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Abstract. The Java Card API provides a framework of classes and interfaces 
that hides the details of the underlying smart card interface, thus relieving de-
velopers from going through the swamps of microcontroller programming. This 
allows application developers to concentrate most of their efforts on the details 
of application, assuming proper use of the Java Card API calls regarding (i) the 
correctness of the methods’ invocation targets and their arguments and (ii) 
temporal safety, i.e. the requirement that certain method calls have to be used in 
certain orders. Several characteristics of the Java Card applets and their multi-
ple-entry-point program structure make it possible for a potentially unhandled 
exception to reach the invoked entry point. This contingency opens a possibil-
ity of leaving the applet in an unpredictable state that is potentially dangerous 
for the application’s security. Our work introduces automatic static program 
analysis as a means for the early detection of misused and therefore dangerous 
API calls. The shown analyses have been implemented within the FindBugs 
bug detector, an open source framework that applies static analysis functions on 
the applet bytecode. 
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1   Introduction 

Static analysis has the potential to become a credible means for automatic verification 
of smart card applications, which are security critical by definition. This work ex-
plores the adequacy of the FindBugs open source framework for the static verification 
of correctness properties concerning the API calls used in Java Card applications. 

The Java Card API provides a framework of classes and interfaces that hides the 
details of the underlying smart card interface, thus allowing developers to create ap-
plications, called applets, at a higher level of abstraction. The Java Card applet life 
cycle defines the different phases that an applet can be in. These phases are (i) load-
ing, (ii) installation, (iii) personalization, (iv) selectable, (v) blocked and (vi) dead. A 

 



characteristic of Java Card applets is that many actions can be performed only when 
an applet is in a certain phase. Also, contrary to ordinary Java programs that have a 
single main() entry point, Java Card applets have several entry points, which are 
called when the card receives various application (APDU) commands. These entry 
points roughly match the mentioned lifetime phases. 

In a Java Card, any exception can reach the top level, i.e. the applet entry point in-
voked by the Java Card Runtime Environment (JCRE). In this case, the currently 
executing command is aborted and the command, which in general is not completed 
yet, is terminated by an appropriate status word: if the exception is an ISOException, 
the status word is assigned the value of the reason code for the raised exception, 
whereas in all other cases the reason code is 0x6f00 corresponding to “no precise 
diagnosis”. 

An exception in an applet’s entry point can reveal information about the behavior 
of the application and in principle it should be forbidden. In practice, whereas an 
ISOException is usually explicitly thrown by the applet code using throw, a poten-
tially unhandled exception is implicitly raised when executing an API method call 
that causes an unexpected error. This may result in leaving the applet in an unpre-
dicted and ill state that can possibly violate the application’s security properties. 

The present article introduces a static program analysis approach for the detection 
of misused Java Card method calls. We propose the use of appropriate bug detectors 
designed for the FindBugs static analysis framework. These bug detectors will be 
specific to the used API calls and will check (i) the correctness of the methods’ invo-
cation target and their arguments and (ii) temporal safety in their use. 

We introduce the two bug detectors that we developed by applying interprocedural 
control flow based and dataflow analyses on the Java Card bytecode. Then, we dis-
cuss some recent advances in related theory that open new prospects to implement 
sufficiently precise property analyses. 

Our proposal addresses the problem of unhandled exceptions based on bug detec-
tors that in the future may be supplied by Java Card technology providers. Applet 
developers will check their products for correct use of the invoked API calls, without 
having to rely on advanced formal techniques that require highly specialized analysis 
skills and that are not fully automated.     

Section 2 provides a more thorough view of the aims of this work and reviews the 
related work and the basic differences of the presented approach. Section 3 introduces 
static analysis with the FindBugs framework. Section 4 presents the work done on the 
static verification of Java Card API calls and section 5 reports the latest developments 
that open new prospects for implementation of efficient static analyses that do not 
compromise precision. The paper ends with a discussion on our work’s potential 
impact and comments interesting future research prospects.  

2   Related work on static verification of Java Card applets 

Our work belongs to a family of static verification techniques which, in general, do 
not guarantee sound and complete analysis. This means that there is no guarantee 
that we will find all property violations and also we cannot guarantee the absence of 

 



false positives. However, our bug detectors may implement advanced static analyses 
that eliminate false negatives and minimize false positives (Section 5). 

In related works, this sort of analysis cannot be compared with established formal 
approaches that have been used successfully in static verification of Java Card ap-
plets: JACK [1], KeY [2], Krakatoa [3], Jive ([4], [5]) and LOOP ([6], [7]). These 
techniques aim in precise program verification and they are not fully automated. 
Moreover, they require highly specialized formal analysis skills for the applet devel-
oper. 

Static analysis alternatives for Java Card program verification include abstract in-
terpretation [8], i.e. a semantics-based description of all possible executions based on 
abstract values in place of the actual computed values. In [9], the authors introduce 
the use of ESC/Java (2), a tool for proving specifications at compile time, without 
requiring the analyst to interact with the back-end theorem prover (Simplify). The 
provided analysis is neither sound nor complete, but has been found effective in prov-
ing absence of runtime exceptions and in verifying relatively simple correctness 
properties. 

In contrast with [9], our proposal for static program analysis is not based on source 
code annotations. This reduces the verification cost to the applet developers, since 
they do not have to make explicit all implicit assumptions needed for correctness (e.g. 
the non-nullness of buf in many Java Card API calls). Instead of this, the static 
analyses of FindBugs are implemented in the form of tool plugins that may be dis-
tributed together with the used Java Card Development kit or by an independent third 
party. Applet developers use the bug detectors as they are, but they can also extend 
their open source code in order to develop bug detectors for custom properties. Note 
that in ESC/Java (2), user-specified properties assume familiarization, (i) with the 
Java Modeling Language (JML), (ii) with the particular “design by contract” specifi-
cation technique and (iii) with the corresponding JML based Java Card API specifica-
tion [10]. On the other hand, the development of new FindBugs bug detectors as-
sumes only Java programming skills that most software engineers already have.  

User defined bug detectors may be based on an initial set of basic bug detectors 
concerned with (i) the correctness of the API calls invocation target and their argu-
ments and (ii) the temporal safety in their use. This article is inspired by the ideas 
presented in [11]. However, the focus on the Java Card API is not the only difference 
between these two works. The static analysis of [11] is based on stateless calls to a 
library that reflects the API of interest. Violations of temporal safety for the analyzed 
API calls, however, can be detected only by a statefull property analysis that spans 
the whole applet or even multiple applets in the same or different contexts. As we will 
see in next sections, FindBugs static analyses are applied by default to individual 
class contexts and this is one of the restrictions we had to overcome. 

3   Static analysis with the FindBugs framework 

FindBugs [12] is a tool and framework that applies static analyses on the Java (Java 
Card) bytecode in order to detect bug patterns, i.e. to detect “places where code does 
not follow correct practice in the use of a language feature or library API” [13]. In 

 



general, FindBugs bug detectors behave according to the Visitor design pattern: each 
detector visits each class and each method in the application under analysis. The 
framework comes with many analyses built-in and classes and interfaces that can be 
extended to build new analyses. In our work, we exploit the already provided intra-
procedural control flow analysis that transforms the analyzed bytecode into control 
flow graphs (CFGs), which are used in our property analyses and dataflow analyses. 

The bug pattern detectors are implemented using the Byte Code Engineering Li-
brary (BCEL) [14], which provides infrastructure for analyzing and manipulating 
Java class files. In essence, BCEL offers to the framework data types for inspection 
of binary Java (Java Card) classes. One can obtain methods, fields, etc. from the main 
data types, JavaClass and Method. The project source directories are used to map 
the reported warnings back to the Java source code. 

Bug pattern detectors are packaged into FindBugs plugins that can use any of the 
built-in FindBugs analyses and in effect extend the provided FindBugs functionality 
without any changes to its code. A plugin is a jar file containing detector classes and 
analysis classes and the following meta-information: (i) the plugin descriptor 
(findbugs.xml) declaring the bug patterns, the detector classes, the detector 
ordering constraints and the analysis engine registrar, (ii) the human-readable 
messages (in messages.xml), which are the localized messages generated by the 
detector. Plugins are easily activated in the developer’s FindBugs installation by 
copying the jar file into the proper location of the user’s file system. 

FindBugs applies the loaded detectors in a series of AnalysisPasses. Each 
pass executes a set of detectors selected according to declared detector ordering 
constraints. In this way, FindBugs distributes the detectors into AnalysisPasses 
and forms a complete ExecutionPlan, i.e., a list of AnalysisPasses 
specifying how to apply the loaded detectors to the analyzed application classes. 
When a project is analyzed, FindBugs runs through the following steps: 

1. Reads the project 
2. Finds all application classes in the project 
3. Loads the available plugins containing the detectors 
4. Creates an execution plan 
5. Runs the FindBugs algorithm to apply detectors to all application classes 

The basic FindBugs algorithm in pseudo-code is: 
 

 for each analysis pass in the execution plan do 
  for each application class do 
   for each detector in the analysis pass do 
    apply the detector to the class 
   end for 
  end for 
 end for 
 

All detectors use a global cache of analysis objects and databases. An analysis 
object (accessed by using a ClassDescriptor or a MethodDescriptor) 
stores facts about a class or method, for example the results of a null-pointer dataflow 
analysis on a method. On the other hand, a database stores facts about the entire 
program, e.g. which methods unconditionally dereference parameters. All detectors 

 



implement the Detector interface, which includes the visitClassContext 
method that is invoked on each application class. Detector classes (i) request one or 
more analysis objects from the global cache for the analyzed class and its methods, 
(ii) inspect the gathered analysis objects and (iii) report warnings for suspicious 
situations in code. When a Detector is instantiated its constructor gets a reference 
to a BugReporter. The Detector object uses the associated BugReporter, in 
order to emit warnings for the potential bugs and to save the detected bug instances in 
BugCollection objects for further processing.   

4   Static verification of Java Card API calls 

The test cases for the bug detectors shown here were derived from an electronic purse 
applet developed for the purposes of this work. The electronic purse applet adds or 
removes units of digital currency and stores the personal data of the card owner. 
Moreover, there is also a bonus applet that interacts with the electronic purse for 
crediting the bonus units corresponding to the performed transactions. The two ap-
plets lie in separate contexts and communicate data to each other through a shareable 
interface. Both applets are protected by their own PINs. They are accessed through 
the Java Card Runtime Environment (JCRE) that invokes the process method, 
which in turn invokes the methods corresponding to the inputted APDU commands. 
 

 

PurseApplet 
+ credit 
+ debit 
+ foreignDebit 
+ getAccountNumber 
+ getBalance 
+ getUserAddress 
+ getUserName 
+ getUserSurname 
+ setAccountNumber 
+ setUserAddress 
+ setUserName 
+ setUserSurname 
+ setUserPIN 
+ validateUserPIN 

 

 

BonusApplet 
+ changeUserPIN 
+ eraseBonus 
+ getBonus 
+ makePurchase 
+ substractBonus 
+ validateUserPIN 

 
 

 

Figure 1. Public members of the PurseApplet and the BonusApplet 

4.1 Bug detectors for the temporal safety of Java Card API calls 

Bug detectors for the temporal safety of API calls use a control flow graph (CFG) 
representation of Java methods to perform static verification that either exploits the 
builtin dataflow analyses or is based on more sophisticated user-defined analyses. 
The following pseudo-code reflects the functionality of the visitClassCon-
text() method of a typical CFG-based detector. 

 



 
 for each method in the class do 
 request a CFG for the method from the ClassContext 
 request one or more analysis objects on the method from the ClassContext   
  for each location in the method do 
   get the dataflow facts at the location 
   inspect the dataflow facts 
   if a dataflow fact indicates an error then 
    report a warning 
   end if 
  end for 
 end for 

 
The basic idea is to visit each method of the analyzed class in turn, requesting 

some number of analysis objects. After getting the required analyses, the detector 
iterates through each location in the CFG. A location is the point in execution just 
before a particular instruction is executed (or after the instruction, for backwards 
analyses). At each location, the detector checks the dataflow facts to see if anything 
suspicious is going on. If suspicious facts are detected at a location the detector issues 
a warning. 

Temporal safety of API calls concerns rules about their ordering that are possibly 
associated with constraints on the data values visible at the API boundary. Temporal 
safety properties for the Java Card API are captured in appropriate state machines that 
recognize finite execution traces with improper use of the API calls. Figure 2 intro-
duces the state machine for a Java Card applet bug raising an APDUException for 
improper use of the setOutgoing() call.    

 

 
 

Figure 2. Illegal use of short setOutgoing() corresponding to a Java Card 
APDUException 

 
Bug detectors for temporal safety of API calls track the state of the property and at 

the same time track the so-called execution state, i.e. the values of all program vari-
ables. Accurate tracking of the execution state can be very expensive, because this 
implies tracking every branch in the control-flow, in which the values of the exam-
ined variables differ along the branch paths. The resulted search space may grow 
exponentially or even become infinite.  

 



For the property of Figure 2 we developed the path-insensitive bug detector, 
shown in this section, to explore the suitability of the FindBugs framework for the 
static verification of Java Card applets. The more precise path-sensitive analyses rely 
on the fact that for a particular property to be checked, it is likely that most branches 
in the code are not relevant to the property, even though they affect the execution 
state of the program. Detectors of this type may be based on heuristics that identify 
the relevant branches and in this way they reduce the number of potential false posi-
tives. Recent advances in path-sensitive static analyses and their applicability in the 
FindBugs framework are discussed in section 5. 

In any applet, it is possible to access an APDU provided by the JCRE, but it is not 
possible to create new APDUs. This implies that all calls to setOutgoing() in a 
single applet are applied to the same APDU instance and this fact eliminates the need 
to check the implicit argument of the setOutgoing() calls. The developed detec-
tors take into account two distinct cases of property violation:    

1. Intraprocedural property violations are detected by simple bytecode 
scanning that follows the states of the property state machine (Figure 2) 

2. Interprocedural property violations are detected by extending the CFG 
based and call graph analysis functions provided in the Findbugs 
framework. 

More precisely, the InterCallGraph class we developed makes it possible to 
construct call graphs including calls that span different class contexts. This extension 
allowed the detection of nested method calls that trigger the state transitions of Figure 
2 either by direct calls to setOutgoing() or by nested calls to methods causing 
reachability of the final state. The following is the pseudo-code of the path-insensitive 
interprocedural analysis. 
 

request the call graph of the application classes 
for each method in the call graph do //mark methods with setOutgoing() call  
 if method contains setOutgoing() then 
  add method to the black list 
 end if 
end for 
for each method in the class do //mark methods with nested black method call(s) 
 start a Depth First Search from the corresponding graph node: 

if method of the node is in the black list then 
 add method to the gray list 
 if final state of Fig. 2 is reached then 
  report the detected bug 
 end if 
end if 

end for 
for each method in the class do //detect property violation caused in a loop 
 request a CFG for the method 
 check if method has loop, enclosing call of setOutgoing() or a gray method   
end for 

 
Finally, the methods’ CFGs are inspected for loops enclosing method calls that do 

not cause reachability of the final state by themselves, but they result in a property 

 



violation when encountered in a loop. Figure 3 shows the bytecode patterns matching 
the use of a loop control flow in a CFG. Unhandled exception violations are detected 
by looking for an exception thrower block preceding the instruction by which we 
reach the final state (Figure 4). Access to an exception handler block (if any) is possi-
ble through a handled exception edge. In FindBugs, method isExcep-
tionThrower() detects an exception thrower block and method isExcep-
tionEdge() determines whether a CFG edge is a handled exception edge. 

 

 
(a) 

 

 
(b) 

 

Figure 3. CFG patterns with basic blocks corresponding to (a) for/while and  
(b) do . . . while loop 

  

 
 

Figure 4. CFG pattern to find unhandled exception edges 
 

Figure 5 demonstrates how the detector responds in two different property viola-
tion cases. In the first case, the client applet named PurseClientApplet calls setOut-
going() and subsequently invokes the method getUserName() of the PurseAp-
plet thus causing the detected property violation. The second case concerns a property 
violation caused by a call to setUserAddress() in a for loop. 

 



 

(a) 

(b) 
 

Figure 5. Illegal use of setOutgoing() detected (a) in interprocedural analysis 
and (b) within a loop via call to another method 

4.2 Bug detectors for the correctness of the called methods’ arguments 

Dataflow analysis is the basic means to statically verify the correctness of the called 
methods’ arguments. Its basic function is to estimate conservative approximations 
about facts that are true in each location of a CFG. Facts are mutable, but they have to 
form a lattice. The DataflowAnalysis interface shown in Figure 6 is the super-
type for all concrete dataflow analysis classes. It defines methods for creating, copy-
ing, merging and transferring dataflow facts. Transfer functions take dataflow facts 
and model the effects of either a basic block or a single instruction depending on the 
implemented dataflow analysis. Merge functions combine dataflow facts when con-
trol paths merge. The Dataflow class and its subclasses implement: (i) a dataflow 
analysis algorithm based on a CFG and an instance of DataflowAnalysis, (ii) 
methods providing access to the analysis results. 

We are particularly interested for the FrameDataflowAnalysis class that 
forms the base for analyses that model values in local variables and operand stack. 
Dataflow facts for derived analyses are subclasses of the class Frame, whose in-
stances represent the Java stack frame at a single CFG location. In a Java stack frame, 

 



both stack operands and local variables are considered to be “slots” that contain a 
single symbolic value. 

 

 
 

Figure 6. FindBugs base classes for dataflow analyses 
 

The built-in frame dataflow analyses used in static verification of the called meth-
ods arguments are: 

• The TypeAnalysis that performs type inference for all local variables 
and stack operands. 

• The ConstantAnalysis that computes constant values in CFG 
locations. 

• The IsNullValueAnalysis that determines which frame slots contain 
definitely-null values, definitely non-null values and various kinds of 
conditionally-null or uncertain values.  

• The ValueNumberAnalysis that tracks the production and flow of 
values in the Java stack frame. 

The class hierarchy of Figure 6 and the mentioned built-in dataflow analyses form 
a generic dataflow analysis framework, since it is possible to create new kinds of 
dataflow analyses that will use as dataflow facts objects of user-defined classes. 

A bug detector exploits the results of a particular dataflow analysis on a method by 
getting a reference to the Dataflow object that was used to execute the analysis. 
There is no direct support for interprocedural analysis, but there are ways to over-
come this shortcoming. More precisely, analysis may be performed in multiple 
passes. A first pass detector will compute method summaries (e.g. method parameters 
that are unconditionally dereferenced, return values that are always non-null and so 
on), without reporting any warnings and a second pass detector will use the computed 
method summaries as needed. However, this approach excludes the implementation 
of context sensitive interprocedural analyses like the ones explored in Section 5. 

In the following paragraphs, we present a bug detector for unhandled exceptions 
concerned with the correctness of arguments in method calls. Consider the following 
method: 

 



short arrayCopy( byte[] src,  short srcOff,   
   byte[] dest,  short destOff, short length) 
 

A NullPointerException is raised when either src or dest is null. Also, when the 
copy operation accesses data outside the array bounds the ArrayIndexOutOfBound-
sException is raised. This happens either when one of the parameters srcOff, 
destOff and length has a negative value or when srcOff+length is greater 
than src.length or when destOff+length is greater than dest.length. 
We provide the pseudo-code of the visitClassContext() method for the de-
tector of unhandled exceptions raised by invalid arrayCopy arguments:   
 

for each method in the class do 
 request a CFG for the method 
 get the method’s ConstantDataflow from ClassContext 
 get the method’s ValueNumberDataflow from ClassContext 
 get the method’s IsNullValueDataflow from ClassContext 

 for each location in the method do 
  get instruction handle from location 
  get instruction from instruction handle 
  if instruction is not instance of invoke static then 
   continue 
  end if 
  get the invoked method's name from instruction 
  get the invoked method’s signature from instruction 
  if invoked method is arrayCopy then 
   get ConstantFrame (fact) at current location 
   get ValueNumberFrame (fact) at current location 
   get IsNullValueFrame (fact) at current location 

   get the method's number of arguments 
   for each argument do 
    get argument as Constant, ValueNumber, IsNullValue 
    if argument is constant then 
     if argument is negative then 
      report a bug 
     end if 
    else  
                  if argument is not method return value nor constant then 
     if argument is not definitely not null then 
      report a bug 
     end if 
    end if 

   end for 
  end if 
 end for 

end for 
 

Figure 7 demonstrates how the detector responds in two different property viola-
tion cases. In the first case, PurseApplet calls arrayCopy with null value for the 
parameter accountNumber. It is also important to note that it is not possible to 
determine by static analysis the correctness of the method call for all of the mentioned 

 



criteria, because buffer gets its value at run time by the JCRE. However, a com-
plete FindBugs bug detector could generate a warning for the absence of an appropri-
ate exception handler. In the second test case, parameter offset is assigned an 
unacceptable value.   
 

(a) 

(b) 
 

Figure 7. Illegal use of arrayCopy detected with (a) null value parameter and  
(b) unacceptable constant value parameter 

5   Precise and scalable analyses for the static verification of API 
calls    

The static analysis case studies of Section 4 point out the merits as well as some 
shortcomings of the FindBugs open source framework, for the static verification of 
Java Card API calls. Although there is only limited documentation for the framework 
design and architecture, the source code is easy to read and self-documented. Find-
Bugs is a live open source project and we will soon have new developments on short-
comings, like for example the lack of context-sensitive interprocedural dataflow 
analysis. Appropriate bug detectors can be supplied by the Java Card technology 
providers. Thus, Java Card applet providers will be able to use FindBugs in their 
development process with limited cost. This possibility opens new perspectives for 
automatically verifying the absence of unhandled security critical exceptions, as well 
as prospects for the development of bug detectors for application-specific correctness 
properties. 

 



The static analysis techniques shown in the two case studies can be combined in 
bug detectors where either  

• temporal safety includes constraints on the data values that are visible at the 
API boundary or 

• we are interested in implementing sophisticated and precise analyses that 
reduce false positives and at the same time scale to real Java Card programs.  

In the following paragraphs we review the latest developments in related bibliography 
that address the second aim and in effect designate static program analysis as a credi-
ble approach for the static verification of security critical applications. 

A notable success story in temporal safety checking is the ESP tool for the static 
verification of C programs. ESP utilizes a successful heuristic called “property simu-
lation” [15] and a path feasibility analysis called “path simulation” [16], in order to 
perform partial program verification based only on the control-flow branches that are 
relevant to the checked property. This results in a selective path-sensitive analysis 
that maintains precision only for those branches that appear to affect the property to 
be checked. For one particular instantiation of the approach, in which the domain of 
execution states is chosen to be the constant propagation lattice, the analysis executes 
in polynomial time and scales without problems in large C programs like the GNU C 
compiler with 140000 LOC.  

It is still possible to construct programs for which property simulation generates 
false positives, but the authors claim that this happens only to a narrow class of pro-
grams that is described in their article. Property simulation is designed to match the 
behavior of a careful programmer. In order to avoid programming errors program-
mers maintain an implicit correlation between a given property state and the execu-
tion states under which the property state machine is in that state. Property simulation 
makes this correlation explicit as follows:   

• For a given temporal safety property, ESP performs a first analysis pass 
where it instruments the source program with the state-changing events. 

• For the second analysis pass, the property simulation algorithm implements a 
merge heuristic according to which if two execution states correspond to the 
same property state they are merged. In any other case, ESP explores the two 
paths independently as in a full path-sensitive analysis. 

Interprocedural property simulation requires generation of context-sensitive function 
summaries, where context sensitivity is restricted to the property states. This happens 
in order to exclude the possibility of a non-terminated computation that exists if the 
domain of execution states is infinite (e.g. constant propagation). Thus, execution 
states are treated in a context-insensitive manner: at function entry nodes, all execu-
tion states from the different call sites are merged. 

The proposed path simulation technique manages execution states and in effect 
acts as a theorem prover to answer queries about path feasibility. In general, path 
feasibility analysis is undecidable. To guarantee convergence and efficiency, ESP 
makes conservative assumptions when necessary. While such over approximation is 
sound (i.e. does not produce false negatives), it may introduce imprecision. More 
recent research efforts in cutting down spurious errors that are at the same time scal-
able enough for solving real world problems focus on applying iterative refinement to 
path-sensitive dataflow analysis [17]. 

 



Another notable success story in temporal safety checking is the SAFE project [18] 
at the IBM Research Labs. Both ESP and SAFE build on the theoretical underpinning 
of a typestate as a refinement of the concept of type [19]. Whereas the type of a data 
object determines the set of operations ever permitted on the object, typestate deter-
mines the subset of these operations which are performed in a particular context. 
Typestate tracking aims to statically detect syntactically legal but semantically unde-
fined execution sequences. The heuristics applied in SAFE are reported in [20]. In 
that work the authors propose a composite verifier built out of several composable 
verifiers of increasing precision and cost. In this setting, the composite verifier stages 
analyses in order to improve efficiency without compromising precision. The early 
stages use the faster verifiers to reduce the workload for later, more precise, stages. 
Prior to any path-sensitive analysis, the first stage prunes the verification scope using 
an extremely efficient path-insensitive error path feasibility check.   

The most serious restriction in the current version of FindBugs regarding the per-
spectives to implement sophisticated analyses like those described is the lack of sup-
port for interprocedural context-sensitive dataflow analysis. However, we expect that 
this restriction will soon be removed. 

6   Conclusion 

This work explored the adequacy of static program analysis for the automatic verifi-
cation of Java Card applets. We utilized the FindBugs open source framework in 
developing two bug detectors that check the absence of unhandled security critical 
exceptions, concerned with temporal safety and correctness of the arguments of Java 
Card API calls. The developed detectors are sound, but they are not precise. We ex-
plored the latest developments that open new prospects for improving the precision of 
static analysis, thus making it a credible approach for the automatic verification of 
security critical applications. The results of our work and the bug detectors source 
code are publicly available online http://mathind.csd.auth.gr/smart/. 

A future research goal is the static verification of multi-applet Java Card applica-
tions (like the one in our case studies), in terms of temporal restrictions of inter-applet 
communications through shareable interfaces [21]. Also, we will continue to seek 
ways to overcome the experienced shortcomings in the current FindBugs version. 
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