
Static program analysis for Java Card applets

Vasilios Almaliotis1 Alexandros Loizidis1 Panagiotis Katsaros1

Panagiotis Louridas2 Diomidis Spinellis2

1 Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{valmalio,aloizidi,katsaros}@csd.auth.gr

2 Department of Management Science and Technology
Athens University of Economics and Business

Patision 76, 104 34 Athens, Greece
{louridas,dds}@aueb.gr

Abstract. The Java Card API provides a framework of classes and interfaces
that hides the details of the underlying smart card interface, thus relieving de-
velopers from going through the swamps of microcontroller programming. This
allows application developers to concentrate most of their efforts on the details
of application, assuming proper use of the Java Card API calls regarding (i) the
correctness of the methods’ invocation targets and their arguments and (ii)
temporal safety, i.e. the requirement that certain method calls have to be used in
certain orders. Several characteristics of the Java Card applets and their multi-
ple-entry-point program structure make it possible for a potentially unhandled
exception to reach the invoked entry point. This contingency opens a possibil-
ity of leaving the applet in an unpredictable state that is potentially dangerous
for the application’s security. Our work introduces automatic static program
analysis as a means for the early detection of misused and therefore dangerous
API calls. The shown analyses have been implemented within the FindBugs
bug detector, an open source framework that applies static analysis functions on
the applet bytecode.

KEYWORDS: Java Card, static program analysis, temporal safety

1 Introduction

Static analysis has the potential to become a credible means for automatic verification
of smart card applications, which are security critical by definition. This work ex-
plores the adequacy of the FindBugs open source framework for the static verification
of correctness properties concerning the API calls used in Java Card applications.

The Java Card API provides a framework of classes and interfaces that hides the
details of the underlying smart card interface, thus allowing developers to create ap-
plications, called applets, at a higher level of abstraction. The Java Card applet life
cycle defines the different phases that an applet can be in. These phases are (i) load-
ing, (ii) installation, (iii) personalization, (iv) selectable, (v) blocked and (vi) dead. A

characteristic of Java Card applets is that many actions can be performed only when
an applet is in a certain phase. Also, contrary to ordinary Java programs that have a
single main() entry point, Java Card applets have several entry points, which are
called when the card receives various application (APDU) commands. These entry
points roughly match the mentioned lifetime phases.

In a Java Card, any exception can reach the top level, i.e. the applet entry point in-
voked by the Java Card Runtime Environment (JCRE). In this case, the currently
executing command is aborted and the command, which in general is not completed
yet, is terminated by an appropriate status word: if the exception is an ISOException,
the status word is assigned the value of the reason code for the raised exception,
whereas in all other cases the reason code is 0x6f00 corresponding to “no precise
diagnosis”.

An exception in an applet’s entry point can reveal information about the behavior
of the application and in principle it should be forbidden. In practice, whereas an
ISOException is usually explicitly thrown by the applet code using throw, a poten-
tially unhandled exception is implicitly raised when executing an API method call
that causes an unexpected error. This may result in leaving the applet in an unpre-
dicted and ill state that can possibly violate the application’s security properties.

The present article introduces a static program analysis approach for the detection
of misused Java Card method calls. We propose the use of appropriate bug detectors
designed for the FindBugs static analysis framework. These bug detectors will be
specific to the used API calls and will check (i) the correctness of the methods’ invo-
cation target and their arguments and (ii) temporal safety in their use.

We introduce the two bug detectors that we developed by applying interprocedural
control flow based and dataflow analyses on the Java Card bytecode. Then, we dis-
cuss some recent advances in related theory that open new prospects to implement
sufficiently precise property analyses.

Our proposal addresses the problem of unhandled exceptions based on bug detec-
tors that in the future may be supplied by Java Card technology providers. Applet
developers will check their products for correct use of the invoked API calls, without
having to rely on advanced formal techniques that require highly specialized analysis
skills and that are not fully automated.

Section 2 provides a more thorough view of the aims of this work and reviews the
related work and the basic differences of the presented approach. Section 3 introduces
static analysis with the FindBugs framework. Section 4 presents the work done on the
static verification of Java Card API calls and section 5 reports the latest developments
that open new prospects for implementation of efficient static analyses that do not
compromise precision. The paper ends with a discussion on our work’s potential
impact and comments interesting future research prospects.

2 Related work on static verification of Java Card applets

Our work belongs to a family of static verification techniques which, in general, do
not guarantee sound and complete analysis. This means that there is no guarantee
that we will find all property violations and also we cannot guarantee the absence of

false positives. However, our bug detectors may implement advanced static analyses
that eliminate false negatives and minimize false positives (Section 5).

In related works, this sort of analysis cannot be compared with established formal
approaches that have been used successfully in static verification of Java Card ap-
plets: JACK [1], KeY [2], Krakatoa [3], Jive ([4], [5]) and LOOP ([6], [7]). These
techniques aim in precise program verification and they are not fully automated.
Moreover, they require highly specialized formal analysis skills for the applet devel-
oper.

Static analysis alternatives for Java Card program verification include abstract in-
terpretation [8], i.e. a semantics-based description of all possible executions based on
abstract values in place of the actual computed values. In [9], the authors introduce
the use of ESC/Java (2), a tool for proving specifications at compile time, without
requiring the analyst to interact with the back-end theorem prover (Simplify). The
provided analysis is neither sound nor complete, but has been found effective in prov-
ing absence of runtime exceptions and in verifying relatively simple correctness
properties.

In contrast with [9], our proposal for static program analysis is not based on source
code annotations. This reduces the verification cost to the applet developers, since
they do not have to make explicit all implicit assumptions needed for correctness (e.g.
the non-nullness of buf in many Java Card API calls). Instead of this, the static
analyses of FindBugs are implemented in the form of tool plugins that may be dis-
tributed together with the used Java Card Development kit or by an independent third
party. Applet developers use the bug detectors as they are, but they can also extend
their open source code in order to develop bug detectors for custom properties. Note
that in ESC/Java (2), user-specified properties assume familiarization, (i) with the
Java Modeling Language (JML), (ii) with the particular “design by contract” specifi-
cation technique and (iii) with the corresponding JML based Java Card API specifica-
tion [10]. On the other hand, the development of new FindBugs bug detectors as-
sumes only Java programming skills that most software engineers already have.

User defined bug detectors may be based on an initial set of basic bug detectors
concerned with (i) the correctness of the API calls invocation target and their argu-
ments and (ii) the temporal safety in their use. This article is inspired by the ideas
presented in [11]. However, the focus on the Java Card API is not the only difference
between these two works. The static analysis of [11] is based on stateless calls to a
library that reflects the API of interest. Violations of temporal safety for the analyzed
API calls, however, can be detected only by a statefull property analysis that spans
the whole applet or even multiple applets in the same or different contexts. As we will
see in next sections, FindBugs static analyses are applied by default to individual
class contexts and this is one of the restrictions we had to overcome.

3 Static analysis with the FindBugs framework

FindBugs [12] is a tool and framework that applies static analyses on the Java (Java
Card) bytecode in order to detect bug patterns, i.e. to detect “places where code does
not follow correct practice in the use of a language feature or library API” [13]. In

general, FindBugs bug detectors behave according to the Visitor design pattern: each
detector visits each class and each method in the application under analysis. The
framework comes with many analyses built-in and classes and interfaces that can be
extended to build new analyses. In our work, we exploit the already provided intra-
procedural control flow analysis that transforms the analyzed bytecode into control
flow graphs (CFGs), which are used in our property analyses and dataflow analyses.

The bug pattern detectors are implemented using the Byte Code Engineering Li-
brary (BCEL) [14], which provides infrastructure for analyzing and manipulating
Java class files. In essence, BCEL offers to the framework data types for inspection
of binary Java (Java Card) classes. One can obtain methods, fields, etc. from the main
data types, JavaClass and Method. The project source directories are used to map
the reported warnings back to the Java source code.

Bug pattern detectors are packaged into FindBugs plugins that can use any of the
built-in FindBugs analyses and in effect extend the provided FindBugs functionality
without any changes to its code. A plugin is a jar file containing detector classes and
analysis classes and the following meta-information: (i) the plugin descriptor
(findbugs.xml) declaring the bug patterns, the detector classes, the detector
ordering constraints and the analysis engine registrar, (ii) the human-readable
messages (in messages.xml), which are the localized messages generated by the
detector. Plugins are easily activated in the developer’s FindBugs installation by
copying the jar file into the proper location of the user’s file system.

FindBugs applies the loaded detectors in a series of AnalysisPasses. Each
pass executes a set of detectors selected according to declared detector ordering
constraints. In this way, FindBugs distributes the detectors into AnalysisPasses
and forms a complete ExecutionPlan, i.e., a list of AnalysisPasses
specifying how to apply the loaded detectors to the analyzed application classes.
When a project is analyzed, FindBugs runs through the following steps:

1. Reads the project
2. Finds all application classes in the project
3. Loads the available plugins containing the detectors
4. Creates an execution plan
5. Runs the FindBugs algorithm to apply detectors to all application classes

The basic FindBugs algorithm in pseudo-code is:

 for each analysis pass in the execution plan do
 for each application class do
 for each detector in the analysis pass do
 apply the detector to the class
 end for
 end for
 end for

All detectors use a global cache of analysis objects and databases. An analysis
object (accessed by using a ClassDescriptor or a MethodDescriptor)
stores facts about a class or method, for example the results of a null-pointer dataflow
analysis on a method. On the other hand, a database stores facts about the entire
program, e.g. which methods unconditionally dereference parameters. All detectors

implement the Detector interface, which includes the visitClassContext
method that is invoked on each application class. Detector classes (i) request one or
more analysis objects from the global cache for the analyzed class and its methods,
(ii) inspect the gathered analysis objects and (iii) report warnings for suspicious
situations in code. When a Detector is instantiated its constructor gets a reference
to a BugReporter. The Detector object uses the associated BugReporter, in
order to emit warnings for the potential bugs and to save the detected bug instances in
BugCollection objects for further processing.

4 Static verification of Java Card API calls

The test cases for the bug detectors shown here were derived from an electronic purse
applet developed for the purposes of this work. The electronic purse applet adds or
removes units of digital currency and stores the personal data of the card owner.
Moreover, there is also a bonus applet that interacts with the electronic purse for
crediting the bonus units corresponding to the performed transactions. The two ap-
plets lie in separate contexts and communicate data to each other through a shareable
interface. Both applets are protected by their own PINs. They are accessed through
the Java Card Runtime Environment (JCRE) that invokes the process method,
which in turn invokes the methods corresponding to the inputted APDU commands.

PurseApplet
+ credit
+ debit
+ foreignDebit
+ getAccountNumber
+ getBalance
+ getUserAddress
+ getUserName
+ getUserSurname
+ setAccountNumber
+ setUserAddress
+ setUserName
+ setUserSurname
+ setUserPIN
+ validateUserPIN

BonusApplet
+ changeUserPIN
+ eraseBonus
+ getBonus
+ makePurchase
+ substractBonus
+ validateUserPIN

Figure 1. Public members of the PurseApplet and the BonusApplet

4.1 Bug detectors for the temporal safety of Java Card API calls

Bug detectors for the temporal safety of API calls use a control flow graph (CFG)
representation of Java methods to perform static verification that either exploits the
builtin dataflow analyses or is based on more sophisticated user-defined analyses.
The following pseudo-code reflects the functionality of the visitClassCon-
text() method of a typical CFG-based detector.

 for each method in the class do
 request a CFG for the method from the ClassContext
 request one or more analysis objects on the method from the ClassContext
 for each location in the method do
 get the dataflow facts at the location
 inspect the dataflow facts
 if a dataflow fact indicates an error then
 report a warning
 end if
 end for
 end for

The basic idea is to visit each method of the analyzed class in turn, requesting

some number of analysis objects. After getting the required analyses, the detector
iterates through each location in the CFG. A location is the point in execution just
before a particular instruction is executed (or after the instruction, for backwards
analyses). At each location, the detector checks the dataflow facts to see if anything
suspicious is going on. If suspicious facts are detected at a location the detector issues
a warning.

Temporal safety of API calls concerns rules about their ordering that are possibly
associated with constraints on the data values visible at the API boundary. Temporal
safety properties for the Java Card API are captured in appropriate state machines that
recognize finite execution traces with improper use of the API calls. Figure 2 intro-
duces the state machine for a Java Card applet bug raising an APDUException for
improper use of the setOutgoing() call.

Figure 2. Illegal use of short setOutgoing() corresponding to a Java Card
APDUException

Bug detectors for temporal safety of API calls track the state of the property and at

the same time track the so-called execution state, i.e. the values of all program vari-
ables. Accurate tracking of the execution state can be very expensive, because this
implies tracking every branch in the control-flow, in which the values of the exam-
ined variables differ along the branch paths. The resulted search space may grow
exponentially or even become infinite.

For the property of Figure 2 we developed the path-insensitive bug detector,
shown in this section, to explore the suitability of the FindBugs framework for the
static verification of Java Card applets. The more precise path-sensitive analyses rely
on the fact that for a particular property to be checked, it is likely that most branches
in the code are not relevant to the property, even though they affect the execution
state of the program. Detectors of this type may be based on heuristics that identify
the relevant branches and in this way they reduce the number of potential false posi-
tives. Recent advances in path-sensitive static analyses and their applicability in the
FindBugs framework are discussed in section 5.

In any applet, it is possible to access an APDU provided by the JCRE, but it is not
possible to create new APDUs. This implies that all calls to setOutgoing() in a
single applet are applied to the same APDU instance and this fact eliminates the need
to check the implicit argument of the setOutgoing() calls. The developed detec-
tors take into account two distinct cases of property violation:

1. Intraprocedural property violations are detected by simple bytecode
scanning that follows the states of the property state machine (Figure 2)

2. Interprocedural property violations are detected by extending the CFG
based and call graph analysis functions provided in the Findbugs
framework.

More precisely, the InterCallGraph class we developed makes it possible to
construct call graphs including calls that span different class contexts. This extension
allowed the detection of nested method calls that trigger the state transitions of Figure
2 either by direct calls to setOutgoing() or by nested calls to methods causing
reachability of the final state. The following is the pseudo-code of the path-insensitive
interprocedural analysis.

request the call graph of the application classes
for each method in the call graph do //mark methods with setOutgoing() call
 if method contains setOutgoing() then
 add method to the black list
 end if
end for
for each method in the class do //mark methods with nested black method call(s)
 start a Depth First Search from the corresponding graph node:

if method of the node is in the black list then
 add method to the gray list
 if final state of Fig. 2 is reached then
 report the detected bug
 end if
end if

end for
for each method in the class do //detect property violation caused in a loop
 request a CFG for the method
 check if method has loop, enclosing call of setOutgoing() or a gray method
end for

Finally, the methods’ CFGs are inspected for loops enclosing method calls that do

not cause reachability of the final state by themselves, but they result in a property

violation when encountered in a loop. Figure 3 shows the bytecode patterns matching
the use of a loop control flow in a CFG. Unhandled exception violations are detected
by looking for an exception thrower block preceding the instruction by which we
reach the final state (Figure 4). Access to an exception handler block (if any) is possi-
ble through a handled exception edge. In FindBugs, method isExcep-
tionThrower() detects an exception thrower block and method isExcep-
tionEdge() determines whether a CFG edge is a handled exception edge.

(a)

(b)

Figure 3. CFG patterns with basic blocks corresponding to (a) for/while and
(b) do . . . while loop

Figure 4. CFG pattern to find unhandled exception edges

Figure 5 demonstrates how the detector responds in two different property viola-
tion cases. In the first case, the client applet named PurseClientApplet calls setOut-
going() and subsequently invokes the method getUserName() of the PurseAp-
plet thus causing the detected property violation. The second case concerns a property
violation caused by a call to setUserAddress() in a for loop.

(a)

(b)

Figure 5. Illegal use of setOutgoing() detected (a) in interprocedural analysis
and (b) within a loop via call to another method

4.2 Bug detectors for the correctness of the called methods’ arguments

Dataflow analysis is the basic means to statically verify the correctness of the called
methods’ arguments. Its basic function is to estimate conservative approximations
about facts that are true in each location of a CFG. Facts are mutable, but they have to
form a lattice. The DataflowAnalysis interface shown in Figure 6 is the super-
type for all concrete dataflow analysis classes. It defines methods for creating, copy-
ing, merging and transferring dataflow facts. Transfer functions take dataflow facts
and model the effects of either a basic block or a single instruction depending on the
implemented dataflow analysis. Merge functions combine dataflow facts when con-
trol paths merge. The Dataflow class and its subclasses implement: (i) a dataflow
analysis algorithm based on a CFG and an instance of DataflowAnalysis, (ii)
methods providing access to the analysis results.

We are particularly interested for the FrameDataflowAnalysis class that
forms the base for analyses that model values in local variables and operand stack.
Dataflow facts for derived analyses are subclasses of the class Frame, whose in-
stances represent the Java stack frame at a single CFG location. In a Java stack frame,

both stack operands and local variables are considered to be “slots” that contain a
single symbolic value.

Figure 6. FindBugs base classes for dataflow analyses

The built-in frame dataflow analyses used in static verification of the called meth-
ods arguments are:

• The TypeAnalysis that performs type inference for all local variables
and stack operands.

• The ConstantAnalysis that computes constant values in CFG
locations.

• The IsNullValueAnalysis that determines which frame slots contain
definitely-null values, definitely non-null values and various kinds of
conditionally-null or uncertain values.

• The ValueNumberAnalysis that tracks the production and flow of
values in the Java stack frame.

The class hierarchy of Figure 6 and the mentioned built-in dataflow analyses form
a generic dataflow analysis framework, since it is possible to create new kinds of
dataflow analyses that will use as dataflow facts objects of user-defined classes.

A bug detector exploits the results of a particular dataflow analysis on a method by
getting a reference to the Dataflow object that was used to execute the analysis.
There is no direct support for interprocedural analysis, but there are ways to over-
come this shortcoming. More precisely, analysis may be performed in multiple
passes. A first pass detector will compute method summaries (e.g. method parameters
that are unconditionally dereferenced, return values that are always non-null and so
on), without reporting any warnings and a second pass detector will use the computed
method summaries as needed. However, this approach excludes the implementation
of context sensitive interprocedural analyses like the ones explored in Section 5.

In the following paragraphs, we present a bug detector for unhandled exceptions
concerned with the correctness of arguments in method calls. Consider the following
method:

short arrayCopy(byte[] src, short srcOff,
 byte[] dest, short destOff, short length)

A NullPointerException is raised when either src or dest is null. Also, when the
copy operation accesses data outside the array bounds the ArrayIndexOutOfBound-
sException is raised. This happens either when one of the parameters srcOff,
destOff and length has a negative value or when srcOff+length is greater
than src.length or when destOff+length is greater than dest.length.
We provide the pseudo-code of the visitClassContext() method for the de-
tector of unhandled exceptions raised by invalid arrayCopy arguments:

for each method in the class do
 request a CFG for the method
 get the method’s ConstantDataflow from ClassContext
 get the method’s ValueNumberDataflow from ClassContext
 get the method’s IsNullValueDataflow from ClassContext

 for each location in the method do
 get instruction handle from location
 get instruction from instruction handle
 if instruction is not instance of invoke static then
 continue
 end if
 get the invoked method's name from instruction
 get the invoked method’s signature from instruction
 if invoked method is arrayCopy then
 get ConstantFrame (fact) at current location
 get ValueNumberFrame (fact) at current location
 get IsNullValueFrame (fact) at current location

 get the method's number of arguments
 for each argument do
 get argument as Constant, ValueNumber, IsNullValue
 if argument is constant then
 if argument is negative then
 report a bug
 end if
 else
 if argument is not method return value nor constant then
 if argument is not definitely not null then
 report a bug
 end if
 end if

 end for
 end if
 end for

end for

Figure 7 demonstrates how the detector responds in two different property viola-
tion cases. In the first case, PurseApplet calls arrayCopy with null value for the
parameter accountNumber. It is also important to note that it is not possible to
determine by static analysis the correctness of the method call for all of the mentioned

criteria, because buffer gets its value at run time by the JCRE. However, a com-
plete FindBugs bug detector could generate a warning for the absence of an appropri-
ate exception handler. In the second test case, parameter offset is assigned an
unacceptable value.

(a)

(b)

Figure 7. Illegal use of arrayCopy detected with (a) null value parameter and
(b) unacceptable constant value parameter

5 Precise and scalable analyses for the static verification of API
calls

The static analysis case studies of Section 4 point out the merits as well as some
shortcomings of the FindBugs open source framework, for the static verification of
Java Card API calls. Although there is only limited documentation for the framework
design and architecture, the source code is easy to read and self-documented. Find-
Bugs is a live open source project and we will soon have new developments on short-
comings, like for example the lack of context-sensitive interprocedural dataflow
analysis. Appropriate bug detectors can be supplied by the Java Card technology
providers. Thus, Java Card applet providers will be able to use FindBugs in their
development process with limited cost. This possibility opens new perspectives for
automatically verifying the absence of unhandled security critical exceptions, as well
as prospects for the development of bug detectors for application-specific correctness
properties.

The static analysis techniques shown in the two case studies can be combined in
bug detectors where either

• temporal safety includes constraints on the data values that are visible at the
API boundary or

• we are interested in implementing sophisticated and precise analyses that
reduce false positives and at the same time scale to real Java Card programs.

In the following paragraphs we review the latest developments in related bibliography
that address the second aim and in effect designate static program analysis as a credi-
ble approach for the static verification of security critical applications.

A notable success story in temporal safety checking is the ESP tool for the static
verification of C programs. ESP utilizes a successful heuristic called “property simu-
lation” [15] and a path feasibility analysis called “path simulation” [16], in order to
perform partial program verification based only on the control-flow branches that are
relevant to the checked property. This results in a selective path-sensitive analysis
that maintains precision only for those branches that appear to affect the property to
be checked. For one particular instantiation of the approach, in which the domain of
execution states is chosen to be the constant propagation lattice, the analysis executes
in polynomial time and scales without problems in large C programs like the GNU C
compiler with 140000 LOC.

It is still possible to construct programs for which property simulation generates
false positives, but the authors claim that this happens only to a narrow class of pro-
grams that is described in their article. Property simulation is designed to match the
behavior of a careful programmer. In order to avoid programming errors program-
mers maintain an implicit correlation between a given property state and the execu-
tion states under which the property state machine is in that state. Property simulation
makes this correlation explicit as follows:

• For a given temporal safety property, ESP performs a first analysis pass
where it instruments the source program with the state-changing events.

• For the second analysis pass, the property simulation algorithm implements a
merge heuristic according to which if two execution states correspond to the
same property state they are merged. In any other case, ESP explores the two
paths independently as in a full path-sensitive analysis.

Interprocedural property simulation requires generation of context-sensitive function
summaries, where context sensitivity is restricted to the property states. This happens
in order to exclude the possibility of a non-terminated computation that exists if the
domain of execution states is infinite (e.g. constant propagation). Thus, execution
states are treated in a context-insensitive manner: at function entry nodes, all execu-
tion states from the different call sites are merged.

The proposed path simulation technique manages execution states and in effect
acts as a theorem prover to answer queries about path feasibility. In general, path
feasibility analysis is undecidable. To guarantee convergence and efficiency, ESP
makes conservative assumptions when necessary. While such over approximation is
sound (i.e. does not produce false negatives), it may introduce imprecision. More
recent research efforts in cutting down spurious errors that are at the same time scal-
able enough for solving real world problems focus on applying iterative refinement to
path-sensitive dataflow analysis [17].

Another notable success story in temporal safety checking is the SAFE project [18]
at the IBM Research Labs. Both ESP and SAFE build on the theoretical underpinning
of a typestate as a refinement of the concept of type [19]. Whereas the type of a data
object determines the set of operations ever permitted on the object, typestate deter-
mines the subset of these operations which are performed in a particular context.
Typestate tracking aims to statically detect syntactically legal but semantically unde-
fined execution sequences. The heuristics applied in SAFE are reported in [20]. In
that work the authors propose a composite verifier built out of several composable
verifiers of increasing precision and cost. In this setting, the composite verifier stages
analyses in order to improve efficiency without compromising precision. The early
stages use the faster verifiers to reduce the workload for later, more precise, stages.
Prior to any path-sensitive analysis, the first stage prunes the verification scope using
an extremely efficient path-insensitive error path feasibility check.

The most serious restriction in the current version of FindBugs regarding the per-
spectives to implement sophisticated analyses like those described is the lack of sup-
port for interprocedural context-sensitive dataflow analysis. However, we expect that
this restriction will soon be removed.

6 Conclusion

This work explored the adequacy of static program analysis for the automatic verifi-
cation of Java Card applets. We utilized the FindBugs open source framework in
developing two bug detectors that check the absence of unhandled security critical
exceptions, concerned with temporal safety and correctness of the arguments of Java
Card API calls. The developed detectors are sound, but they are not precise. We ex-
plored the latest developments that open new prospects for improving the precision of
static analysis, thus making it a credible approach for the automatic verification of
security critical applications. The results of our work and the bug detectors source
code are publicly available online http://mathind.csd.auth.gr/smart/.

A future research goal is the static verification of multi-applet Java Card applica-
tions (like the one in our case studies), in terms of temporal restrictions of inter-applet
communications through shareable interfaces [21]. Also, we will continue to seek
ways to overcome the experienced shortcomings in the current FindBugs version.

Acknowledgments

This work was supported by the funds of the bilateral research programme between Greece and Cyprus,
Greek General Research Secretariat, 2006-2008.

References

1. Burdy, L., Requet, A., and Lanet, J. L. Java applet correctness: a developer-oriented
approach. In Proc. of Formal Methods Europe (FME), LNCS 2805 Springer, 2003.

http://mathind.csd.auth.gr/smart/

2. Beckert, B. and Mostowski, W. A program logic for handling Java Card’s transaction
mechanism. In Proc. of 6th Int. Conference on Fundamental Approaches to Software En-
gineering (FASE’03), LNCS 2621 Springer, 2003, pp. 246-260.

3. Marché, C. Paulin-Mohring, C. and Urbain, X. The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. Journal of Logic and Algebraic Pro-
gramming 58 (1-2), 2004, pp. 89-106.

4. Meyer, J., Poetzsch-Heffter, A. An architecture for interactive program provers. In Proc.
of Tools and Algorithms for the Construction and Analysis of Systems (TACAS), LNCS
1785 Springer, 2000, pp. 63-77.

5. Jacobs, B., Marche, C. and Rauch, N. Formal verification of a commercial smart card
applet with multiple tools. In Proc. 10th Int. Conference on Algebraic Methodology and
Software Technology (AMAST 2004), LNCS 3116 Springer, 2004, pp. 241-257.

6. Van den Berg, J. and Jacobs, B. The LOOP compiler for Java and JML. In Proc. of Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), LNCS 2031
Springer, 2001, pp. 299-312.

7. Breunesse, C. B., Catano, N., Huisman, M. and Jacobs, B. Formal methods for smart
cards: an experience report. Science of Computer Programming 55, 2005, pp. 53-80.

8. The Java Verifier project, http://www.inria.fr/actualites/inedit/inedit36_partb.en.html
9. Catano, N. and Huisman, M. Formal specification and static checking of Gemplus’s

electronic purse using ESC/Java. In Proc. of Formal Methods Europe (FME’02), LNCS
2391 Springer, 2002, pp. 272-289.

10. Meijer, H. and Poll, E. Towards a full formal specification of the JavaCard API. In Proc.
of the Int. Conf. on Research in Smart Cards: Smart Card Programming and Security,
LNCS 2140 Springer, 2001, pp. 165-178.

11. Spinellis, D. and Louridas, P. A framework for the static verification of API calls. Jour-
nal of Systems and Software 80 (7), 2007, pp. 1156-1168.

12. The FindBugs project, http://findbugs.sourceforge.net/ (last access: 21st of Feb. 2008)
13. Hovemeyer, D., Pugh, W. Finding bugs is easy. SIGPLAN Notices 39 (12), 2004, pp. 92-

106.
14. Dahm, M. Byte code engineering with the BCEL API. Technical Report B-17-98, Freie

University of Berlin, Institute of Informatics, 2001.
15. Das, M., Lerner, S. and Seigle, M. ESP: Path-sensitive program verification in polyno-

mial time. In Proc. of the ACM SIGPLAN 2002 Conf. on Programming Language De-
sign and Implementation (PLDI), 2002, pp. 57-68.

16. Hampapuram, H., Yang, Y. and Das, M. Symbolic path simulation in path-sensitive
dataflow analysis. In Proc. of 6th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE), 2005, pp. 52-58

17. Dhurjati, D., Das, M. and Yang, Y. Path-sensitive dataflow analysis with iterative re-
finemet. In Proc. of the Int. Symp. on Static Analysis (SAS), LNCS 4134 Springer-
Verlag, 2006, pp. 425-442.

18. The SAFE (Scalable And Flexible Error detection) project, http://www.research.ibm.com
/safe/ (last access: 21st of Feb. 2008)

19. Strom, R. E. and Yemini, S. Typestate: A programming language concept for enhancing
software reliability. IEEE Trans. on Software Engineering 12 (1), 1986, pp. 157-171.

20. Fink, S., Yahav, E., Dor, N., Ramalingam G., Geay, E. Effective typestate verification in
the presence of aliasing. In Proc. of the Int. Symp. on Software Testing and Analysis
(ISSTA), 2006, pp. 133-144.

21. Chugunov, G., Fredlund, L.-A., Gurov, D. Model checking of multi-applet Java Card
Applications. In Proc. of the 5th Smart Card Research and Advanced Application Conf.
(CARDIS), 2002.

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236652%232004%23999419998%23475900%23FLP%23&_cdi=6652&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=88c9057a2011690417a397e154013886
http://www.inria.fr/actualites/inedit/inedit36_partb.en.html
http://findbugs.sourceforge.net/
http://www.research.ibm.com/safe/
http://www.research.ibm.com/safe/

	4.1 Bug detectors for the temporal safety of Java Card API calls
	4.2 Bug detectors for the correctness of the called methods’ arguments

