
Analytical Results on the Quadtree
Storage-Requirements

Michael Vassilakopoulos� and Yannis Manolopoulos

Division of Electronics and Computer Engineering, Department of Electrical
Engineering, Aristotelian University of Thessaloniki, Thessaloniki, Greece, 54006.

Abstract. An analysis of the expected size occupied by a Quadtree is
presented. The analysis is based on the general assumption that the stor-
age requirements of internal and external nodes differ. Besides, formulae
for the expected number of internal and external nodes at a specific
level of the tree are given. Next, the space efficiency of the most popular
Quadtree implementations is examined. Finally, the possible usefulness
of these analytical tools in other problems is commented.

1 Introduction

The Region Quadtree [4, 9] (or simply the Quadtree) is a very popular hier-
archical data structure for the representation of binary images. We can model
such an image as a 2n × 2n binary array, for some natural number n, where an
entry equal to 0 stands for a white pixel and an entry equal to 1 stands for a
black pixel. The Quadtree for a binary image is made up either of a single white
(black) node if every pixel of the image is white (black), or of a gray root, which
points to four subQuadtrees, one for every quadrant of the original image.

We present this intuitive definition in more formal terms (assuming that the
mathematical notion of a tree is well known):

Definition 1. Consider the numbers n, k, x, y ∈ IN, such that k ≤ n and x, y <
2n, where x, y ∝ 2k. Consider also the binary array I[0 · · · 2n − 1, 0 · · · 2n − 1].
As Qn(I, x, y, k) we denote the tree that represents the subarray I[x · · ·x+2k −
1, y · · · y + 2k − 1] and consists of

– one external node, called a black ( white ) node, if every element of its
subarray equals 1 (0), or otherwise of

– one root node, called a gray node, and its 4 children, the trees
� Qn(I, x, y, k − 1) ,
� Qn(I, x + 2k−1, y, k − 1) ,
� Qn(I, x, y + 2k−1, k − 1) and
� Qn(I, x + 2k−1, y + 2k−1, k − 1) .

The Quadtree for I is the tree Qn(I, 0, 0, n).

� Postgraduate scholar of the State Scholarship-Foundation of Greece.



An example of an 8 by 8 binary image, its Quadtree and the unicolor blocks to
which it is partitioned by the Quadtree external nodes are shown in Fig. 1.a, 1.c
and 1.b respectively.

�

� �

����
������ ��

�
�

�
� �

(a) (b) (c)

�
�
�
�

�
�

�
� �

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

Fig. 1. (a): an 8 by 8 binary image, (b) the partitioning to unicolor quadrangular blocks
and (c): its Quadtree.

The performance of the Quadtree on average-storage requirements for ran-
dom images has been studied in [7, 13]. However, random images are not the
only viewpoint for studying the Quadtree storage-requirements. Analogous re-
sults for the representation of arbitrary iso-oriented rectangles are presented
in [3], for the representation of arbitrary curves or regions in [1] and for the
representation of similar images by Overlapping Quadtrees in [11, 12]. In the
present report we analyze the Quadtree average-storage requirements for ran-
dom images. Our analysis considers the difference of internal and external node
sizes. Besides, we provide formulae for the average number of internal nodes
and the average number of external white and external black nodes at a specific
level of the tree. (Following an analogous direction, the node distribution of the
Point-Region Quadtree (PR Quadtree) has been analyzed in [10].) Our formulae
enable us to find the fraction of each kind of nodes at a specific level over the
total number of nodes in the tree and thus study the contribution of each level in
the total tree size. From the viewpoint set by these results we examine the most
popular Quadtree implementations. Besides, this analytical background could
prove useful in the study of the promising FI-Quadtree, a data structure used
for storing image selections [2].

2 A General Average Space Requirements Formula

We will consider two models of image randomness in our analysis which under
certain conditions are equivalent. Let’s start by some remindings (easily implied
from Definition 1). The Quadtree for a 2n by 2n image is of height ≤ n. Let’s
call such a tree, a class-n Quadtree. There are 2(4n) different images of this size.
A node corresponding to a single pixel is at level 0, while the root is at level n.



A node at level i, where 0 ≤ i ≤ n represents a subarray of 2i × 2i(= 4i) pixels,
while there are at most 4n−i nodes at this level.

The first model, used in [7], assigns probabilities to the nodes of the Quadtree
(it is more a random model for a tree than for an image). A level-i node is black
or white with probability bi in both cases; it is gray with probability 1 − 2bi.
Note that we must have b0 = 1/2 and 0 ≤ bi ≤ 1/2.

The second model is based on pixels (this is clearly a random-image model).
A pixel is black with probability p and white with probability 1− p. This means
that a node at level i is black with probability p(4i) and white with probability
(1 − p)(4

i). It is gray with probability 1 − p(4i) − (1 − p)(4
i). If p = 1 − p = 1/2

then we have an instance of the first model, where bi = (1/2)(4
i).

In both models, the color of a node is independent of the color of any other
node in the same level. In general, let us use the symbols Gi, Bi and Wi to
denote the probability of a level-i node being gray, black or white respectively
(note that Gi = 1 − Bi − Wi).

Proposition 2. The average storage requirement, Nn, of a class-n quadtree rep-
resenting a random image obeys the equation2

Nn = L + (I + 3L)
n−1∑

i=0

4iGn−i ,

where I and L represent the sizes of internal and external nodes respectively.

Proof. Consider all the class-n Quadtrees. Nn may be computed as the sum of
the average storage requirement at level n, plus the average storage requirement
at levels smaller than n. At level n there is always one node (the root), which
is black or white with probability Wn + Bn and gray with probability Gn. The
4 subtrees, that make up the levels below root, exist only if the root is gray,
otherwise their average storage requirement may be considered 0. If so, each
subtree retains the initial probabilistic model under the condition that its parent
is gray. So the average storage requirements, Sn−1, for a class-(n − 1) subtree
equals the average storage requirements of a class-(n − 1) Quadtree under the
condition that its level-n parent is gray. It is clear that we have the equation

Nn = IGn + L(Wn + Bn) + 4GnSn−1 .

Keeping the discussion above in mind and using the definition of conditional
average values, see [8], we have that

Sn−1 = L
Prob(An−1,Bn)

Prob(Bn)
+ I

Prob(Cn−1,Bn)
Prob(Bn)

+ 4Sn−2
Prob(Cn−1,Bn)

Prob(Bn)
,

where An−1 denotes the event that a class-(n − 1) subtree has a black or white
root, Bn the event that the parent of this subtree is gray and Cn−1 the event
that the root of this subtree is gray. We can easily see that Prob(Bn) = Gn,
2 An analogous equation has been proved in [13], where only the number of nodes is

of interest.



Prob(An−1,Bn) = Wn−1(1 − W 3
n−1) + Bn−1(1 − B3

n−1) and that event Cn−1

assumes event Bn, so Prob(Cn−1,Bn) = Prob(Cn−1) = Gn−1. The equation
above now becomes

Sn−1 = L
Wn−1 + Bn−1 − Wn − Bn

Gn
+ I

Gn−1

Gn
+ 4Sn−2

Gn−1

Gn
.

Algebraic manipulations (note that N0 = L) lead to Proposition 2. ��
The equation we proved is general and works for both random-image models

described, according to the definition of Wi and Bi.

3 Level-Dependent Average Number of Internal and
External Nodes

Proposition 3. The average number of internal nodes at level i, Mn,i, of a
class-n quadtree representing a random image obeys the equation

Mn,i = 4n−iGi n ≥ i > 0 .

Proof. For the sake of brevity the proof of this proposition is omitted (for a
complete proof see [13]). Nevertheless, let us outline the most important steps.
Like the proof of Proposition 2, we express the requested number for level n
plus all the levels lower than n. Of course, when the class of the tree (or subtree)
under consideration is larger than i, the number of level-i gray nodes equals 0
at the root level. When the class of the tree (or subtree) equals i the average
number of gray nodes at this level is, in general, no longer 0, while it is 0 for
all levels below root. Also, note that when dealing with subtrees conditional
probabilities should be used. ��

We could justify this result in a rather informal way, also. Recall that at level
i of a class-n Quadtree there are at most 4n−i nodes and that the probability
of one of them being gray is independent of the probability of any other such
node being gray. Since we are allowed to add the expected values of independent
random variables in order to find the expected value of their sum, we reach
Proposition 3.

The respective propositions for internal nodes follow:

Proposition 4. The average number of white leaves at level i, Xn,i, of a class-n
quadtree representing a random image obeys the equation

Xn,n = Wn ∀n

Xn,i = 4n−i(Wi − Wi+1) n > i ≥ 0 .

Proposition 5. The average number of black leaves at level i, Yn,i, of a class-n
quadtree representing a random image obeys the equation

Yn,n = Bn ∀n

Yn,i = 4n−i(Bi − Bi+1) n > i ≥ 0 .



Proof. Again we omit the proof (for a complete proof see [13]). Note only, that
we can make the problem easier if we use Mn,i+1. ��

In this case the informal justification is based on the fact that the probability
for a level i node being, say, white independently of every other level i node
probability is Wi(1−W 3

i ) (the probability of the block it represents being white
and of the blocks of its siblings not being completely white - if all four siblings
were white, they would merge to a level i + 1 white node). Since Wi(1−W 3

i ) =
Wi − Wi+1, we reach Propositions 4 and 5.

Of course, the respective average number, Ln,i, of both white and black leaves
equals

Ln,n = Wn + Xn ∀n

Ln,i = 4n−i(Wi + Bi − Wi+1 − Bi+1) n > i ≥ 0 .

The reader could easily verify that if we sum our formulae for internal and
external nodes from level 0 to level n, we reach the formula of Proposition 2 for
L = I = 1. When L = I = 1 Proposition 2 gives the average number of nodes
for the whole tree (for every one of its levels).

It is obvious at this point that we can express the fraction (or percentage) of
the average number of internal (external) nodes at level i of a class-n Quadtree
over the average number of nodes for the whole tree. Since, in general, internal
and external nodes do not need storage space of equal size these percentages
permit us to study the contribution of each level to the storage requirements of
the tree.

For the sake of completeness, let us give some identities that hold for any
Quadtree and can be proved using simple induction on the number of internal
nodes (N , B, W and G stand for the total number of nodes, the total number
of black nodes, the total number of white nodes and the total number of gray
nodes in a Quadtree, respectively).

G = (B + W − 1)/3
N = B + W + G = 4G + 1 = (4(B + W ) − 1)/3 .

Obviously these relations hold for average total numbers also.

4 Evaluation of Internal and External Nodes Percentages

In this section we present some percentages for black, white, external in general
and internal nodes in order to give a more practical estimate of our analysis.
The results demonstrated concern all levels of class-6 Quadtrees. For trees of
larger or a little smaller classes the results do not vary significantly from the
ones presented here, starting to compare from the lowest level. Even for class-6
images the highest-level results tend to zero (external nodes) or to values slightly
higher than zero (internal nodes). We follow the pixel oriented random model.
The black pixel probability ranges from 0.5 to 0.01. The results for black pixel
probability larger than 0.5 are identical to these ones if we interchange black
and white colors.



Table 1. Percentages of black, white, external in general and internal nodes for every
level of class-6 Quadtrees

p = 0.5 p = 0.3 p = 0.1

n B W EXT INT B W EXT INT B W EXT INT

0 36.21 36.21 72.42 0 26.92 42.42 69.34 0 15.84 38.67 54.51 0
1 1.29 1.29 2.59 18.1 0.19 5.46 5.65 17.34 0 18.66 18.67 13.63
2 0 0 0 5.17 0 0.02 0.02 5.75 0 1.82 1.82 8.07
3 0 0 0 1.29 0 0 0 1.44 0 0 0 2.47
4 0 0 0 0.32 0 0 0 0.36 0 0 0 0.62
5 0 0 0 0.08 0 0 0 0.09 0 0 0 0.15
6 0 0 0 0.02 0 0 0 0.02 0 0 0 0.04

0.38 0.38 0.75 0.25 0.27 0.48 0.75 0.25 0.16 0.59 0.75 0.25

(a)

p = 0.05 p = 0.03 p = 0.01

n B W EXT INT B W EXT INT B W EXT INT

0 12.30 33.34 45.65 0 10.51 29.67 40.18 0 7.95 23.38 31.34 0
1 0 23.03 23.03 11.41 0 23.73 23.73 10.04 0 21.70 21.70 7.83
2 0 6.19 6.19 8.61 0 10.33 10.33 8.44 0 16.20 16.20 7.38
3 0 0.14 0.14 3.70 0 0.78 0.78 4.69 0 5.58 5.58 5.89
4 0 0 0 0.96 0 0 0 1.37 0 0.24 0.24 2.87
5 0 0 0 0.24 0 0 0 0.34 0 0 0 0.78
6 0 0 0 0.06 0 0 0 0.09 0 0 0 0.19

0.12 0.63 0.75 0.25 0.11 0.65 0.75 0.25 0.08 0.67 0.75 0.25

(b)

5 Storage Requirements and Quadtree Implementations

The main Quadtree implementations are the pointer-based tree structures, the
linear Quadtrees [5] and the Depth First (DF) expressions [6]. We will briefly
describe each one of them and comment on their memory usage.

The naive pointer-based tree structure is a straight implementation with one
node type that is used for internal and external nodes according to the value of
a color field. This implementation has four nil pointers for every external node.
Although inefficient, it can be easily programmed. The average space require-
ment for such a Quadtree is given by Proposition 2 if I and L are both equal
to the size of the unique node type (if we want to be exact we must add to this
space requirement the size of a pointer, the one pointing the root).

There are some improved versions of this implementation. First, we can define
two node types, one for internal and one for external nodes. The external node
type would not have any pointer fields. Of course, the pointer fields of internal
nodes should be able to point either internal or external nodes. This can be
easily programmed in C using pointer casting or in PASCAL using records with



variants. In this case Proposition 2 should be used with different values of I and
L. Note that the value of L is now significantly smaller than the value of I.
Tables 1.a and 1.b give us a view of how the small value of L would affect the
space occupied by various levels for each value of black pixel probability. In a
more compact variation, we might keep only one black and one white node. All
pointers previously pointing external nodes would now point the unique node
of the respective color. In such a case, we can not store additional information
to each pixel, apart from its color value. Alternatively, we could replace the
pointers to external nodes with the color values of these nodes (assuming that
these values, probably 1 for black and 0 for white, do not correspond to a memory
address for any of the internal nodes).

The linear Quadtree representation consists of a list of values where there
is one value for each black node of the pointer-based Quadtree. The value of a
node is an address describing the position and size of the corresponding block in
the image. These addresses can be stored in an efficient structure for secondary
memory (such as a B-tree or one of its variations). Of course, this representa-
tion is very space efficient, although it is not suited to many useful algorithms
that work efficiently with pointer-based Quadtrees. In order to find the average
storage required, Proposition 2 can be (easily) modified to distinguish between
white and black external node sizes. Then we should set the node sizes for inter-
nal and white nodes to 0, while the node size for black nodes should be the size
of the address values used. There are variations of this approach where white
nodes are stored also, or multicolor images are represented.

Finally, DF expressions are another very efficient representation. A DF ex-
pression is a string of symbols. There is a separate symbol for gray , black and
white nodes. These might be represented by “(”,“W”and“B” respectively. The
string is formed by traversing the Quadtree in preorder. The Quadtree of Fig. 1
would be represented as ((BWW(BWWBWW(WW(WWBBB. Again this rep-
resentation is not useful for a large class of algorithms. Using the naive approach,
we could use one byte (or even two bits) for coding every symbol. Then Proposi-
tion 2 would give us the average storage occupied by a Quadtree if I and L both
equal one byte (or two bits). Using Propositions 3, 4, 5 or Tab. 1.a and 1.b we
could lead to conclusions about the frequency of each symbol and use Huffman
encoding for representing them. Then, using the modification of Proposition 2
that we described above we can easily evaluate the average storage needed by
DF expressions.

6 Conclusion

The analysis presented in this report provides additional insight to the behavior
of the very popular Region Quadtree, which is not only studied as a whole
structure but in a level-by-level basis, also. This approach reveals the differences
between the various levels. Applying the presented formulae to the most widely
used Quadtree implementations we lead to interesting comparative conclusions
about their efficiency.



The usefulness of this analysis is not limited to the above. As an example
of its possible uses let us outline the Fully Inverted Quadtree (FI-Quadtree [2]).
This is a data structure that can be used for storing a set of images or, in
other words, an image database, where image pattern searching can be applied.
Firstly, a full Quadtree is built, that is a Quadtree where each node has four
children, except for the level-0 nodes. Each node holds a list of identifiers. Each
identifier designates a separate image. The block corresponding to a particular
node of the FI-Quadtree is black for every image identified in the list of this
node. It is obvious that knowing the average number of black nodes at each level
of a Quadtree helps us understand and analyze the storage requirements of the
FI-Quadtree.

References

1. Burton, F.W., Kollias, V.J., Kollias, J.G.: Expected and worst-case storage re-
quirements for Quadtrees. Pattern Recognition Letters 3 (2) (1985) 131-135

2. Cheiney, J.P., Tourir, A.: FI-Quadtree: a new data structure for content-oriented re-
trieval and fuzzy search. Proceedings, 2nd Symposium on Spatial Databases (SSD),
Zurich, (1991)

3. Faloutsos, C.: Analytical results on the Quadtree decomposition of arbitrary rect-
angles. Pattern Recognition Letters 13 (1) (1992) 31-40

4. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4 (1) (1974) 1-9

5. Gargantini, I.: An effective way to represent Quadtrees. Communications of the
ACM 25 (12) (1982) 905-910

6. Kawaguchi, E., Endo, T.: On a method of binary picture representation and its
application to data compression. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 2 (1) (1980) 27-35

7. Mathieu, C., Puech, C., Yahia, H.: Average efficiency of data structures for binary
image processing. Information Processing Letters 26 (2) (1987) 89-93

8. Papoulis, A.: Probabilities, Random Variables and Stochastic Processes. McGraw-
Hill, Singapore, (1984)

9. Samet, H.: The Quadtree and related hierarchical data structures. ACM Comput-
ing Surveys 16 (2) (1984) 187-260

10. Ang, C., Samet, H.: Node distribution in a PR Quadtree. Proceedings, 1st Sym-
posium on Spatial Databases (SSD), Santa Barbara, (1989)

11. Vassilakopoulos, M., Manolopoulos, Y., Economou, K.: Overlapping Quadtrees for
the representation of similar images. To appear in Image and Vision Computing

12. Vassilakopoulos, M., Manolopoulos, Y.: Efficiency analysis of overlapped Quad-
trees. Submitted in GVGIP: Graphical Models and Image Processing

13. Vassilakopoulos, M., Manolopoulos, Y.: Analytical results on the Quadtree storage-
requirements. Internal Report, Div. of Electronics and Computer Engineering, De-
partment of Electrical Engineering, Aristotelian University of Thessaloniki, (1992)


