
Friendlink: Link Prediction in Social Networks via Bounded Local Path Traversal

Alexis Papadimitriou
Computer Science Department

Aristotle University
Thessaloniki, Greece

Email: apapadi@csd.auth.gr

Panagiotis Symeonidis
Computer Science Department

Aristotle University
Thessaloniki, Greece

Email: symeon@csd.auth.gr

Yannis Manolopoulos
Computer Science Department

Aristotle University
Thessaloniki, Greece

Email: manolopo@csd.auth.gr

Abstract—Online social networks (OSNs) like Facebook,
Myspace, and Hi5 have become popular, because they allow
users to easily share content or expand their social circle.
OSNs recommend new friends to registered users based on
local graph features (i.e. based on the number of common
friends that two users share). However, OSNs do not exploit
all different length paths of the network. Instead, they consider
only pathways of maximum length 2 between a user and
his candidate friends. On the other hand, there are global
approaches, which detect the overall path structure in a
network, being computationally prohibitive for huge-sizesocial
networks. In this paper, we provide friend recommendations,
also known as thelink prediction problem, by traversing all
paths of a bounded length, based on the “algorithmic small
world hypothesis”. As a result, we are able to provide more
accurate and faster friend recommendations. We perform an
extensive experimental comparison of the proposed method
against existing link prediction algorithms, using two real data
sets (Hi5 and Epinions). Our experimental results show that
our FriendLink algorithm outperforms other approaches in
terms of effectiveness and efficiency in both real data sets.

Keywords-Social Networks; Link Prediction;

I. I NTRODUCTION

Online social networks (OSNs) such as Facebook.com1,
Myspace2, Hi5.com3, etc. contain gigabytes of data that can
be mined to make predictions about who is a friend of
whom. OSNs recommend other people to users based on
their common friends. The reason is that there is a significant
possibility that two users are friends, if they share a large
number of common friends.

In this paper, we focus on recommendations based on
links that connect the nodes of an OSN, known as the
Link Prediction problem, where there are two main ap-
proaches [5] that handle it. The first one is based on local
features of a network, focusing mainly on the nodes struc-
ture; the second one is based on global features, detecting the
overall path structure in a network. For instance, as an exam-
ple of a local approach, as shown in Figure 1, Facebook.com
or Hi5.com use the following style of recommendation for
recommending new friends to a target userU1: “People you

1http://www.facebook.com
2http://www.myspace.com
3http://www.hi5.com

may know : (i) userU7 because you have two common
friends (userU5 and userU6) (ii) userU9 because you have
one common friend (userU8) . . . ”. The list of recommended
friends is ranked based on the number of common friends
each candidate friend has with the target user.

U1

U2

U3

U4

U5

U6

U7

U8 U9

Figure 1. Social Network Example.

A. Motivation

Compared to approaches which are based on local features
of a network (i.e. Friend of a Friend (FOAF) algorithm or
Common Neighbors, Adamic/Adar index, Jaccard Coeffi-
cient, etc. - for more details see Section II), we provide
friend recommendations, exploiting paths of greater length.
In contrast, they consider only pathways of maximum length
2 between a target user and his candidate friends. In Fig-
ure 1, which will be used as our running example, according
to existing OSNs,U1 would get as friend recommendation
with equal probabilityU4 or U7. However, if we take into
account also paths of length 3, thenU4 should have a higher
probability to be recommended as a friend toU1. In our
approach, we assume that a person can be connected to
another with many paths of different length (through human
chains). Thus, two persons that are connected with many
unique pathways of different length have a high probability
to know each other, proportionally to the length of the
pathways they are connected with.

Compared to global approaches (i.e Katz status index,
RWR algorithm, SimRank algorithm etc.), which detect the
overall path structure in a network, our method is more
efficient. This means, that our method, which is based
on a bounded path traversal, requires less time and space

complexity than the global based algorithms. The reason is
that we traverse only paths of lengthl in a network based
on the “algorithmic small world hypothesis”, whereas global
approaches detect the overall path structure. (for more details
see Section Related Work).

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III defines a new node
similarity measure in OSNs. The proposed approach, its
complexity analysis, and its possible extensions to other
networks, are described in Section IV. Experimental results
are given in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORK

There is a variety of local similarity measures [5] (i.e.
FOAF algorithm, Adamic/Adar index, Jaccard Coefficient,
etc.) for analyzing the “proximity” of nodes in a network.
FOAF [2] is adopted by many popular OSNs, such as
facebook.com and hi5.com for the friend recommendation
task. FOAF is based on the common sense that two nodes
vx, vy are more likely to form a link in the future, if
they have many common neighbors. In addition to FOAF
algorithm, there are also other local-based measures such as
Jaccard Coefficient [5] and Adamic/Adar index [1]. Adamic
and Adar proposed a distance measure to decide when two
personal home pages are strongly “related”. In particular,
they computed features of the pages and defined the similar-
ity between two pagesx, y as follows:

∑

z
1

log(frequency(z)) ,
where z is a feature shared by pagesx, y. This refines
the simple counting of common features by weighting rarer
features more heavily.

There is a variety of global approaches [5]. In this
paper, as comparison partners of global approaches, we
consider Katz status index [4], and Random Walk with
Restart algorithm [9], [7] (RWR) algorithm. Katz defines a
measure that directly sums over all paths between any pair of
nodes in graphG, exponentially damped by length to count
short paths more heavily. RWR considers a random walker
that starts from nodevx, and chooses randomly among the
available edges every time, except that, before he makes a
choice, with probabilityα, he goes back to nodevx (restart).
The similarity matrix (i.e. Kernel) between nodes of a graph,
can be computed by Equation 1:

KernelRWR = (I − αP)−1 (1)

where I is the identity matrix andP is the transition-
probability matrix.

III. D EFINING A NODE SIMILARITY MEASURE

In this section, we define a new similarity measure to
determine a way of expressing the proximity among graph
nodes. Letvi andvj be two graph nodes andsim(vi, vj) a
function that expresses their similarity in the range [0,1]. If
the two nodes are similar, we expect the valuesim(vi, vj)

to be close to 1. On the other hand, if the two nodes are
dissimilar, we expect the valuesim(vi, vj) to be close to 0.

Our method assumes that persons in an OSN can use
all the pathways connecting them, proportionally to the
pathway lengths. Thus, two persons who are connected
with many unique pathways have a high possibility to
know each, proportionally to the length of the pathways
they are connected with. For example, referring back to
Figure 1, if we consider only length-2 paths, thenU1 would
get as friend recommendation with equal probabilityU4 or
U7. However, if we consider also length-3 paths, thenU4

should have a higher probability to be recommended as a
friend toU1.

Definition 1. The similaritysim(vx, vy) between two graph
nodesvx andvy is defined as the counts of paths of varying
lengthℓ from vx to vy :

sim(vx, vy) =
ℓ

∑

i=2

1

i− 1
·

∣

∣

∣
pathsivx,vy

∣

∣

∣

i
∏

j=2

(n− j)

(2)

where
• n is the number of vertices in a graphG,
• ℓ is the length of a path between the graph nodesvx and

vy (excluding paths with cycles). By the term “paths
with cycles” we mean that a path can not be closed
(cyclic). Thus, a node can exist only one time in a path
(e.g. pathv1 → v2 → v3→v1 → v5 is not acceptable
becausev1 is traversed twice),

•
1

i−1 is an “attenuation” factor that weights paths accord-
ing to their lengthℓ. Thus, a2-step path measures the
non-attenuation of a link with value equals to 1 (12−1
= 1). A 3-step path measures the attenuation of a link
with value equals to12 (1

3−1 = 1
2) etc. In this sense, we

use appropriate weights to allow the lower effectiveness
of longer path chains. Notice that we have also tested
experimentally other possible attenuation factors such
as Katz’s original exponentialβℓ, the logarithmic 1

log(i) ,
etc. and, as will be shown later, the attenuation factor
1

i−1 attains the best accuracy results.

•

∣

∣

∣
pathsℓvx,vy

∣

∣

∣
is the set of all length-ℓ paths fromvx to

vy,

•

i
∏

j=2

(n− j) is the set of all possible length-ℓ paths from

vx to vy , if each vertex in graphG was linked with

all other vertices. By using the fraction

∣

∣

∣
pathsℓvx,vy

∣

∣

∣

i
∏

j=2

(n− j)

,

our similarity measure is normalized and takes values
in [0,1]. If two nodes are similar we expect the value
sim(vx, vy) to be close to 1. On the other hand, if

the two nodes are dissimilar, we expect the value
sim(vi, vj) to be close to 0.

Notice that the similarity is computed for nodes that are
connected with paths of lengthℓ ≥ 2. This is because when
there is a path between two nodes of length 1 they are
already friends.

IV. T HE PROPOSEDAPPROACH

In this section we first provide a detailed explanation
of our approach, named FriendLink. Then, we perform a
complexity analysis comparison of FriendLink with other
approaches and finally we extend Friendlink for other types
of networks.

A. The FriendLink Algorithm

Friendlink computes node similarity between any two
nodes in a graphG. The initial input of Friendlink is the
numbern of nodes ofG, the adjacency matrixA, and the
lengthℓ of paths that will be explored inG. To enumerate all
simple paths inG, Rubin’s algorithm [8] can be employed.
However, Rubin’s algorithm uses O(n3) matrix operations to
find all paths of different length between any pair of nodes,
wheren is the number of nodes inG. In the following, we
customize Rubin’s algorithm to create only paths of length
up to ℓ for our purpose.

As shown in Figure 2, FriendLink consists of a main
program and two functions. In the main program, we modify
the adjacency matrix so instead of holding 0/1 values, the
(i, j) entry of the matrixA is a list of paths fromi to j. Then,
in the function Combine Paths(), we perform the matrix
multiplication algorithm. However, instead of multiplying
and adding entries, we concatenate pairs of paths together.
Finally, in the function Compute Similarity(), we update the
similarity between nodesi andj, for each length-ℓ path we
find, wherei is the start node andj is the destination node
(i.e all paths of length [2..ℓ]). For the update of the similarity
value between nodesi andj we use Equation 2. Notice that,
we do not take into account cyclic paths in our similarity
measure.

For our running example, in Figure 3, we present the
node similarity matrix of graphG calculated by FriendLink
algorithm. New friends can be recommended according to
their total weight, which is computed by aggregating all
paths connecting them with the target user, and by weighting
them proportionally to the length of each path. As shown in
Figure 3, userU1 would receive userU4 as friend recommen-
dation. The resulting recommendation is reasonable, because
U1 is connected with more paths to userU4 than those that
connectU1 andU7. That is, the FriendLink approach is able
to capture the associations among the graph data objects.

B. Complexity Analysis

RWR [7] and Katz index [4] as representatives of the
global approaches, are computationally prohibitive for large

Algorithm FriendLink (G, A, n, ℓ)
Input

G: an undirected and unweighted graph
A: adjacency matrix of graphG,
n: number of nodes of graphG,
ℓ: maximum length of paths explored inG,
m: the length of a path

Output
sim(i, j): similarity between nodei and nodej in G

1. Main Program
2. for i = 1 to n

3. for j = 1 to n
4. if A(i, j) = 1 then
5. A(i, j) = j

6. else
7. A(i, j)= 0
8. end if
9. end for j
10. end for i
11. for m = 2 to ℓ
12. Combine Paths()
13. Compute Similarity(m)
14. end for m
15. End Main Program

16. Function Combine Paths()
17. for i = 1 to n
18. for j = 1 to n

19. for k = 1 to n
20. if A(i, k) <> 0 andA(k, j) <> 0 then
21. A(i, j) = concatenate(A(i, k), A(k, j))
22. end if
23. end for k
24. end for j
25. end for i
26. return A(i, j)
27. End Function

28. Function Compute Similarity()
29. for i = 1 to n

30. for j = 1 to n
31. denominator = 1
32. for k = 2 to m
33. denominator = denominator * (n - k)
34. end for k

35. sim(i, j) = sim(i, j) + 1

m−1
·

∣

∣

∣
pathsm

i,j

∣

∣

∣

denominator
36. end for j
37. end for i
38. return sim(i, j)
39. End Function

Figure 2. The FriendLink algorithm.

U1 U2 U3 U4 U5 U6 U7 U8 U9

U1 0 0 0 0.2975 0 0 0.2856 0 0.167
U2 0 0 0.286 0 0146 0.146 0.024 0.156 0.156
U3 0 0.286 0 0 0.146 0.146 0.024 0.156 0.156
U4 0.298 0 0 0 0.025 0.025 0 0.167 0
U5 0 0.146 0.146 0.025 0 0.286 0 0.144 0.015
U6 0 0.146 0.146 0.025 0.286 0 0 0.144 0.015
U7 0.286 0.024 0.024 0 0 0 0 0.024 0
U8 0 0.156 0.156 0.167 0.144 0.144 0.024 0 0
U9 0.167 0.156 0.156 0 0.015 0.015 0 0 0

Figure 3. Node Similarity Matrix. It presents the possibility of two users
being friends.

graphs, because they require the inversion of a matrix.
For instance, the time complexity of Katz index is mainly
determined by the matrix inversion operator, which isO(n3).
RWR algorithm also requires a matrix inversion, which

can be, however, pre-computed [9] and stored for faster
on-line operations. In the same direction, there is also a
faster version [3] of Katz status index that reduces the
computational complexity from timeO(n3) to O(n + m),
wherem is the number of edges.

FOAF as representative of the local-based methods, con-
siders very small paths (only paths of length 2) between any
pair of nodes inG. In particular, for eachvx node, FOAF
traverses all its neighbors and then traverses the neighbors of
each ofvx’s neighbor. Since the time complexity to traverse
the neighborhood of a node is simplyh (h is the average
nodes degree in a network) and our graphG is sparse, it
holds thath << n. Thus, the time complexity of FOAF is
O(n× h2). The space complexity for FOAF is O(n× h).

In contrast to FOAF algorithm which traverses only paths
of length 2, our FriendLink algorithm considers also paths
with higher length (l-length paths). Based on Milgram’s [6]
“small-world hypothesis”,l can take integer values in the
interval [2,6], where forl=2 our FriendLink equals to the
FOAF algorithm. Thus, FriendLink’s time complexity is
O(n × hl). The space complexity for FriendLink is also
O(n× h). Notice that in our code we store adjacent nodes
using adjacency lists and not a matrix structure. However,
for simplicity reasons, in Figure 2 we present our algorithm
using a matrix structure.

C. Extending FriendLink for different types of Networks

Applying FriendLink to directed graphs can be achieved
(i) by simply disregarding the edge directions [10], (ii) or
by replacing the original adjacency matrixA with an asym-
metric one [10]. For weighted networks, if edges weights
are all positive, FriendLink applies trivially.

V. EXPERIMENTAL EVALUATION

In this section, we compare experimentally FriendLink
with RWR, Katz and FOAF algorithms, respectively. Our
experiments were performed on a 3 GHz Pentium IV, with
2 GB of memory, running Windows XP. All algorithms were
implemented in Matlab.

A. Real Data Sets

To evaluate the examined algorithms, we have used two
real data sets from the Hi5 and Epinions web sites. We
crawled the graph data from the Hi5 web site at two different
time periods. In particular, we crawled the Hi5 web site on
the 15th of April, 2010 and on the 20th of June, 2010. Our
data crawling method was the following: For each useru,
we traverse all his friends and then traverse the friends of
each ofu’s friends etc. ¿From the first crawl of Hi5 web site
we created a training data set with 63329 users and 88261
edges among them, denoted as Hi5 63K4, where the initial
starting node of our crawling was a random user in the US.
From the second crawl of Hi5 web site we created the probe

4http://delab.csd.auth.gr/∼symeon

data set with the same users by only preserving 16512 new
emerged edges connecting them. The graph data from the
first crawl are used to predict the new links emerging in the
second crawl.

We also use in our experiments the Epinions5 data set,
which is a who-trusts-whom social network. In particular,
users of Epinions.com express their Web of Trust, i.e.
reviewers whose reviews and ratings they have found to be
valuable. The Epinions data set is a directed network and,
thus, we treat it by simply disregarding the directions of
links [10]. It contains 49K users and 487K edges among
pairs of users.

We calculated several topological properties of the real
data sets which are presented in Figure 4. As shown, Epin-
ions 49K presents (i) a large clustering coefficient (LCC)
equal to 0.26, and (ii) a small average shortest path length
(ASD) equal to 4.01. These topological features can be
mainly discovered in small-worlds networks. Small-world
networks have sub-networks that are characterized by the
presence of connections between almost any two nodes
within them (i.e.high LCC). Moreover, most pairs of nodes
are connected by at least one short path (i.e. small ASD).

In contrast, as also shown in Figure 4, Hi5 63K has a
very small LLC (0.02) and a quite big ASD (7.18). In other
words, Hi5 data set can not be considered as a small-world
network, since (i) most of its nodes can not be reached from
every other by a small number of hops or steps and (ii) does
not have sub-networks that can be considered as cliques.

TOPOLOGICAL PROPERTIES

N = total number of nodes

E = total number of edges
ASD = average shortest path distance between pair nodes
ADEG = average node degree

LCC = average local clustering coefficient
GD = graph diameter (maximum shortest path distance)

Data-Set N E ASD ADEG LCC GD

Hi5 63K 63329 88261 7.18 2.78 0.02 19

Epinions 49K 49288 487183 4.01 19.76 0.26 14

Figure 4. Topological properties of the real data sets.

B. Experimental Protocol and Evaluation Metrics

As already described in previous Section, in our eval-
uation we consider the division of Hi5 63K data set into
two sets, according to the exact time stamp of the links
downloaded: (i) the training setET is treated as known
information and, (ii) the probe setEP is used for testing.
No information in the probe set is allowed to be used for
prediction. It is obvious thatET ∩ EP = ⊘. For each
user that has at least one new friend inEP we generate
friend recommendations based on his friends inET . Then,
we average the results for each user and compute the final

5http://www.trustlet.org/wiki/

performance of each algorithm. Epinions data sets does not
have time stamps of the edges. The performance of the
algorithms is evaluated by applying double cross-validation
(internal and external). Each data set was divided into 10
subsets. Each subset (EP) was in turn used for performance
estimation in the external cross-validation. The 9 remaining
subsets (ET) were used for the internal cross-validation. In
particular, we performed an internal 9-fold cross-validation
to determine the best values of the algorithms’ needed
parameters. In particular, for RWR we set parameterα=
0.001, whereas for Katz we set parameterβ=0.005. We
chose as values for the parameters those providing the best
performance on the internal 9-fold cross-validation. Then,
their performance is averaged on the external 10-fold cross-
validation. The presented results, based on two-tailed t-test,
are statistically significant at the 0.05 level.

We use the classic precision/recall metric as performance
measure for friend recommendations. For a test user receiv-
ing a list of k recommended friends (top-k list), precision
and recall are defined as follows:Precision is the ratio of
the number of relevant users in the top-k list (i.e., those in
the top-k list that belong in the probe setEP of friends of
the target user) tok. Recall is the ratio of the number of
relevant users in the top-k list to the total number of relevant
users (all friends in the probe setEP of the target user).

C. Sensitivity Analysis for the FriendLink Algorithm

In this Section, we study the sensitivity of FriendLink
accuracy performance in real networks (i) with different
possible attenuation factors, (ii) with different controllable
sparsity, (iii) with differentℓ values for path traversal.

In section III, we presented the definition of our similarity
measure (see Equation 2). The attenuation factor that was
mentioned, weights paths according to their lengthℓ. In this
section, we test other possible attenuation factors in order
to discover the best precision value that we can attain. In
particular, we have tested the following possible attenuation
factors: (i) 1

m−1 (ii) 1
2·m (iii) 1

m2 (iv) 1
log(m) and (v) the

Katz’s index attenuation factorβm, wherem is the path
length. The attenuation factors performance can be seen
in Figure 5a, for both real data set. As shown, the best
performance in both data sets is attained by1

m−1 . In the
following, we keep the 1

m−1 as the default attenuation factor
of the FriendLink algorithm.

Next, we measure the accuracy that FriendLink attains,
with different controllable sparsity. To examine the accuracy
performance of FriendLink in terms of different network
sparsity, we have created 5 different sparsity cases, by chang-
ing the fraction of observed edges, as shown in Figure 5b.
As expected, as the fraction of edges observed increases,
the precision increases too. This is reasonable, since every
prediction algorithm is expected to give higher accuracy for
a denser network.

In Section IV-A, one of the required input values for the
FriendLink algorithm is the lengthℓ of paths considered
in a graph. To improve our recommendations, it is impor-
tant to fine-tune theℓ variable. Based on Milgram’s [6]
“small-world hypothesis”,ℓ should take integer values in
the interval [2,6]. Figures 5c and 5d illustrate precision
for varying ℓ values for the Epinions 49K, and Hi5 63K
data sets, respectively. As expected, precision decreasesas
the number of recommended friends is increased. The best
precision is attained byℓ = 3 in both data sets. Notice that
we omit to show results forℓ = 6 because precision follows
a degraded performance forℓ = 4 and ℓ = 5, respectively.
In the following, we keep theℓ = 3 as the default maximum
length of paths of the FriendLink algorithm.

D. Accuracy Comparison of FriendLink with other methods

We proceed with the comparison of FriendLink with
RWR, Katz, and FOAF algorithms, in terms of precision
and recall. This reveals the robustness of each algorithm in
attaining high recall with minimal losses in terms of preci-
sion. We examine the ranked list, which is recommended to
a target user, starting from the top friend. In this situation,
the recall and precision vary as we increase the number
of recommended friends. For the Epinions 49K data set,
as shown in Figure 5e, our FriendLink algorithm again
attains the best precision value of 55% when we recommend
a top-1 list of friends. The precision of FriendLink is
impressive in this specific data set. The main reason is the
topological characteristics of Epinions 49K data set (i.e.
high LCC and small ASD). Thus, Epinions 49K can be
considered as a small-world network. This experiment shows
that FriendLink is more robust in finding relevant users
for the test user. The reason is that FriendLink exploits
proportionally theℓ-length pathways between two nodes
in the graph. In contrast, RWR and Katz traverse globally
the social network, missing to capture adequately the local
characteristics of the graph. Moreover, FOAF fails to provide
accurate recommendations because it exploits only length-2
paths.

For the Hi5 63K data set, as shown in Figure 5f, our
FriendLink algorithm attains the best results. However, the
overall performance of FriendLink, RWR and Katz algo-
rithms is significantly decreased compared with the results
in the Epinions data set. The first reason is the high sparsity
(i.e. ADEG equal to 2.78) of the Hi5 63K data set. The
second reason is the fact that Hi5 cannot be considered as
a small-world network.

E. Time Comparison of FriendLink with other Methods

In this Section, we compare FriendLink against RWR,
Katz and FOAF algorithms in terms of efficiency using
the 2 real data sets. We measured the clock time for the
off-line parts of all algorithms. The off-line part refers to
the building of the similarity matrix between any pair of

0

10

20

30

40

50

60

1/(m-1) 1/(2m) 1/m^2 1/log(m) b^m

%
 P

re
ci

si
o

n

Attenuation Factor

Epinions

Hi5

(a)

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Fraction of Edges observed

Epinions Hi5

(b)

0

10

20

30

40

50

60

1 2 3 4

%
 P

re
ci

si
o
n

Recommended Friends

Length 2 Length 3 Length 4 Length 5

(c)

��

��

��

��

�
��
�	

�
��

�

�	������ �	������ �	������ �	������

�

�

��

��

��

��

� � � �

�
��
�	

�
��

�

���	

��	��	�����	���

�	������ �	������ �	������ �	������

(d)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

%
 P

re
ci

si
o

n

% Recall

FriendLink RWR Katz FOAF

(e)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

%
 P

r
e

c
is

io
n

% Recall

FriendLink RWR Katz FOAF

(f)

Figure 5. (a) Precision vs. Attenuation factors diagram, (b) Precision vs. fraction of edges observed diagram. (c) Precision vs. number of recommended
friends for Epinions 49K data set, (d) Precision vs. number of recommended friends for Hi5 63K data sets. (e) Precision vs. Recall diagram for Epinions
49K data set, (f) Precision vs. Recall diagram for Hi5 63K data set.

nodes in a graph. The results are presented in Table I.
As shown, FriendLink outperforms RWR and Katz, since
they calculate the inverse of ann× n matrix. As expected,
FOAF algorithm, outperforms the other algorithms due to its
simpler complexity. Notice that the results depict the time
needed to compute the whole similarity matrix. On the other
hand, if we were to calculate the similarity matrix of only
one user, then the computation would require only part of a
second to produce a recommendation.

Data Sets FriendLink RWR Katz FOAF
Epinions 49K 245 sec 380 sec 460 sec 55 sec

Hi5 63K 340 sec 520 sec 617 sec 221 sec

Table I
T IME COMPARISON OF TESTED ALGORITHMS FOR BOTH DATA SETS.

VI. CONCLUSIONS

In this paper, we introduced a framework to provide friend
recommendations in OSNs. We define a new node similarity
measure that exploits local and global characteristics of a
network. We performed extensive experimental comparison
of the proposed method against existing link prediction
algorithms showing that our FriendLink algorithm provides
more efficient and more accurate friend recommendations.
In the future, we want to examine other ways of improving
friend recommendations based on other features that OSNs
offer, such as photo and video tagging, groups and common
applications. The combination of such features can provide
information on different ways that users are connected and
therefore yield to more accurate friend recommendations.

REFERENCES

[1] L. Adamic and E. Adar. How to search a social network.
Social Networks, 27(3):187–203, 2005.

[2] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy. Make
new friends, but keep the old: recommending people on
social networking sites. InCHI ’09: Proceedings of the
27th international conference on Human factors in computing
systems, pages 201–210, 2009.

[3] K. C. Foster, S. Q. Muth, J. J. Potterat, and R. B. Rothenberg.
A faster katz status score algorithm.Comput. Math. Organ.
Theory, 7:275–285, December 2001.

[4] L. Katz. A new status index derived from sociometric
analysis.Psychometrika, 18(1):39–43, 1953.

[5] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks.Proceedings of the 12th In-
ternational Conference on Information and Knowledge Man-
agement (CIKM), 2003.

[6] S. Milgram. The small world problem.Psychology Today,
22:61–67, 1967.

[7] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Automatic
multimedia cross-modal correlation discovery. InKDD ’04:
Proceedings of the 10th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 653–
658, 2004.

[8] F. Rubin. Enumerating all simple paths in a graph.IEEE
Transactions on Circuits and Systems, 25(8):641–642, 1978.

[9] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with
restart and its applications. InICDM ’06: Proceedings of the
6th International Conference on Data Mining, pages 613–
622. IEEE Computer Society, 2006.

[10] S. Wasserman and K. Faust. Social network analysis: Methods
and applications. 1994.

