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Abstract—In this paper we address the problem of Web
Mashups full completion which consists of predicting the
most suitable set of (combined) services that successfully meet
the goals of an end-user Mashup, given the current service
(or composition of services) initially supplied. We model full
completion as a frequent sequence mining problem and we
show how existing algorithms can be applied in this context.
To overcome some limitations of the frequent sequence mining
algorithms, e.g., efficiency and recommendation granularity,
we propose FESMA, a new and efficient algorithm for com-
puting frequent sequences of services and recommending com-
pletions. FESMA also integrates a social dimension, extracted
from the transformation of user → service interactions into
user → user interactions, building an implicit graph that
helps to better predict completions of services in a fashion
tailored to individual users. Evaluations show that FESMA
is more efficient outperforming the existing algorithms even
with the consideration of the social dimension. Our proposal
has been implemented in a prototype, SoCo, developed at Bell
Labs.

Keywords-Mashups; Web services; Sequence mining; Social
networks;

I. INTRODUCTION

Web services composition has definitely contributed to
developing new and existing applications for both academic
and industrial communities [1]. Originally a task carried out
by programming experts and developers, the emergence of
Web 2.0 and the User Generated Services (UGS) paradigm
enables end-users to create their own compositions of
services. Nowadays, Web services have taken the form
of Mashups, i.e. Web applications that combine existing
services (API, data sources, etc.) into a single integrated
service [2]. A popular Mashup example is the case of using
cartographic data and interface (e.g. from Google Maps)
with location information about real estate data.

Since creating Mashups is now an emerging trend, semi-
automatic Mashup composition will assist in developing
Mashups in a faster and user-tailored manner. Typically two
categories can be distinguished: (i) step-by-step completion,
in which a list of potential single services is suggested to
the user on the basis of the currently selected service [3],
and (ii) full completion, in which the whole composition
(or a part of it) is recommended to the user [4]. Our
work focuses on the full Mashup completion and aims
at providing an answer to this problem through sequence
mining for capturing, modeling, and suggesting the most
interesting combination of services that should follow a
current service creation flow. The goal of the proposed
approach is to improve Mashups creation time and quality
while dealing with the following challenges:
• scalability: the number of potential candidates to a full

completion is combinatorially larger than the number

of candidate services to step-by-step completion. This
directly impacts the system’s scalability.

• the terminating condition in suggesting a full com-
pletion has no specific boundary since the number
of required services to complete the Mashup is not
known a-priori. Therefore, recommendation of ser-
vices involves an unknown parameter that increases
the complexity.

• recommendation detail level given the wide variety of
different services and resources that are available for
the system for suggestion.

The problem we are tackling could be summarized as
follows: Given a user creating a Mashup within a Mashup
creation platform, how can the platform suggest the finished
Mashup that best meets her intentions, within a reasonable
amount of time? Our work addresses this problem by
identifying frequent combinations of services and captur-
ing users’ social interactions over them. This approach is
used for predicting and suggesting the next services that
will complete an initiated Mashup by exploiting both co-
occurrence frequencies and social interactions on earlier
composed services. More specifically, such Mashups full
completion strategy involves :
• modeling the problem of full completion as a frequent

sequence mining problem. Thus, we show that existing
frequent sequence mining techniques could be lever-
aged to provide a solution to this problem.

• dealing with scalability issues related to the existing
frequent sequence mining algorithms. This is per-
formed via the introduction of a new frequent sequence
mining algorithm, called FESMA. FESMA offers a
high performances in terms of computation time out-
performing the existing algorithms in our context.

• personalized completions achieved through the intro-
duction of a social dimension in the process. The social
dimension is essential to this work since in Web 2.0,
people can create, use, and share services. We assume
that Mashups environments reflect the social behaviors
of users and thus, social structures can be extracted
from the interactions between users and services (and
between users). These interactions can be analyzed and
injected as a social information into the process of full
completion for services discovery and composition.

The proposed approach is integrated and implemented
in a social-oriented composition framework named Social
Composer (SoCo), developed at Bell Labs [3].

The rest of this paper is organized as follows: Section II
introduces a very simple illustrative example and discusses
the principles of Mashups full completion. Section III
discusses our proposal to frequent sequences mining for



Mashups full completion. Section IV discusses two strate-
gies for suggesting completions: community-based and
social-based. Section V presents the evaluation results on
different datasets as well as a comparative study with
existing frequent sequence mining techniques. Section VI
reviews some related work. Finally, we conclude and pro-
vide some future directions in Section VII

II. CONTEXT & MOTIVATING EXAMPLE

The recent acquisition by Alcatel-Lucent of Pro-
grammableWeb1, one of the largest API (Web services)
and Mashups Web repositories, is a clear intention of
the company to implement its “Application Enablement”
strategy and have a successful transition in the Telecom-
munications and the Web convergence. ProgrammableWeb
may eventually offer a user friendly (Yahoo! Pipes-like)
tool to leverage its leadership and stimulate larger number
of users to easily create Mashups.
To illustrate the proposal of this paper, consider three
users Alice, Bob, and Carol who compose services using
their favorite Mashup creation environment. Alice and Bob,
who are more comfortable composing services, create some
Mashups.

In order to find the definition of a word in English, trans-
late into French and then email it, Alice creates a Mashup
composed as follows: Dictionary → Translator →
Email. Moreover, in order to find the weather forecast,
translate it and receive it by SMS, Alice creates a new
Mashup as follows: Weather → Translator → SMS.
On his side, Bob would like to create a Mashup that
finds the weather description from his location, send it on
his blog, and then post a tiny URL of his blog on his
Twitter profile. Thus, he creates the following Mashups:
Mylocation → Weather → BlogPost → tinyURL →
PostTwitter.

Carol would like now to create a new Mashup based on
weather forecast service. Once she selects the weather ser-
vice, she gets suggestions (i.e., completions) based on other
users’ usage: (i) → Translator, (ii) → Translator →
Email, (iii) → BlogPost, (iv) → BlogPost →
tinyURL, and (v) → BlogPost → tinyURL →
PostTwitter. However, since she doesn’t really have expe-
rience with these services, Carol wishes that the completion
list would preferentially rank completions related to her. If
we suppose that Carol is somehow close to Alice (e.g.,
share common interests), it is more likely that the system
should prefer a recommendation originating from Alice
rather then from the whole community. Suppose that Carol
selected the completion (i)→ Translator. After selection,
the completion list is updated dynamically. It will offer as
following to Weather → Translator two completions:
→ sendSMS or → Email, and so on until Carol chooses
to terminate the Mashup.

Basically, the idea of composition completion is to pre-
dict the remaining part of a Mashup during its creation
by a user, given its current state. Figure 1 illustrates
three Mashups created by different users in which different
services are combined together to achieve specific goals.
It can be easily observed that there is a recurring con-
figuration of services that appear together in the different
compositions. We illustrate one of them represented by

1http://programmableweb.com/

the chain: w3 → w4 → w5. Since this configuration is
repeated, it would be interesting to suggest it whenever
similar composition schemes are started. Figure 2 illustrates
this principle by considering the initial status, called the
query sequence, of the current Mashup as a composition
of w1 → w2 → w3 respectively. The following chains
of services are those predicted by the system which are
expected to be the most suitable ones to complete that initial
configuration.

III. FROM SERVICES TO SEQUENCES OF SERVICES

A. Data model

Intuitively, since services composition is based on the
combination of different services together where the output
of a service wi is the input of service wi+1 (or a part of it)
immediately following wi, this builds a chain of services
following different patterns. Thus, Mashups (and services
compositions in general) can be considered as sequences of
services2. Let W = {w1, ..., wn} be a set of n items (|W | =
n) that we explicitly call Web services from now on. Let
S = {s1, ..., sm} be a set of m sequences (|S| = m). A
sequence, representing a Mashup in our case, is defined as
an ordered set of services denoted by si(w1 → w2 → ...→
wk) where wi (i = 1, ..., k) represents the ith Web service.

For each sequence we associate: (i) the length k, denoted
len(si) defining the number of successions of services
included in the sequence (i.e., with repetition) (ii) a set
pref(si) representing the set of prefixes of a sequence
si. As commonly used for strings, a prefix represents
a subsequence having as a first service the first service
of si with a length less than len(si). As an example,
let’s consider the sequence si(w1 → w2 → w3) then
pref(si) = {(w1), (w1 → w2)}. Finally, we associate a
set suf(si) representing the set of suffixes of a sequence
si which represents all the subsequences having as a
last service that of si. As an example, let’s consider
the sequence si(w1 → w2 → w3) then suf(si) =
{(w3), (w2 → w3), (w1 → w2 → w3)}.

The basic idea is to identify and count recurrent subse-
quences in compositions that have been previously created
by users within the system. Those frequent sequences
represent actually, on one hand, the composition behaviors
of each individual, and, on the other hand, the common
habits and behaviors shared implicitly between groups of
users. The problem becomes to find frequent subsequences
having the same prefix as the query sequence of a certain
length k ∈ {1, ...,max(k)}.

The investigation of existing algorithms for sequence
mining (cf. Section VI) has shown that (i) no algorithm
had significantly better performances than others [5], and
(ii) algorithms performances are heavily tied to the nature of
the dataset that has been used to measure it. In our context,
the first priority was given for the scalability since we
need to process completion queries in real time and better
personalized completion suggestions. This is not offered by
the existing algorithm. We propose then a new algorithm
for frequent sequence mining to tackle at a first stage, the
scalability problem.

2This should not be confused with the composition patterns that include
sequence operations, parallel operations, etc. but rather the way services
are modeled at a logical level.



Figure 1. Example of services co-occurrences in different compo-
sitions

Figure 2. Illustration of full completion applied to the example of
Figure 1

B. A New Algorithm for Fast and Efficient Frequent Se-
quence Mining

The algorithm we propose is called FESMA for Fast
and Efficient Sequence Mining Algorithm. Just like the
FP-growth algorithm [6], FESMA doesn’t generate any
candidates and uses a compact prefix tree representation
to store all sequences (i.e., sub-Mashups) that exist within
the transactions database (i.e., all created Mashups). By
contrast to other sequence mining algorithms, FESMA scans
the database only once. During this scan, and for each trans-
action, all sequences are added to the tree representation
by updating the support associated with each sequence and
the user’s specific supports. We named that tree FSTree
for Frequent Sequences Tree. Algorithm 1 summarizes the
general process3.

Algorithm 1 FESMA
Require: S = {sj , j = 1, ...,m} {list of

sequences}
1: for j = 1 to m do
2: {scan all Mashups}

sj := GetSequence(j)
3: for k = 1 to len(sj) do
4: {parse all subsequences of sj}

SSeq := subsequence(sj , k)
5: if SSeq ∈ FStree then
6: Update the corresponding branch by increment-

ing nodes support in FSTree
7: else
8: Create a branch and set its node support to 1

{update the prefix tree}
9: Update users supports

Ensure: Return FStree

Table I
ILLUSTRATION OF MASHUPS DATABASE

ID, user Transactions
Mashup1, user ‘a’ w1 → w2 → w3 → w4 → w5 → w6

Mashup2, user ‘b’ w3 → w4 → w5 → w6 → w2

Mashup3, user ‘a’ w9 → w3 → w4 → w5 → w1

In order to illustrate the algorithm, let’s consider the
simple example of Table I which shows three Mashups
and their associated users as input. As the algorithm visits
every Mashup in the database, the FSTree is updated to
keep a current count of all the subsequences encountered,

3Note that Line 9 of the algorithm is responsible of integration the
social dimension in this process. This feature is described later but we
prefered to integrate it at this stage for completeness matters.

as follows: for every possible suffix of the current Mashup,
a path corresponding to that suffix is followed through the
FSTree incrementing the value of existing nodes that are
visited, and creating new nodes if necessary (with a value of
1) to finish the path. For instance, let’s consider Mashup1

of user ‘a’. In order to represent in the FSTree with
all subsequencess generated from Mashup1, we actually
need just to update it with the following subsequences:
(w1 → w2 → w3 → w4 → w5 → w6), (w2 → w3 →
w4 → w5 → w6), (w3 → w4 → w5 → w6), (w4 →
w5 → w6), (w5 → w6), (w6). For illustration, e.g., when
updating the FSTree with (w3 → w4 → w5 → w6),
this will actually represent in the tree with (w3), (w3 →
w4), (w3 → w4 → w5), (w3 → w4 → w5 → w6). This
process is repeated on the whole sequences (all Mashups).
The tree illustrated in Figure 3 is provided as an output.

Figure 3. Illustration of the output tree after the execution of FESMA
on the example of Table I

From the FESMA algorithm definition, we can see that
one needs exactly one scan of the database to parse ex-
isting Mashups (i.e., transactions). The cost of parsing the
database is O(m), where m is the size of the database.
In order to update the sequence tree FSTree by sub-
sequences, each transaction is parsed once. The cost of
inserting a sequence in the tree depends on the sequence
length (depth of the tree). In the worst case, this operation
costs O(K2) with K corresponding to the size of the
longest sequence. In summary, the overall complexity of
the algorithm in the worst case is O(m×K2).

IV. A NEW APPROACH FOR FINE GRAINED FULL
COMPLETION PREDICTION

At this stage, we have succeeded in adapting the frequent
sequence computation and making it more efficient via
a faster computation and limited database scans. In this



section, we focus on the use of the generated representation
and the computed sequences. Intuitively, when processing
the set of sequences using FESMA or otherwise, the only
information we have is the frequencies of subsequences,
providing a strictly global perspective for possible comple-
tion strategies. In other words, since the co-occurrences are
computed according to their appearances over all existing
sequences, this process considers only the aggregation of
the behavior of all existing users regarding the most popular
sequences. Thus, any assistance can only operate at a high
level of granularity, i.e., community or global, equally valid
for one user as for another, yet customized for neither.

In the following, we describe an enhanced community-
based strategy for ranking the completion lists which im-
proves on this global perspective of the direct application
of frequent sequence mining algorithms to the full com-
pletion problem. Afterwards, we introduce and motivate a
fine grained strategy based on social networks implicitly
extracted from the analysis of interactions between the
entities of the system.

A. Community-based recommendation

This functionality can be achieved by using any frequent
sequence mining algorithm. At this stage, it is necessary to
keep in mind that we are aiming at offering support for end-
users (e.g., under the form of recommendations) to easily
build her Mashup. Applying the aforementioned algorithms
produces a set of subsequences with their frequencies as
defined in Formula 1:

S′ = {(s′i, freq(s′i))/s′i = (w1 → ...wl) ∧ l ≤ Argmax(len(si))}
(1)

Where freq(s′i) is the frequency of subsequence s′i in
the initial set of sequences S, and Argmax(len(si)) is the
length of the longest sequence in the initial set playing
the role of highest limit, i.e., it is not possible to find
a subsequences longer than the longest sequence in the
initial sequence set. Depending on the algorithm used,
this output could be represented and indexed as a tree.
A query sequence sq is sent to the system in the form
of a service or a sequence of services (i.e., built from
an initial successive combination of services). The system
selects candidate sequences from S′, where the prefix of
the candidate subsequence is a suffix of the query sequence.
All selected subsequences represent potentially interesting
answers for completing sq . At this stage, according to a
predefined strategy, the recovered sequences are ranked by
their relevance and only the top−k sequences are proposed
to the user. Algorithm 2 provides an abstract description of
the completion process.

Basically, the full completion algorithm cost depends on
the length of the query sequence |sq|. In fact, for each suffix
of the sequence query, the algorithm retrieves completions
from the frequent subsequences list. This makes the use of
traditional frequent sequence mining algorithm unsuitable
in this context4. Our alternative approach uses the FSTree
representation which can be traversed with more efficient
computation and access times. Once the branch of the
sequence query suffix is retrieved, one needs just to browse

4The execution times of existing algorithms are discussed in the
evaluation section.

Algorithm 2 Completion abstract algorithm
Require: sq: {the query sequence}

S: {the set of existing Mashups}
1: S′ = FSM(S) {mine frequent sequences}
2: for all each sq′i ∈ suf(sq){all suffixes of the query}

do
3: TempList = Select s′i from S′ where sq′i is prefix

of s′i
4: RecList⇐ RecList ∪ TempList

{building the recommendation list}
5: Rank RecList

Ensure: Return top− k elements of RecList

that branch to access the most frequent sequences (with
additional “meta-data” if it exists).

B. Social networks based recommendation
As we are clearly in a Web 2.0 environment, we believe

that the user needs to be introduced in the process not
only as a separate entity or a group of people but as an
interlinked entity with other entities following a relation
translating, e.g., common interests and friendship. We be-
lieve that this will lead fine grained, more precise and
personalized support for users.

We consider interactions that involve end-users as social
interactions, and part of the social dimension. The remain-
ing type of interactions, i.e., those between services, is
considered as a structural support for the approach since
such information is necessary to, e.g., ensure that the input
of service wi+1 is compatible with the output of service
wi.

Frequent sequence mining algorithms, even FESMA,
don’t consider a fine grained level of granularity since (i)
they mainly operate at a global level and (ii) they reason
about one type of entity, i.e., services. Thus, they need to
be adapted not only to keep track of social information but
also to support the high number of possible combinations
due to the introduction of the user in the process. A social
network in this context is then defined as an abstraction
of interactions that occur between people and services in
Web services environments, capturing the behavior of social
entities in the form of a social graph. This structure may
be inferred or extracted directly from common interests
between the users of the composition platform. The princi-
ple is based on the transformation of user → services
interactions to a user → users social network on top
of which statistical processes are applied to, e.g., fire
recommendations for assisting the user in constructing the
Mashup. Impacts and interests of the social dimension have
been introduced in [3] and were heavily discussed. Since the
objective here is to show how this dimension is leveraged
for building sophisticated full completion strategies, we
don’t detail this aspect further in this paper.

With this new constraint, the method has to enumerate
and count not only the frequency for each subsequences,
also named here support (i.e., number of occurrences), but
the specific sequence support for each user. In other words,
each node is related to the users who have used the subse-
quence it represents. This information is associated in the
form of an array capturing: user ui has used subsequences
sj , l times. In order to reduce the construction cost, this



Figure 4. FSTree with social information

information is updated while building the tree. The result is
illustrated in Figure 4. Thus, Formula 1 needs to be revisited
to incorporate this level of granularity, as in Formula 2:

S′ = {(s′i, uj , freq(s′i, uj))/s′k ∈ S′ ∧ uj ∈ U} (2)

In terms of algorithm complexity, adding the users’
specific sequence occurrence within the FESMA sequence
mining algorithm, i.e., Algorithm 1, impacts not impacts
not only the algorithm computation resources but also the
memory space occupation.

In order to consider that social dimension, we propose
in the following an efficient strategy for a social-based
full completion approach based on the construction of
an implicit social graph between users. We consider the
resulting graph as social since it captures the behavior of
users regarding services composition and their potential
common interests.

Besides the users→ (single services) relationship, we
consider users → sequences interactions as a bipartite
graph [7] that represents how frequently users include
sequences in composition schemes. The links represent the
usage frequency which a user ui has of a sequences s′i in
all the compositions she created. To transform the bipartite
graph into a social graph to help rank recommendations we
rely on three main steps: (i) local information extraction,
(ii) semi-global information extraction, and (iii) global
information extraction.

Local information extraction: the local information
considers only the interaction between a specific user and
a specific sequence. This information tells us whether a
specific user is confident (i.e., expertise indicator) using
this sequence among other sequences. To materialize this
idea, we define this information in a quantity called Activity
defined in Formula 3 where M is the total number of
sequences a user ui exploited in her different compositions.

Act(ui, s
′
i) =

f(ui, s
′
i)∑M

k=1 f(ui, s′k)
(3)

Semi-global information extraction: At the level of
semi-global information, we consider the interest a user
may have in other users regarding a given sequence. Thus,
for a given user ui we calculate how much the sequence s′i
recommended by the user ul matters to her. This is called
Special Interest (SI) and is calculated using Formula 4.

SI(ui, ul, s
′
i) =

f(ul, s
′
i)

f(ui, s′i)
(4)

Global Information extraction: In order to have as
precise transformation as possible with less data loss, we
add another level of information in the transformation
process. The global information captures whether a couple
of users have common general interest or not. At this stage
of our study, and for simplification reasons, we consider
that the general interest of a couple of users is equal to the
sum of their specific interests, thus building the implicit
graph as illustrated in Formula 5. The output of this step is
a users’ social graph aggregating all the specific interests
graph obtained previously.

IG(ui, ul) =
M∑

k=1

SI(ui, ul, sk) (5)

Sequences recommendation strategy: Once the bipar-
tite graph is transformed to a social graph thanks to the three
previously described steps, we proceed to recommendation
calculation to suggest a coming sequence according to a
selected query sequence. Thus, considering the intrinsic
user’s usages frequency (local information), the specific
interest between two users (semi-global information), and
the implicit graph (global interest between users), we define
the Recommendation Confidence RC of a given sequences
s′i according to the introduced sequence sq (considered as
prefix of s′i) for the user ui as follows (see Formula 6):

RC(ui, sq, s
′
i) =

N∑
l=1

SI(ui, ul, s
′
i)×Act(ul, s

′
i)

× IG(ui, ul)

(6)

The recommendation confidence RC is the metric that
indicates how a completion is important to the user. Con-
cretely, when the user ui is creating a new composition
of services, and has entered sq as prefix for Mashup full
completion, a ranked list of recommended Mashup comple-
tions is proposed in decreasing order of recommendation
confidence RC.

V. EXPERIMENTAL STUDY

We have performed mainly two kinds of evaluation:
(i) a comparison evaluation in which we compare the
performances of our approach to existing frequent sequence
mining algorithms, and (ii) an evaluation of particular
properties of FESMA to measure the overhead generated
by the consideration of the social dimension.

Being a succession of services, Mashups have their
own statistic properties, e.g., their distribution and their
length (according to analysis of available data on Pro-
grammableWeb [8]). Thus, the dataset which can be used
need to respect the behavior of real world observations. On
the other hand, another important aspect, especially when
comparing to other methods, is to select datasets which
are supported by existing approaches. We have decided
to use the synthetic data generator from “IBM quest data
generator”. For instance, IBM-Artificial dataset T10k−L5
contains 105 transactions (defining Mashups in our case)
and the average sequence length is equal to 5.

Generally speaking, the main performance criteria used
to evaluate this kind of methods are: (i) the execution time
and (ii) the memory space required by each algorithm to



find frequent sequences in a dataset. It should be noted
that in the case of FESMA, this time includes reading the
dataset from an input file and writing results in an output file
(costly operations in terms of time). FESMI is implemented
using standard C++ library. Finally, all the test that we have
performed are done on an Intel Core 2 Duo T9600 With
2.8GHz of processor and 3GB of RAM.

Table II
LIST OF DATASETS

Dataset Number of Transactions
name transaction average length

T100k-L2.5 105 2.5
T200k-L2.5 2× 105 2.5
T500k-L2.5 5× 105 2.5
T1000k-L2.5 106 2.5

T100k-L5 105 5
T200k-L5 2× 105 5
T500k-L5 5× 105 5

T1000k-L5 106 5
T100k-L10 105 10
T200k-L10 2× 105 10
T500k-L10 5× 105 10

A. FESMA Vs state of the art algorithms
In order to compare FESMA to state-of-the-art frequent

sequence mining algorithms, we run it over a bunch of
datasets. Table II shows a list of datasets used to evaluate
the proposal with a comparison to existing algorithms. We
illustrate the comparison results between FESMA and Apri-
oriseq [9] on 3 different datasets represented in Figures 5,
6, and 7 respectively5

Regarding the obtained results, it appears that there is
a clear gap between the results obtained by AprioriSeq
and FESMA with a better performances for FESMA on
all the configurations of the support (minimum frequency)
represented on x-axis. We believe that with these results,
even other algorithms will be outperformed. Another in-
teresting observation regarding FESMA is its ability to
manage very short frequent sequences which generally
constitutes a problem to existing techniques because of
their large number. Finally, it can be easily observed that
FESMA is stable after considering a minimum support of
2 services. This means that the support doesn’t influence
the performances of the method too much contrary to the
existing methods.

Once this information checked, and since we could
not use larger datasets with the implementation of the
AprioriSeq that we have, we wanted to check the scalability
of the proposed approach. We have considered the same
datasets described in Table II. The results are illustrated
in Figure 8. Considering the size of the datasets and the
minimum support, the results are satisfactory since the
maximum time needed to build the tree with 106 rows is
about 90 seconds. Note also the behavior of the algorithm
which reproduces exactly the same stability for all the
situations like the one observed before.

5We could not reproduce the experiments using other algorithms due to
some technical issues related to the code available on different Web sites.
We could not even report the obtained results on the literature, even with
the use of the same datasets, since the hardware configuration is not the
same since it’s useless for comparison.

B. Social-dimension integration cost
As a second experiment, we wanted to measure the

overload generated by the integration of the social dimen-
sion within FESMA. To evaluate this, we have modified
an initial dataset, i.e., T1014D100K, by associating to
each sequence a user identifier who is supposed to be
the creator of such sequence (i.e., Mashup). We have
generated User ←→ Mashups association satisfying the
most important property of social networks, i.e. the long
tail of the activity distribution. This property argues that
some users (Web-users) are much more active than others in
terms of generated content (Mashups). Figure 9 illustrates
the obtained results.

The result clearly show that the algorithm’s runtime
responses keep the same behavior with an average of 25%
of overload for social dimension which is reasanable re-
garding the personalizarion and social added-value features
provided to users. In the same time, even with the overhead
generated by the social dimension, the results are more
interesting than all the existing algorithms without the
consideration of the social dimension.

C. Completion response time evaluation
At this stage we wanted to measure the response time

of the completion strategy. Indeed, the completion strategy
needs to satisfy interactive application requirements since
it’s supposed to provide real-time and dynamic recommen-
dations and suggestions to users who are creating (editing)
Mashups. As mentioned before, the completion algorithm
uses the frequent subsequences tree FSTree generated by
FESMA in order to retrieve the remaining piece of a
sequence introduced by the user.

To perform this evaluation, we construct on the previous
dataset and FSTree and associate for each frequent se-
quence its users. Then, we consider different initial queries
by different users (randomly selected from the database)
while varying the size of each query sequence from 1 to 10,
i.e. len(sq) ∈ {1, ..., 10}. We recover then the maximum
time for each value of the size. The results are illustrated
in Figure 10 with time unit expressed in milliseconds. The
results shown in Figure 10 illustrates the efficiency of the
proposed completion strategy and its ability to support real-
time query (less than 0.1 second). Note that in a realistic
context, network latency need to be considered as well.
Moreover, as it should be expected, this figure shows that
more the length of a query sequence is high, more response
time decreases (because there is less choices of completion).

VI. RELATED WORK

In the following, we discuss the two main related topics:
(i) end-users service composition and full completion, and
(ii) frequent sequence mining.

A. Mashups full completion
In Greenshpan et al. [4], the authors rely on services

categories to compute completions of Mashups using a top-
k strategy. This is, to the best of our knowledge, the only
work in the literature which is directly related to Mashups
completion. Our work has the same objective as that in [4]
but from a different perspective. We consider not only the
community level but especially the individual level (how
the end-users are related in social network) to compute



Figure 5. FESMA vs Apriori runtime over
support (log-lin scale) on T100kL2.5 dataset.

Figure 6. FESMA vs Apriori runtime over
support (log-lin scale) on T200kL2.5 dataset.

Figure 7. FESMA vs Apriori runtime over
support (log-lin scale) on T100kL5 dataset.

Figure 8. FESMA runtime on all the datasets Figure 9. Overhead generated by the social
dimension

Figure 10. Obtained results on completion
times

completions. Another difference is that our calculations
are performed using specific services within the compo-
sitions as opposed to broader service categories. Instead
of requiring more resources, the computational efficiency
of our approach adequately copes with the increase in
precision. The scalability of our approach is advantageous,
using datasets five times larger and with more precision
than in [4].

There have been other efforts to understand social phe-
nomena in Mashups platforms, illustrating of the increasing
integration of the social dimension. Through a use-case ap-
proach, Floyd et al. [10] highlight the APIs proliferation on
the Web in parallel with the number of creative Web users.
The study shows the benefits of collaboration between end
users and developers that combines the creativity of end
users with the expertise of developers. Automating this
process is the important challenge we’re addressing. In that
regard, an interesting study [11] describes the interactions
of Yahoo! Pipes’ users. This can be used to extract social
structures based on an analysis of user interactions.

Soriano et al. [12] emphasize the growing importance of
the user-service relationship in a Service Oriented Architec-
ture for composing services. The authors introduce EZWeb,
an environment for sharing Mashups between colleagues,
as a basis for co-production in an enterprise context. In
addition, [13] emphasizes the phenomenon of what they
call “social interaction” between services. The aspects of
trust and reliability between services may impact the service
selection for composition. Yu et Woodard [8] propose a very
interesting view of the ecosystem of Mashups. This study
on an API repository6 shows that services usage follows a
long-tail effect (power-law distribution), one of the major
and interesting properties in social networks [14]. From
the services recommendation perspective, some systems
are based on user preferences (user profile) to suggest

6http://programmableWeb.com

services [15]. Others rely instead on the concept of domain-
specific knowledge expressed in a specific area (science,
business, etc.) processed to extract rules that are used for
building recommendations [16].

Our approach to service full completion is innovative
since this is the first approach that offers fine grained
recommendations. Moreover, our approach leverages both
the community-based principles and a social dimension
with a well balanced importance thus providing the user
with well targeted and more personalized recommendations.

B. Frequent sequence mining applications
Mashup full completion is an emerging field that seeks to

complete a composition of services supplied by the user. To
the best of our knowledge, there is no study that addresses
directly this issue (except [4]). Therefore, the problem has
been compared to similar work in other areas leading to
studies in many fields: words and phrases full completion,
DNA sequence prediction, travel itinerary recommendation,
and others dealing with sequence mining [17].

The most frequent case in full completion occurs in the
context of search engines where full completion of words
displays strings that are the most relevant to complete
the introduced prefix (typed words or letters). Classical
approaches, such as suffix trees [18], could not be used
directly in our case. In fact, in words full completion,
only whole words are considered in the training phase
without taking into account sub-strings within those words.
However, ideas coming from this field were a source
of inspiration for different proposals. Typically, [19] has
shown fault-tolerant full completion considering variants of
the introduced prefix, a feature targeted as a future direction
to our work. Another similar topic is predicting user actions
based on user logs and preferences. For instance, [20]
predicts UNIX commands that a user may enter based on
previously entered sequences. As mentioned before, full
completion is based on frequent pattern mining.



In the area of frequent sequence mining, many algorithms
, issued from the area of frequent item sets mining, have
been proposed like Apriori [21] and Eclat [22]. However,
the most known algorithm for frequent sequence mining is
SPADE [23]. SPADE has been defined for the particular
case of frequent sequent mining. Similar to Eclat, SPADE
uses a vertical representation of a sequence database with
simple joins (intersection). Furthermore, it uses a lattice-
theoretic approach to decompose the original search space
in order to be processed separately in the main memory.
SPADE algorithm scans the database only 3 times, leading
it to outperform existing sequence mining algorithms as
AprioriAll [24] and GSP [25]. FESMA as shown in the
evaluations, has outperformed the existing algorithms for
predicting the composition completion chains. Moreover,
FESMA is unique in that it introduces the user dimension
in the context of frequent sequence mining

VII. CONCLUSION AND OPEN ISSUES

In this paper, we have proposed a new approach for
Mashups full completion relying on frequent sequence min-
ing and social networks analysis. To support the generally
large amount of interactions that can occur in a Mashup
environment, we have proposed a new fast and efficient
frequent sequence mining algorithm, called FESMA. This
algorithm integrates a social dimension that enables fine
grained recommendations. FESMA can be used without
the social dimension aspects, much like existing sequence
mining algorithms. This has been demonstrated in the
evaluation section that showed that FESMA outperforms the
considered existing algorithms. However, as Eclat and FP-
growth, the main constraint of FESMA is that intermediate
data structures need to fit in the main memory. This cur-
rently doesn’t cause any problem especially in the context
of Mashups where on-line repositories are of a reasonable
size (about 5k Mashups in ProgrammableWeb). Moreover,
the completion algorithm (using FESMA) far fits interactive
application requirement with few millisecond as response
time. Even with the benefits of the proposed approach,
there are still some issues that need to be considered. For
future work, we mainly consider two issues: (i) the cold-
start problem and (ii) the behavior of small sequences.
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