
 

 

 

 

Abstract — It is fairly established that dynamic recordings of 

functional activity maps can naturally and efficiently be 

represented by functional connectivity networks. In this article 

we study weighted and fully-connected brain networks, created 

from electroencephalographic (EEG) measurements that 

concern patients with focal and generalized epilepsy. We 

introduce a totally new methodology that has never been 

utilized before and that investigates weighted and fully-

connected networks, which includes eigen-decomposition 

analysis, feature extraction and quantitative comparisons 

among entire graph datasets. Our goal is to establish epileptic 

seizure detection/prediction rules, by identifying repetitive EEG 

activity in patients before and after each seizure onset. 

 In the present paper we treat each brain network as a 

weighted and full adjacency matrix, without cutting, binarizing 

or ignoring any values. In this way, it is the first time that the 

full structure of the connectivity weighing profile is exploited. 

Also apart from graph theory approaches, mathematical models 

such as eigen-decomposition analysis are used in our research, 

in order to study and analyze brain networks. Finally, we 

present and discuss the results and conclusions of our new 

method, which are in line with earlier EEG epilepsy findings 

and demonstrate a standard EEG behavior in both the postictal 

and preictal period.   

I. INTRODUCTION 

pilepsy is characterized by sudden and unpredictable 

seizures and constitutes one of the most common 

neurological disorders of the human brain [1]. It is a 

condition that affects many people at any age, regardless of 

gender or ethnic group, given that approximately 1 in 26 

people develop epilepsy at some point during their lifetime 

[2]. Also, since almost one in four patients with epilepsy 

cannot be controlled by any anti-epileptic drugs or surgery 
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[3,4], anyone can understand that it is highly essential for a 

patient to have some kind of warning that a seizure is about 

to occur in order to avoid potentially endangering situations.    

 Over the last few decades, several methods have been 

developed to detect seizures and perform predictions based 

on electroencephalographic (EEG) measurements, in order to 

characterize the transition from pre-ictal or inter-ictal to ictal 

state in quantitative terms [5,6]. This happens because 

measurements of brain electrical activity with EEG have 

long been one of the most valuable sources of information 

for epilepsy research and diagnosis [7], since it carries a 

large amount of rich information that is valuable in detecting 

ongoing seizures.  

The vast majority of the proposed methods include feature 

computation directly from the initial EEG time series in 

order to detect changes immediately prior or after the onset 

of seizures [6]. All these studies strongly suggest that the 

information contained in EEG data relevant to seizure 

detection has not yet been fully exploited and thus, continued 

research and new approaches are needed. Also, individual 

patient-based detector training could be necessary to increase 

sensitivity and specificity [6]. 

For these reasons, during the last few years there has been 

a focus on studying EEG signals as graphs using complex 

network analysis – a methodology based on graph theory – in 

order to investigate the human brain. The graphs that have 

been derived from EEG signals are weighted, undirected and 

fully-connected. Some studies [8,9] have already provided 

evidence that epileptic seizures are characterized by changes 

in functional network features, but  they came to these 

conclusions by truncating and binarizing the graphs and 

studying differences only between some parts of these 

(truncated) networks’ topology before and after the seizure 

onset.   

In this paper we treat the fully-connected brain graphs that 

derive from the initial EEG signals as weighted adjacency 

matrices and we perform feature extraction by applying 

mathematical models from linear algebra, such as eigen-

decomposition analysis, to the entire graph. In this way, we 

take advantage of the full structure of connectivity weights 

without truncating, binarizing or ignoring any edges of the 

graphs.  

Afterwards, the following approach is pursued: each 
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weighted and fully connected graph is represented by the 

unique vector of its eigenvalues. For every patient, datasets 

of the recorded data 15 minutes before and after each seizure 

onset were examined. Next, the datasets are processed in 

rounds defining each graph before the seizure onset as the 

reference graph and then calculate the similarities between 

the reference graph and all its subsequent graphs. The 

measures of correlation, dot product and cosine are used for 

calculating similarity between graphs. This procedure is 

repeated for each patient separately, in order to study the 

behavior of the recorded data concerning the periods before 

and after the seizure onset. As will be shown in the Results 

section, a standard EEG behavior is observed both in the 

postictal and the preictal period.     

The rest of the paper is organized as follows: After a short 

description of the data that we use in this study, section II 

presents our novel algorithm that is called EigenBrain and 

describes the adopted experimental procedure. Section III 

demonstrates the obtained results, while conclusions and 

future work are cited in section IV. 

II. METHODOLOGY 

A. Functional Connectivity Data 

The data that are used in this study come from the 

Neurology Ward of the Cyprus Institute of Neurology and 

Genetics, where long-term EEG recordings were collected 

from 5 patients with epilepsy. Brain activity was recorded 

using twenty-one electrodes which were placed according to 

the 10-20 international system with two additional 

anterotemporal electrodes. Also, another four electrodes 

were used to record the electrooculogram (EOG) and 

electrocardiographic signals (ECG) respectively. The data 

were recorded at a sampling rate of 200Hz and subsequently 

converted to the bipolar montage.  

The aforementioned data as well as the functional 

connectivity graph datasets were created as an intermediate 

result in previous studies [10,11] and hence a more detailed 

description can be found therein.  

The nodes in each functional network correspond to the 

areas of the scalp around the electrodes that monitor the 

brain activity of each patient. Every edge, that connects two 

particular nodes in each graph, represents the correlation 

between these brain areas. Numbers close to 1 denote high 

correlation, while numbers close to 0 denote low correlation. 

All the graphs are weighted, undirected and fully connected. 

The data were processed in consecutive non-overlapping 

windows of length 5 seconds and one functional network for 

each such window was constructed. In this study, all 

networks are represented by square, weighted and symmetric 

adjacency matrices. 

For every patient, recorded data 15 minutes before and 15 

minutes after each seizure onset are provided. One epileptic 

seizure was recorded from patients 1, 4 and 5, while two 

epileptic seizures were recorded from patients 2 and 3. 

B. Feature Extraction 

1)  The Eigen-Decomposition method:  

Eigenvectors and eigenvalues are numbers and vectors 

associated to square matrices and together they provide the 

eigen-decomposition of a matrix which analyzes the structure 

of this matrix. Eigenvectors and eigenvalues are also referred 

to as characteristic vectors and latent roots or characteristic 

equation. The set of eigenvalues of a matrix is also called its 

spectrum [12]. 

There are several ways to define eigenvectors and 

eigenvalues. The most common approach defines an 

eigenvector of a matrix A as a vector u that satisfies the 

following equation: 

λu  =Au              (1) 

when rewritten, the equation becomes: 

 0 =λI)u -(A              (2) 

where λ is a scalar called the eigenvalue associated to the 

eigenvector and I is the identity matrix. 

2) Similarity Measures: 

    a)  Dot (inner) product similarity measure.  

The simplest similarity measure of two vectors is the dot 

product which finds the square of Euclidean Distance 

between these vectors. The dot product of two d-dimensional 

vectors x and y is defined as [13]:  





d

i

ii yxyxyxdot
1

),(              (3) 

b)  Cosine similarity measure. 

It is computed as the dot product of the vectors x and y 

divided by their magnitudes. The cosine similarity gives 

the cosine of the angle between the vectors for which the 

similarity is computed [14]. 
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c)  Correlation similarity measure. 

The only difference between inner and correlation 

similarity measure is that the mean of the sample vector is 

subtracted from itself. Let x and y be d-dimensional 

vectors. The mean of their components and the correlation 

similarity between these two vectors is computed as 

follows [13]: 
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C. The EigenBrain Algorithm 

Each person's seizures are unique, with a unique origin 

and a unique seizure network that the abnormal brain waves 

traverse, causing a unique seizure behavior for each patient 

[15]. For this reason, in the present paper we study each 



 

 

 

patient separately. As already mentioned above, each 

weighted, undirected and fully connected graph is treated as 

a weighted, square and full adjacency matrix. So after the 

application of the eigen-decomposition analysis to all 

matrices, every brain network is finally represented by its 

unique vector of ascending eigenvalues as shown in Figure 1.  

 
Fig. 1. In our study, each graph (weighted adjacency matrix) is represented 

by its unique vector of eigenvalues. 

Also as mentioned before, each graph corresponds to a 

consecutive non-overlapping 5 seconds length window. 

Taking this information into account, we proceed to the next 

step. We process the data in 144 rounds and in each round 

we consider every graph in succession, as a reference pre-

ictal graph, for the time period 15 minutes until 3 minutes 

before the seizure onset. Then we compare the eigenvalue 

vector of each reference graph with all the subsequent graphs 

until the end of the dataset. This practically means that the 

first reference graph corresponds to 15 minutes before 

seizure onset, the second reference graph corresponds to 14 

minutes and 55 seconds before seizure onset, the third 

reference graph corresponds to 14 minutes and 50 seconds 

before seizure onset and so on. Consequently, we create and 

test a total of 144 rounds in each dataset, using each time a 

different reference graph. The reason for this is that we want 

to ensure the robustness of our results. In this way, we 

compare different reference graphs (that correspond to 

different times) with all the graphs that come after it and as 

will be shown in the next section we arrive every time to 

equal results. A schematic representation of the 

aforementioned procedure is depicted in Figure 2. 

 
Fig. 2. Schematic representation of how the datasets are processed, for each 

patient separately. 

In fact, we compare the eigenvalue vector of the reference 

graph with all the other eigenvalue vectors of the dataset’s 

graphs in each round. The three aforementioned similarity 

measures were used for this purpose: correlation, dot product 

(Euclidean Distance) and cosine similarity. Network 

evolution was monitored by observing the similarity values 

of each examined dataset. As will be shown in the Results 

section, during epileptic seizures a great similarity 

divergence is noted between the seizure graphs and the initial 

pre-seizure graphs of each examined round and this fact 

could be the key to the accurate prediction or detection of a 

possible emerging epileptic episode.  

III. RESULTS 

Seven epileptic seizures have been recorded in total. 

Three of them come from patients 1, 4 and 5, while two 

seizures were recorded from patients 2 and 3. For each 

dataset, a total of 144 different rounds were studied 

according to the procedure that was described in the previous 

section. Due to lack of space we only demonstrate results 

from the second patient and specifically from the second 

recorded seizure, using the Euclidean Distance similarity 

measure and three arbitrary rounds from the 144 that were 

studied in total. It is important to mention here that 

analogous results were obtained from the study of the other 

patients and similarity measures as well. 

Figure 3 illustrates the Euclidean Distance similarity 

measure of the three different rounds that correspond to the 

second seizure of patient 2. For the Euclidean Distance 

measure, it is known that values near zero indicate high 

similarity, while the opposite stands for higher values.  In 

Figure 3, “S” denotes the Seizure onset and the word “End” 

denotes the end of the epileptic episode. Directly from the 

course of the similarity measure of those three rounds, a 

clear pattern is visible: observe, for instance, the increase of 

values after the seizure onset and the characteristic patterns 

that are formed before and after the end of the epileptic 

episode. Note that the same patterns were witnessed in all the 

other examined rounds of the second patient, in both seizures 

1 and 2. 

The results of each of the observed rounds were further 

quantified by computing the average values of the similarity 

measure before and after the seizure onset. It is obvious in 

Figure 3 that during and after epileptic seizures a large 

similarity divergence is observed between the initial 

recorded graphs and those that follow after seizure onset. 

This similarity divergence can be either upward (as shown in 

Figure 3) or downward, but the pattern in all cases retains the 

same shape. The results that are obtained from our newly 

suggested methodology generally agree with previous EEG 

epilepsy findings, that use graph theoretic approaches as 

well, such as those presented in [10,11].   

IV. CONCLUSIONS AND FUTURE WORK 

We studied the functional connectivity networks of seven 

seizures from five patients with epilepsy. Since, it is well 

established that seizure characteristics in each epilepsy 

patient are unique, it is expected that each patient also has a 



 

 

 

unique seizure network and a unique seizure behavior. Thus, 

we examined each patient separately, by applying eigen-

decomposition analysis in all networks and introducing a 

totally new methodology for studying weighted and fully-

connected networks, by taking advantage of the full 

exploitation of connectivity weights without truncating, 

binarizing or ignoring any edges of the graphs. We also 

presented an implementation of our proposed scheme in one 

of the patients (Patient 2) with quite promising results. Our 

methodology also explored the provided data in multiple 

rounds (Figure 2), in order to ensure that the patterns that are 

formed before and after the seizure onset are the same 

regardless of the start time of the examined graphs. 

 
Fig. 3. Similarity comparisons between eigenvalue vectors in which the 

reference graph corresponds to: 14.1 minutes before Seizure onset (top 

panel), 12.5 minutes before Seizure onset (middle panel) and 8.2 minutes 

before Seizure onset (bottom panel). The letter “S” denotes the seizure onset, 

while the word “End” denotes the end of the epileptic episode. 

Several parameters play an important role in the 

investigation of epilepsy network data using the proposed 

methodology, such as the duration of the epileptic episode. 

For example, suppose that a seizure lasts less than five or ten 

seconds, given that each graph corresponds to a consecutive 

non-overlapping 5 seconds length window. In this case the 

impact of such an epileptic seizure may miss or fail to be 

imprinted to the network data and consequently the data will 

not form any characteristic pattern before or after the seizure 

onset.  

 The computation of average values of the similarity 

measures before and after the seizure onset, can constitute a 

powerful weapon for the prediction of an upcoming epileptic 

seizure. In the very near future, we are planning to perform 

statistical validation procedures in order to set a threshold 

that will detect and predict any seizure before it occurs. 

As a future work, we are also planning to study extensive 

datasets that include longer recording periods of time (for 

example 24-hours recordings) and larger networks that will 

provide information from more electrodes placed on each 

patient’s scalp. We would also like to enrich our 

methodology by adding more and different similarity criteria.  

Our primary goal in this paper was to ascertain that the 

introduced technique can provide promising and interesting 

results. In the future, we are aiming at applying the suggested 

methodology to a sufficient number of patients in order to 

reaffirm and validate our results and conclusions.  
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