantification of
security attributes of software systems”, Proc.
IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN 02), IEEE Computer Society, 2002.

[11] InfraHIP Project Web Site, http://infrahip.hiit.fi/, (last
access: 21st of December 2007).

[12] Meadows, C. “A cost-based framework for analysis of
DoS in networks”, J. Comp. Security, 9, 143-164, 2001

[13] The PRISM Model Checker Web Site,
http://www.prismmodelchecker.org/

[14] Sen, K., Viswanathan, M., Agha, G. “On statistical
model checking of stochastic systems”, Pro. 17th Int.
Conf. on Computer Aided Verification (CAV'05),
Springer LNCS 3576, 266-288, 2000.

[15] Tritilanunt, S., Boyd, C., Foo, E., Gonzalez Neto, J. M.
“Using Coloured Petri Nets to simulate DoS-resistant
protocols”, Proc. 7th Worksh. on Practical Use of
Coloured Petri Nets & the CPN Tools, Un. of Aarhus,
Denmark, 2006.

