
Semi-supervised Concept Detection

by Learning the Structure of Similarity Graphs

Symeon Papadopoulos1, Christos Sagonas1, Ioannis Kompatsiaris1,
and Athena Vakali2

1 Information Technologies Institute, CERTH, Greece
{papadop,sagonas,ikom}@iti.gr

2 Informatics Department, Aristotle University of Thessaloniki, Greece
avakali@csd.auth.gr

Abstract. We present an approach for detecting concepts in images by
a graph-based semi-supervised learning scheme. The proposed approach
builds a similarity graph between both the labeled and unlabeled im-
ages of the collection and uses the Laplacian Eigemaps of the graph
as features for training concept detectors. Therefore, it offers multiple
options for fusing different image features. In addition, we present an
incremental learning scheme that, given a set of new unlabeled images,
efficiently performs the computation of the Laplacian Eigenmaps. We
evaluate the performance of our approach both on synthetic datasets
and on MIR Flickr, comparing it with high-performance state-of-the-art
learning schemes with competitive and in some cases superior results.

1 Introduction

Concept detection in images is typically conducted by learning a mapping be-
tween a set of features extracted from the input images and a set of concepts. In
conventional settings, features extracted from individual labeled images are pro-
vided to classifiers (e.g. SVM) in order to learn the features-to-concept mapping.
Once a new image appears, concept detection is conducted based on its feature
vector, thus considering the image in isoliation. In this work, we tackle concept
detection by leveraging the similarity of the unknown image with labeled images
of the collection. We call our proposal the Graph Structure Features (GSF) ap-
proach. GSF is based on building a similarity graph between the images of the
collection and mapping them to low-dimensional features based on the eigenvec-
tors of the graph Laplacian. These features correspond to semantically coherent
groups of images, and are thus used to train concept classifiers.

The GSF approach is expressed as a combination of a semi-supervised with
a supervised learning algorithm: at the first step the similarity graph and the
graph structure features are computed for both the labeled and the unlabeled
images, while at the second step the graph structure features are used to train
a supervised learning algorithm. The approach leads to high concept detection
performance, since it utilizes information on the similarities of unlabeled images
with the labeled ones. It can also accommodate a variety of fusion techniques
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for combining different sets of features to further improve performance. To make
the approach applicable in online settings, we also devise an incremental scheme
for computing the graph structure features of unknown images in online mode.

Contributions: The paper proposes a novel semi-supervised concept detection
approach that does not rely on features extracted from isolated content items,
but from features that capture the similarity structure between the unknown and
the labeled items. Thanks to the transformation of original content features into
a similarity graph and the extraction of low-dimensional graph structure fea-
tures, GSF is well-suited to high-dimensional features, and offers several options
for performing fusion between multiple feature sets. GSF is tested in compre-
hensive experiments, in which it is found to outperform or to compete closely
with two high performing state-of-the-art approaches. In addition, we propose an
incremental implementation of the proposed scheme that achieves similar perfor-
mance as the batch learning scheme, and enables application of the framework
in online learning settings.

2 Related Work

Utilizing the implicit relational structure by computing similarities between im-
ages of a collection has been proposed before. In [1], an extended similarity
measure is proposed that leverages local neighborhood structures of images, com-
puted from the content and label information of similar images. The extended
similarity was used on top of well-known semi-supervised learning methods [2]
and shown to improve performance. However, this approach is not amenable to
online learning settings, as it relies on global graph computations [2,3].

A different approach is presented in [4], where a sparse similarity graph is con-
structed based on a convex optimization method. Then, an additional λ1-norm
minimization problem is solved to perform semi-supervised inference on the noisy
image tags, and to derive a compact concept space. Online concept detection is
possible in the derived concept space. The approach of [4] is shown to yield su-
perior concept detection accuracy in a standard benchmark. However, it suffers
from a computationally intensive training step. Another semi-supervised con-
cept detection approach is grounded on the notions of hashing-based λ1-graph
construction and KL-based multi-label propagation [5]. Despite being applicable
to large-scale datasets and yielding high performance, this approach is not prac-
tical in online learning settings since it relies on a computational scheme that
requires 50 iterations (as stated in [5]) for convergence during inference.

Our work is mostly related to [6] that introduces the concept of “social dimen-
sions”, i.e. the top-k Laplacian eigenvectors, as a means to tackle the relational
classification problem [7]. We adopt a similar feature representation, but apply
it in a different problem, i.e. concept detection in multimedia. Moreover, we
consider an extension that renders our approach practical in online settings in
contrast to [6] that is only applicable in transductive learning settings.
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3 Proposed Approach

The basic formulation of the GSF approach is provided in a transductive learn-
ing setting, where both the labeled and the unlabeled samples are available at
training time (subsection 3.1). To render our proposal more practical in real-
world learning settings, we describe an incremental extension that can predict
the concepts of unknown items that were not available during training (subsec-
tion 3.2). Finally, we describe a set of possibilities for fusing multiple features
with the goal of improving the concept detection performance (subsection 3.3).

Fig. 1. Overview of proposed approach

3.1 Transductive Learning Setting

The GSF approach is illustrated in Figure 1. Given a set of K target concepts
Y = {Y1, ..., YK} and an annotated set L = {(xixixi, yiyiyi)}li=1 of training samples,
where xixixi ∈ R

D stands for the feature vector extracted from content item i
and yiyiyi ∈ {0, 1}K for the corresponding concept indicator vector, a transductive
learning algorithm attempts to predict the concepts associated with a set of
unknown items U = {xjxjxj}l+u

j=l+1, by processing together the sets L and U .
Based on the features of the input items, a graph G = (V,E) is constructed

that represents the similarities between all pairs of items. The nodes of the graph
include the items of both sets (L and U), i.e. V = VL ∪ VU with |V | = n. There
are different options for constructing such a graph:

– Full graph: All possible edges between the items of V are inserted as edges
using weights to determine the degree of similarity for each pair. For two
feature vectors xi, xj , a popular weighting scheme is the heat kernel:

wij = exp (−||xi − xj ||2
t

) (1)

Full graph is not considered for use with the GSF approach, since GSF
requires a sparse adjacency matrix to compute the graph structure features.

– kkkNN graph: An edge is inserted between items i and j as long as one of
them belongs to the set of top-k most similar items of the other. Two basic
variants of this scheme are possible, symmetric and asymmetric, depending
on whether both items i, j belong to the similar set of each other or not.

– εεεNN graph: A global distance threshold ε is defined and then an edge is
inserted between items i and j if ||xi − xj ||2 < ε.
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Having constructed the similarity graph between the input media items, GSF
proceeds with mapping the graph nodes to feature vectors that represent the
associations of nodes with latent groups of nodes that form densely connected
clusters. In order to extract such features, we first construct the normalized
graph Laplacian from the degree (D) and adjacency (A) matrices of the graph:

L̃ = D−1/2LD−1/2 = I −D−1/2AD−1/2, (2)

where L = D − A is the graph Laplacian. Computing the eigenvectors of L̃
corresponding to the CD smallest non-zero eigenvalues of the matrix results in
n vectors of CD dimensions, which when concatenated form the input matrix
S ∈ R

n×CD , each row of which is denoted as Si ∈ R
CD and constitutes the graph

structure feature vector for media item i. These features, known as Laplacian
Eigenmaps [8], are derived by solving the following minimization problem:

argmin
S

ST L̃S, s.t. STS = I. (3)

In the final step, a classifier is trained using the structure feature vectors of the la-
beled items as input. In our implementation, we opted for the use of SVM. Apart
from classification performance considerations, it is important for retrieval ap-
plications that the classifier produces real-valued prediction scores for unlabeled
items, so that they can be ranked per concept. Producing real-valued predic-
tion scores is also important for performing result fusion when multiple sets of
features are available (see subsection 3.3).

3.2 Incremental Learning

The scheme of subsection 3.1 requires both labeled and unlabeled items to be
available at train time for constructing a similarity graph from both sets and
computing the respective structure features. In case new unlabeled samples were
provided as input, it would be necessary to reconstruct the similarity graph for
the extended set of items and recompute the eigenvectors of L̃ (Equation 2). This
is clearly impractical in settings where new media items are regularly arriving
to the indexing system. Thus, it is necessary to devise incremental means for
computing the graph structure features of unknown items.

Linear Projection (LP): A simple approach for deriving the graph structure
features of a new item n+1 is to determine the set Nn+1 of k most similar items
and then to compute the weighted mean of their graph structure features:

ˆSn+1 =

∑
j∈Nn+1

wn+1,jSj
∑

j∈Nn+1
wn+1,j

(4)

where wn+1,j denotes the similarity score between the new item and neighbour-
ing item j, which may be computed by use of the heat kernel (Equation 1).

Submanifold Analysis (SA): A more accurate technique for estimating the
graph structure feature vector of item n+ 1 relies on the analysis of the graph
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submanifold around it [9]. Initially, the (k + 1) × (k + 1) similarity matrix WS

is constructed between the new item and the k most similar items. Then, the
sub-diagonal and sub-Laplacian matrices are derived as follows:

DS(i, i) =
∑

j

WS(j, i), LS = DS −WS

We compute the eigenvalues 0 = λ0
S ≤ λ1

S ≤ ... ≤ λd
S and d eigenvectors v1, ..., vd

of the non-zero eigenvalues. This computation is lightweight since k is selected to
be small (cf. experiments in Section 4). Finally, a weight vector C = [c1...ck] ∈ R

k

is determined by minimizing the following reconstruction error:

argmin
ci

|vk+1 −
k∑

i=1

civi|2 s.t.
∑

i

ci = 1

by using a non-linear constaint optimization method [10]. Once the weight vector

C is computed, the new feature vector is computed as Ŝn+1 =
∑k

i=0 ciSi.

3.3 Fusion of Multiple Features

GSF offers several options for fusing different sets of input features:

– Feature fusion (F-FEAT): This constitutes a common early fusion tech-
nique. In its simplest form, this is implemented by simple vector concatena-
tion and by an optional feature normalization step.

– Similarity graph fusion (F-SIM): Combining two similarity graphs G1

and G2 constructed from two feature sets, this technique produces a fused
graph GF . The combination can be implemented by means of an elementwise
additive or multiplicative operation between G1 and G2.

– Graph structure feature fusion (F-GSF): According to this, graph
structure feature vectors are computed separately from each similarity graph
and are combined by concatenating the corresponding vectors.

– Result fusion (F-RES): This widely used late fusion technique is imple-
mented by training a second-level classifier with the prediction scores of
individual feature concept detectors as inputs.

4 Evaluation

The proposed approach was evaluated on both synthetic and real data.

4.1 Synthetic Data

GSF was thoroughly tested using synthetic 2D distributions with limited number
of samples to enable visualization of input data and classification results, and to
make possible the exploration of a large number of experimental settings and the
repetition of each experiment multiple times for deriving reliable performance
estimates. Four kinds of distributions were used: (a) Two moons, (b) Lines, (c)
Circles, (d) Gaussians. The following performance aspects were investigated:
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(a) Two moons
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(b) Lines
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(c) Circles
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(d) Gaussians

Fig. 2. Role of number of graph structure features (CD) and training samples (α)

– Parameters of GSF: Number of graph structure features CD, graph con-
struction technique (kNN or εNN) and associated parameters (k, ε).

– Inductive learning: GSF was evaluated in an inductive learning setting
with the use of the baseline scheme of subsection 3.2.

– Fusion method: Four fusion methods of subsection 3.3.

Parameters of GSF: To test the behaviour of the proposed approach for dif-
ferent number of graph structure features, for each distribution, the number
of features CD was varied from 1 to 100 and three settings were tested: low,
medium and high noise. In the case of Two moons and Gaussians distributions,
we found that the learning performance is almost insensitive to CD even when
large amounts of noise are added to the input data. In the case of the Lines
distribution, a similar behaviour is observed with the exception of the high noise
setting, where we found that increasing the number of graph structure features
harms performance. Finally, in the Circles distribution, a larger number of graph
structure features was found to be beneficial, especially in high noise settings.
Furthermore, performance was measured for different training set sizes (Figure
2). When 10% or more of the input data are available for training, performance
appears to be insensitive to the number of features CD. However, for smaller
training sizes, GSF appears to be increasingly sensitive to the selection of CD.

The role of the graph construction technique was examined by graphing the
performance of GSF using both kNN and εNN for different values of k and ε.
Out of the two competing options, kNN appears as less sensitive to the selection
of k, than εNN is to ε. Only in the case of the Circles distribution, increasing
the value of k seems to have an adversary effect on performance. In case of εNN,



Semi-supervised Concept Detection by Learning the Structure 7

0 150 300 450 600 750 900 1050 1200

0.94

0.95

0.96

0.97

0.98

0.99

1

Samples

m
A

P

 

 

LP (k=3)
LP (k=5)
LP (k=10)
SA (k=3)
SA (k=5)
SA (k=10)

(a) Lines

0 150 300 450 600 750 900 1050 1200
0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

m
A

P

 

 

LP (k=3)
LP (k=5)
LP (k=10)
SA (k=3)
SA (k=5)
SA (k=10)

(b) Circles

Fig. 3. Inductive learning performance

increasing the value of ε seems to harm performance, whereas in the case of the
Circles distribution the relation between performance and ε is non-monotonic.

Additionally, we investigated the computational requirements of GSF when
an increasing number of input features are provided as input. As the number
of input features increases, so does the execution time of SVM-RBF and for
large number of features it is considerably slower than GSF (for instance for 500
features SVM-RBF was 4x slower than GSF). Given the multitude of features
(> 1000) typically used in multimedia concept detection, GSF may be considered
a much more efficient option for practical problem settings.

Inductive Learning: We generated 3000 samples from the four distributions
and α% were used for training. The rest were not used in the similarity graph
construction. Once they were provided as input, the two incremental schemes of
subsection 3.2 (LP and SA) were used to estimate their graph structure features.
The estimation of graph structure features was conducted by setting k equal to
3, 5 and 10. The results are presented in Figure 3 (for Lines and Circles). Sub-
manifold Analysis (SA) consistently outperforms Linear Projection (LP). In the
case of Two moons and Gaussians, their performance is comparable. However,
for Lines and Circles, there is a clear improvement when using SA over LP. An
additional benefit of SA is that its performance seems to be only marginally
affected by k in contrast to LP that is sensitive to it. The above observation
coupled with the fact that the overall performance rates for SA are exceptional
demonstrate that the devised incremental scheme can effectively be used in online
learning settings. We recognize that online learning with synthetic data is an
easier problem compared to real-world settings due to the fact that the training
and test samples are drawn from the same distribution.

Fusion Method: To evaluate the fusion techniques of subsection 3.3, we gen-
erated feature vectors from two 2D independent distributions. In the first ex-
periment, both distributions were generated according to the Lines pattern, and
the free parameter was the size of the training set. In the second experiment,
Circle distributions were used and increasing amounts of noise were added to
one of the two feature sets. In both experiments, the two late fusion techniques,
namely GSF-level fusion (F-GSF) and result fusion (F-RES) led to the best per-
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formance, higher than both feature-level performance and early fusion methods,
namely feature-level (F-FEAT) and similarity-based fusion (F-SIM).

4.2 MIR-Flickr

MIR-Flickr [13] was used as a real-world benchmark. Ground truth is available
for all 25,000 images of the collection in three variants, strict relevance of im-
age to concept (REL), loose relevance (POT) and aggregate annotation (ALL)
[13]. REL and POT contain annotations for 14 concepts, while ALL includes
annotations for 24 more concepts (38 in total). We compared GSF with two
state-of-the-art approaches, the Semantic Spaces (SESPA) approach [14] and
Multiple Kernel Learning (MKL) [15], which were selected for two reasons:

– High performance: SESPA reports better than average performance for the
ImageCLEF 2009 photo annotation task. MKL reports higher performance
compared to the best method in the PASCAL VOC’07 dataset.

– Reproducibility: The authors of both approaches have disclosed all necessary
information and data (e.g. visual features of the dataset images) making
possible the replication of their experimental settings.

In all experiments that follow, the similarity graphs were built with the kNN
technique, setting k = 2000 (empirically found to produce slightly higher mAP
scores compared to k = 500, 1000). We used different k values during the testing
of incremental methods (LP, SA). In addition, we experimentally selected CD =
500 due to its higher performance compared to CD = 100, 200, 1000.

GSF vs SESPA. SESPA [14] is based on the concept of creating a high-
dimensional space, in which closely positioned images are expected to be seman-
tically related. The authors use three well known visual descriptors based on
SIFT. Apart from the SESPA approach, the authors of [14] specify a complete
MIR-Flickr-specific evaluation protocol. Following that protocol, we computed
the performance of GSF for three different train-test splits and over all three
annotation sets (REL, POT, ALL). The performance was quantified in terms

Table 1. GSF vs SESPA

Method
|L| = 5000|L| = 5000|L| = 5000 |L| = 10000|L| = 10000|L| = 10000 |L| = 15000|L| = 15000|L| = 15000

REL POT ALL REL POT ALL REL POT ALL

SESPA 0.216 0.313 0.276 0.237 0.324 0.287 0.240 0.327 0.292
GSF-F111 0.202 0.313 0.272 0.225 0.339 0.297 0.237 0.350 0.308
GSF-F222 0.146 0.257 0.216 0.160 0.276 0.233 0.171 0.286 0.244
GSF-F333 0.142 0.265 0.142 0.162 0.285 0.240 0.174 0.295 0.251
GSF-C 0.222 0.332 0.291 0.247 0.361 0.319 0.269 0.380 0.339
GSF-D111 0.227 0.340 0.292 0.256 0.371 0.325 0.275 0.388 0.345
GSF-D222 0.237 0.357 0.314 0.263 0.379 0.337 0.278 0.384 0.350
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Table 2. GSF vs MKL (|L| = 12500, ALL)

MKL GSF GSF*

Visual 0.530 0.511 0.511

Tag 0.424 0.433 0.474

Visual+Tag 0.623 0.624 0.641

of mean Average Precision (mAP) and Area Under the Curve (AUC). Table 1
presents the obtained results (only mAP). Several variants of GSF were eval-
uated: (a) single feature GSF for each of the three features (GSF-F1, GSF-F2

and GSF-F3), (b) multi-modal fusion (GSF-C) relying on the concatenation of
the Laplacian eigenvectors of the three similarity graphs , (c) two result fusion
variants (GSF-D1 and GSF-D2). Result fusion in GSF-D1 relied on linear SVM
[11], while in GSF-D2 it relied on SVM-RBF [12].

The results of Table 1 indicate that GSF clearly outperforms SESPA. Across
all train-test splits and all annotation sets, one or more of the feature fusion
variants of GSF yield higher mAP scores. In terms of AUC, the difference in
performance is less pronounced and in one case (|L| = 5000, REL), SESPA
outperforms GSF by a small margin. Out of the GSF variants, the highest per-
forming ones are those relying on result fusion. There is a tendency for bigger
improvement in performance (compared to SESPA) as the training set size in-
creases, and the performance increase is larger on the POT set than on REL.

GSF vs MKL. The MKL approach by [15] leverages Multiple Kernel Learning
for combining a kernel based on image content with a second kernel that en-
codes tag information. To derive the visual kernel, the authors of [15] make use
of 15 features, while the tag-based kernel is computed by selecting the 457 most
frequent tags as features. Table 2 presents the comparison of the mAP-based
performance between MKL and GSF on a 50-50 train-test split (ALL annota-
tion set). According to it, MKL outperforms GSF by 3.7% when only the visual
features are used as input, while GSF outperfoms MKL by 2.1% when tag fea-
tures are used. When all features are provided as input, GSF outperforms MKL
by a very small margin. The third column of Table 2 reports the results obtained
by GSF with the use of tag features computed by use of inverse document fre-
quency. Using the MKL approach with this feature would be impractical due
to its very high dimensionality (68,894). Instead, GSF could make use of the
feature, since its complexity is not significantly affected by its dimensionality.

Figure 4 illustrates the top eight results from GSF using visual and tag fea-
tures for the first five REL concepts of MIR-Flickr. All returned results (apart
from the first in the Baby concept) are highly relevant to the query concepts.
Manual inspection of the top 50 results for other concepts of the dataset further
confirms their high relevance.
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Fig. 4. Examples of top retrieved images per concept using the batch mode GSF

Contribution of Unlabeled Samples. In this experiment, we evaluate the
gains in learning performance when more unlabeled samples are available. Out
of the 25,000 images, 5,000 were reserved for training and 10,000 for testing.
The remaining 10,000 images were used as unlabeled items. Figure 5 presents
the results for three different features (GIST, DenseSiftV3H1, TagRaw50). The
features are representative of three feature types: global visual, local visual, and
text-based. The experiment is repeated for different values of k, i.e. the number
of top-k most similar neighbours used by SA.

Adding more unlabeled samples together with the labeled ones leads to signif-
icant performance gains. In the case of GIST, the largest performance benefits
are observed when k = 10: compared to using only the labeled examples (mAP
= 0.21), the performance of the concept detector rises to 0.235, i.e. a relative
increase of 11.9%, when 10,000 unlabeled samples are added during the compu-
tation of the graph structure features. For larger values of k, the performance
benefits appear to be much less pronounced. In the case of DenseSift3VH1,
significant performance gains are observed across all values of k. For instance,
for k = 10 a 16.3% increase in performance is recorded, while for k = 50 the
performance benefit still amounts to 11.8%. In case of the tag-based features,
the situation is more similar to the one described for GIST. The performance
improvements are clearer for smaller values of k and appear to level off after
3000-4000 unlabeled samples are added together with the labeled samples.

In the same experiment, we could also conclude that the performance of the
SA online learning scheme is comparable to the one of the transductive learning
scheme. For instance, when using k = 100 (which leads to the best performance
for SA among the tested values), the map score of SA using the GIST features
and no unlabeled images is 0.243, while the score achieved by the transductive
version of GSF is 0.2456 (1.1% higher). When 5000 unlabeled images are pro-
vided together with the labeled ones, then the SA performance (again for GIST
features) rises to 0.2552, slightly higher than 0.2522, which was achieved by
the transductive implementation of GSF. Similar observations were made when
using other features as well.
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Fig. 5. Performance gains by adding unlabeled samples

5 Conclusions

We presented GSF, a multimedia annotation approach leveraging the structure
of image similarity graphs. GSF relies on the assumption that images with simi-
lar positions on the graph tend to carry the same concepts. Concept detection is
then conducted by training classifiers using the graph Laplacian eigenvectors as
features. Apart from the transductive formulation of the problem, we proposed
two incremental versions, one based on Linear Projection and the other on Sub-
manifold Analysis, and described four fusion techniques applicable to GSF. The
transductive version of our approach was evaluated on a wide range of synthetic
distributions, and was also compared against two state-of-the-art learning ap-
proaches on the MIR-Flickr dataset, giving superior or comparable results. The
two incremental implementations were compared on synthetic data, with SA
method yielding superior performance. SA was also evaluated on MIR-Flickr in
a semi-supervised learning setting, resulting in mAP rates very close to the ones
achieved with the transductive version. In addition, SA was found to be quite
fast; the average time for predicting the concepts of an image using SA with
k = 5 was measured to be 38.4ms (not including feature extraction). In the fu-
ture, we plan to further study the computational characteristics of the proposed
approach by applying it to larger scale problems.
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