
Chapter 2

Massive Graph Management for the Web and Web 2.0

Maria Giatsoglou1, Symeon Papadopoulos1,2, and Athena Vakali1

1 Aristotle University, 54124, Thessaloniki, Greece
mgiatsog@csd.auth.gr,
avakali@csd.auth.gr

2 Informatics and Telematics Institute, CERTH, 57001, Thermi, Greece
papadop@iti.gr

Abstract. The problem of efficiently managing massive datasets has gained
increasing attention due to the availability of a plethora of data from various
sources, such as the Web. Moreover, Web 2.0 applications seem to be one
of the most fruitful sources of information as they have attracted the inter-
est of a large number of users that are eager to contribute to the creation of
new data, available online. Several Web 2.0 applications incorporate Social
Tagging features, allowing users to upload and tag sets of online resources.
This activity produces massive amounts of data on a daily basis, which can be
represented by a tripartite graph structure that connects users, resources and
tags. The analysis of Social Tagging Systems (STS) emerges as a promising
research field, enabling the identification of common patterns in the behavior
of users, or the identification of communities of semantically related tags and
resources, and much more. The massive size of STS datasets dictates the ne-
cessity for a robust underlying infrastructure to be used for their storage and
access.

This chapter contains a survey of existing solutions to the problem of
storing and managing massive graph data focusing particularly on the im-
plications that the underlying technologies of such frameworks have on the
support/operation of Web 2.0 applications using them as back-end storage so-
lutions, as well as on the efficient execution of web mining tasks. Considering
the category of STS as an example of Web 2.0 applications, the requirements
that are posed for the management of STS data are thoroughly discussed.
On the basis of these requirements three frameworks have been developed,
using state-of-the-art technologies as backbones. The results of benchmarks
conducted on the developed frameworks are presented and discussed.

1 Introduction

The widespread adoption of Web 2.0 tools and technologies that took place dur-
ing the last years has fundamentally changed the way information is published on
the Web. A plethora of Web 2.0 applications, including Social Tagging Systems,
Wikis, and Blogs, have emerged, amongst which there are some that recently gained

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 19–58.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

20 M. Giatsoglou, S. Papadopoulos, and A. Vakali

profound success. Some of the most well-known examples of successful Web 2.0
applications are: Facebook1, a social networking website counting hundreds of mil-
lions of users, Flickr2, a photo management and sharing application that allows
users to tag pictures and form communities, and delicious3, a social bookmarking
web service where users can store, share and retrieve bookmarks. What is common
between all Web 2.0 applications is that the activity of users results in data that are
interconnected through associations, thus forming a network.

The breakthrough of Web 2.0 applications was accompanied by the eagerness of
a large proportion of people to join them and to actively contribute to the generation
and publishing of Web content. This type of user activity produces massive amounts
of data on a daily basis, regarding the uploaded content itself, as well as the relations
formed between (a) users, (b) users and shared/uploaded content, and (c) content and
metadata (such as tags) associated to it by users. A rough idea of the amount of these
data can be drawn taking Facebook as an example, where each week more than 3.5
billion pieces of content (such as web links, news stories, blog posts, notes, photos)
are shared [67]. The data magnitude, the need to model their relation structure, as
well as to efficiently store and retrieve them, have created new challenges in the field
of data management. Classic data management solutions, such as data warehouses,
seem to be inadequate to store efficiently massive sets of relational data. Moreover,
emphasis has been moved from traditional entry-based data access, e.g. customer
records, to navigational access that allows reaching e.g., the references of an article,
the friends of a user via friendship links, etc. The design and implementation of a
robust data management framework that manages to maintain a stable performance
as the size of data increases, and support navigational queries in a optimal way is
still a challenging task for web-scale retrieval systems.

The existence of such massive amounts of data containing complex and emerging
structures has also given new impetus to the field of data mining. The information
of how users or online resources relate to each other, as well as how users react
to resources has captured the interest of researchers, as it was soon realized that
it could be exploited to deduce interesting conclusions about how groups of people
characterize resources and interpret content, or even what pieces of information tend
to be more popular among them. The analysis of Web 2.0 data is further motivated
by the notion that the collaboration and contribution of many individuals results in
the “formation” of a shared or group intelligence, characterized as collective intel-
ligence. Collective intelligence is a new source of information that can be utilized
in a variety of applications, as it is produced by the contribution of multiple peo-
ple representing different views and ideas. For example, it can be exploited in order
to uncover groups of either users that share common interests, resources that seem
to belong to the same thematic region, or tags (usually referred to as communities
of users, resources, or tags, respectively). The discovery of such meaningful com-
munities can be utilized in applications such as recommender systems, in order to

1 http://www.facebook.com/
2 http://www.flickr.com/
3 http://delicious.com/

Massive Graph Management for the Web and Web 2.0 21

increase their efficiency. For example, tag communities can be used in a system that
recommends tags to users that they would possibly find relevant to a given resource.

The analysis of relational data produced by Web 2.0 applications, however, re-
quires the use of special methods and poses a question on the data structure that
should be used for storing and accessing them. A natural way to model Web 2.0
data seems to be the network or graph model where nodes represent entities/objects
and edges represent the relations that exist between them. In order to enable the
progress of research on such relational datasets continuously increasing in size, a
prerequisite is the availability of a robust framework, appropriate for storing and
accessing graph-based data. Some of the most challenging issues that should be
carefully taken into consideration are: the storage of large graphs (e.g. of 109 nodes
and 1010 edges) in a form that will be as compact as possible, the support for rea-
sonably fast graph traversals and updates, and the design of a framework that will
be easy to use and adaptable to the specifications of individual applications.

This chapter provides a review of several solutions and infrastructures used for
the storage and analysis of very large graphs, and also discusses and compares their
individual characteristics and limitations. Moreover, the special case of using a So-
cial Tagging Systems (STS) as a source of data that can be modeled as a tripartite
graph is thoroughly discussed, as an interesting application area. After considering
and summarizing the requirements for the storage and analysis of data from STS,
we present the results of a set of benchmark experiments that have been designed to
compare the performance of three STS data management frameworks built upon dif-
ferent graph persistence technologies, with respect to the storage and management
of graph-based data derived from social tagging applications.

The rest of the report is structured as follows. Section 2 discusses the challenges
presented by the analysis of massive graphs and includes a categorization of the
different available solutions for the management of graph-structured data. Section 3
and Section 4 provide an overview of some of the most recent graph management
solutions that belong to the category of transaction graph databases and data mining-
oriented solutions, respectively. Section 5 presents STS as an application setting,
describing some of the state-of-the-art data mining tasks that are currently being
applied in the area, and also summarizes the requirements that these tasks impose
on the underlying framework used. Section 6 describes the architecture of three
frameworks that have been developed for the management of STS data, presents a
set of benchmarks experiments designed to test and compare their performance, and
discusses the benchmark results. Finally, Section 7 concludes the chapter.

2 Handling Massive Graphs on the Web

The study of the Web has recently emerged as a new research field. Researchers
started to model the Web as a network consisting of nodes representing web pages
and edges representing the hyperlinks that connect them, forming the so-called Web
Graph. The edges in such a model can be: directed (e.g. a hyperlink leading from
web page x to web page y), or undirected (e.g. a hyperlink leading from web page x

22 M. Giatsoglou, S. Papadopoulos, and A. Vakali

to web page y and vice versa). One of the earliest application domains that exploited
the graph model of the Web to extract knowledge was the domain of the Web search
engines [10,37]. However, as the Web gained more and more popularity, the num-
ber of web pages made available for analysis, acquired usually with the help of web
crawlers, was rapidly increasing. While the Web started to reach the size of billions
of web pages with ten or hundred times more edges, technological advances made it
possible to collect for analysis datasets of sizes proportional to the aforementioned
numbers. The availability of such large datasets posed new questions on what tech-
niques and algorithms should be employed to analyze the data.

The obvious problem is that as sizes are getting bigger, the main memory of an
average personal computer does not suffice anymore in order to load and manipulate
all of the data at once. This has created the need for the development and employ-
ment of alternative storage and analysis techniques (Figure 1). Some of the most
straightforward approaches are:

• to compress the data so as to reach a size small enough in order to fit in an
average computer’s RAM and then analyze them,

• to store the data in an external memory repository, and fetch them in batches
when required by the analysis algorithm, combining possibly a caching schema
to increase performance,

• to use a cluster or a grid of computer nodes in order to distribute the data so as
to fit into each node’s RAM for faster analysis, and then aggregate the result.

A prerequisite for efficient access to Web and Web 2.0 data within information re-
trieval scenarios or during the execution of demanding analysis operations is the
existence of a robust underlying graph management framework. Frameworks for
large graphs’ management are usually disk-based, enabling the persistent storage of
the large amounts of graph data. There are numerous approaches as to how to store
and provide access to such data, that make use of existing infrastructures. Figure 2
depicts a categorization of existing persistent graph frameworks. Existing solutions
can be distinguished in two generic categories depending on the reason why the

Fig. 1. Techniques to store and analyze graph data depending on graph scale

Massive Graph Management for the Web and Web 2.0 23

Fig. 2. Categories of graph management frameworks

storage and availability of the data is required: (a) transactional graph databases,
and (b) data-mining oriented solutions.

Transactional graph databases can be used for the management of graphs where
data (modeled as graph nodes or edges) can be inserted, deleted or updated on
demand. This type of frameworks support ACID transactions to ensure reliable
processing of database operations. The underlying infrastructures are disk-based
enabling the persistent storage of large graphs. The infrastructures that can be used
in a transactional graph database can be classified as follows:

• Frameworks based on Relational Database Management Systems (RDBMS),
• Frameworks based on Object Databases,
• Native graph stores, characterized as either: (i) generic, or (ii) special-purpose,
• Custom solutions.

In addition, as mentioned above, there is a requirement for frameworks to store
and allow access to web graphs for data mining purposes. The most usual case in
graph data mining (or graph mining) is to examine static datasets, and analyze data
with algorithms that involve random navigational access to graph nodes and edges.
Graph mining operations therefore pose different requirements to the respective data
management framework, e.g. there is no need for graph updates, and also the graph
accessing mechanisms should be as fast as possible in order for the algorithms to
execute in a reasonable time. In general, data mining-oriented solutions can be dis-
tinguished in two subcategories:

• Streaming,
• Compression-based.

The categorizarion of graph frameworks depicted in Figure 2 is based on their suit-
ability for a particular application setting. However, frameworks belonging to these
categories may address the problem of scalability of the graph data in a different
way. In particular, when the size of data is very large, persistent graph frameworks
based on distributed computing infrastructures can be used in order to exploit the

24 M. Giatsoglou, S. Papadopoulos, and A. Vakali

storage capacity of multiple computer nodes. In Sections 3 and 4 the categories of:
(i) transactional graph databases and (ii) data mining-oriented graph management
solutions, respectively, are thoroughly discussed. Each section presents represen-
tative examples of frameworks and methods belonging to the respective category,
including examples of the special case of distributed graph management solutions.

3 Transactional Graph Databases

Transactional graph databases are disk-based dynamic graph management solutions
that operate on the basis of transactions. The following subsections intend to pro-
vide a thorough insight in the different types of back-end infrastructures that can be
used in a transactional graph database.

3.1 RDBMS-Based Frameworks

One early approach for storing networks has been the use of RDBMS, such as
MySQL. The obvious reason is that RDBMS have been established as the dominant
choice for storing data due to their simplicity, robustness, and flexibility as a generic
data storage and manipulation mechanism, compared to their alternatives. Moreover,
they provide native support for integrity constraint checking, removing this burden
from the application side. However, nowadays relational databases receive criticism
based on the argument that they are not efficient for managing relational data.

Critics claim that the RDBMS structure is too rigid for storing networks of data,
considering that they store both data and their relationships in the form of tables. In
particular, the use of tables makes it difficult to fit new kind of data, as their structure
should be strictly defined from the beginning and cannot be altered later. Moreover,
their most serious limitation is that relational databases are not scalable enough for
graph access operations, especially when the size of data is continuously increasing.

However, some people support the use of traditional RDBMS for storing and
analyzing graphs. For example, one recent approach [57] proposes:

• the storage of the graph nodes in an SQL table, using an integer identifier for
each node as the primary key of the respective record, and also

• the storage of the graph edges in a separate table, using the source and destina-
tion nodes for each edge as foreign keys to the nodes table.

Requirements such as the uniqueness of an edge or the prevention of self-loops are
ensured with the use of SQL CHECK constraints. The graph can then be traversed
by either SQL querying, SQL standards Common Table Expressions (CTEs) that
enable recursions though the nodes, or by using temporary tables [28]. In addition,
the construction of the graph’s transitive closure4 with the use of CTEs is proposed.
A graph’s closure can be used to answer queries related to social networks, such as
the degree of separation or the possible paths between two nodes. Nevertheless, the

4 The transitive closure of a graph is a graph which contains an edge (u,v) whenever there is
a directed path from u to v.

Massive Graph Management for the Web and Web 2.0 25

proposed methods might be too slow depending on the size of the graph and the ap-
plication performance requirements, so there may be a need for employing caching
schemes on top of such a framework. In the following paragraphs two RDBMS are
presented, namely (i) H2 and (ii) Oracle DB, which are considered as a suitable
basis for graph management frameworks.

H2 database. Using a fast database engine can partially mitigate the performance
shortcomings of RDBMS-based graph frameworks. The H2 database engine [69] is
a native Java RDBMS that appears a promising choice. Benchmark results show that
not only the memory usage of H2 database is smaller, but also its query optimizer
results in query times shorter than the times achieved by most competing RDBMS.
Moreover, H2 is considered to be scalable as it creates both in-memory and disk-
based tables, using hash table and tree indexing or B-tree indexing, respectively.
Another important asset is that with H2 there is no limit on the size of the result set
of a query, as it buffers the results to disk after a certain size of data is exceeded.

Oracle Database. This database supports modeling networks of data as graphs and
analyzing them (since the 10g version). These functionalities are included in Ora-
cle’s Network Data Model (NDM)5 [49]. NDM enables the storage of the network
nodes, links (directed or undirected), as well as ordered lists of links that contain
no repeating links or nodes, and are referred to as paths. Graphs are represented
in object-relational form in the database, using separate tables, whereas queries and
updates are performed via PL/SQL. NDM allows posing certain network constraints
such as minimum bounding rectangle, path cost, and path depth, and also supports
graph operations including shortest path between nodes, minimum cost spanning
tree, k-nearest neighbors, k-shortest paths, as well as node and link buffering.

NDM analyzes networks after loading them entirely in memory, thus posing
boundaries on the size of network that it can support. Its network analysis capa-
bilities were enhanced in the 11g version of Oracle, with the introduction of the
load-on demand (LOD) approach that made the analysis of larger networks possi-
ble [62]. With LOD, the network is not loaded in memory from the beginning, but
is partitioned and after that, only the partitions that are required for analysis are
loaded in memory automatically. Moreover, partition loading can be accelerated by
generating and using BLOB representations.

3.2 Object Database-Based Frameworks

Object or Object-oriented (OO) databases constitute an alternative solution to
RDBMS, combining object-oriented programming language capabilities with tra-
ditional persistent data storage and management features. Their use enables devel-
opers to model and store complex data as objects, without the need of defining and
abiding to a specific relational schema, and simplifies the modification process that
is required in case the data model changes. Another argument in favor of object
databases with respect to RDBMS is their support for an object schema for data
representation both within the application as well as for persistent storage, without

5 Part of the Oracle Spatial component.

26 M. Giatsoglou, S. Papadopoulos, and A. Vakali

the need for an Object-Relational mapping [60], which is usually a rather cum-
bersome task. However, the use of object instead of relational databases results in
bigger files for the same data, as they do not separate the structure from the data
themselves. Regarding relationships between data, relational and object databases
follow two different approaches; (i) relational relationships are usually based on set
theory idioms, while (ii) object relationships are mainly based on idioms adopted
from graph theory, such as trees, thus depending on the approach, information is ac-
cessed in different ways [74]. Moreover, object databases are in general considered
to be faster than relational databases for specific access patterns such as navigational
access, whereas this is not the case for direct queries to objects.

Object databases can be readily used for storing graph data, mapping the graph
structure on an object schema. With such a mapping, e.g. each graph node can be
represented by an object of the class node with the edges being represented as rela-
tionships between the appropriate node objects. This constitutes a simpler and more
natural way of storing graph data than using a relational database, and is expected to
be a faster solution due to the navigational nature of the graph access patterns. One
shortcoming of using object databases is the bigger size of the database files.

Although not so widely used as RDBMS, there is a variety of object databases
available. In the following paragraphs three popular open-source object databases
are presented: (i) Oracle Berkeley DB, (ii) db4o, and (iii) Neodatis ODB.

Oracle Berkeley DB or Berkeley DB is an open-source object database, that can
be embedded in applications developed in various programming languages, such
as Java, C++, Perl, and Python. The use of the Berkeley DB library allows de-
velopers to freely decide how data will be stored in a record, without enforcing
any constraints on the data. The database comes in three different editions that
are also configurable to fit any application’s special requirements, with some edi-
tions/configurations supporting traditional database features such as ACID transac-
tions, locking, concurrency management, and replication [75].

Berkeley DB stores data as key/data pairs and supports B-tree, hash table, record
and queue access methods. It does not support SQL queries, whereas queries can
be performed with the use of indexes to each record. According to its developers,
Berkeley DB is very scalable, supporting small databases that fit entirely in memory,
as well as extremely large disk-resident databases of sizes up to 256 terabytes of
data. In order to speed up access to data that are frequently accessed, Berkeley DB
offers an in-memory cache [68].

db4o is another open-source object database library, that can be embedded in Java
and .NET applications. Similar to Berkeley DB, db4o combines traditional database
features, such as robustness, reliability, replication, concurrency support, with sim-
plification of the data storage procedure. An interesting feature is that db4o not
only creates automatically the data model that is required to store data objects dur-
ing a transaction, but also updates the models on-demand [66]. db4o supports Native
Queries (NQ) instead of string-based APIs, such as SQL, in order to enable database
access using the programming language that has been used for the development of
the application. Moreover, it supports the Query by Example (QbE) API to enable

Massive Graph Management for the Web and Web 2.0 27

easy searching for matching objects, as well as the LINQ extensions for .NET. db4o
uses B-trees for indexing, supports caching for efficient access to objects, and also
provides an in-memory mode. As far as scalability is concerned, db4o can create
database files of up to 254 GB.

After conducting the Poleposition database benchmark 6, between db4o and other
relational databases, such as MySQL, JavaBD and SQLite, combined with object-
relational mappers (JDBC or Hibernate), db4o was found to perform better than its
competitors for read, write, query, and delete operations, when they involve access-
ing complex object structures or deep hierarchies. Moreover, its performance was
acceptable, although worse than one competitor, for simple flat objects [65].

NeoDatis ODB is also an open-source object database library, embeddable in Java
and .NET applications, that supports ACID transactions and can be used in a multi-
threaded environment. In ODB every entity (class or object) is characterized by an
Object Identifier (OID), which is associated with the respective physical position
of the entity in the database file. OIDs are used by pointers in the database for
accessing directly a specific object, or for storing relations between objects. They
are grouped in blocks that contains the OIDs of the objects that are instances of
a given class, in order to enable quick access to them. ODB has also a caching
mechanism for mappings from OIDs to objects and reversely, and supports B-tree
indexing. ODB provides the following query possibilities for data retrieval: (i) all
objects of a specific class, (ii) a subset of objects of a specific class via CriteriaQuery,
(iii) a subset of objects of a specific class via NativeQuery, (iv) direct id-based object
retrieval, or (v) specific object value retrieval [70].

Based on the results on the Poleposition benchmark, it appears that ODB per-
forms on average better than db4o on most circuits, although there are also some
results that indicate that db4o is slightly faster than ODB for some circuits [77].

3.3 Native Graph Stores

A natural way to store large graph-shaped datasets seems to be through the use of a
persistence engine that directly encodes the graph structure. This type of graph store
can be characterized as native and should in general support the representation and
storage of both nodes including node-related properties, as well as attributed links
connecting pairs of data nodes. In the following sections some examples of existing
native graph stores will be given, including stores that are generic, i.e. designed
to enable the storage of various types of graphs, or are intended for the storage of
special graph types, e.g. RDF or XML.

Generic graph stores: Graph databases have been recently presented as an efficient
way to handle networks of data. Unlike RDBMS, graph databases are designed with
inner support for entities that represent nodes and relationships (or edges), thus
making it possible to store and access data in a more efficient and simple way.
They aim to provide a complete environment that will make the storage, indexing
and quick retrieval of graph data easy, and at the same time retaining traditional

6 http://www.polepos.org/

28 M. Giatsoglou, S. Papadopoulos, and A. Vakali

database properties such as: transactions, durable persistence, concurrency control,
and transaction recovery. Graph databases have also been designed taking seriously
into consideration the matter of scalability.

One of the first and more complete efforts towards the direction of a generic
native graph store has been the development of Neo4j [73] and its release as an
open-source graph database. Neo4j is an embedded, disk-based, transactional graph
persistence engine that stores data in the form of graphs. Apart from the capabilities
of storing nodes and edges and also properties related to them (they are collectively
referred to as primitives), Neo4j has an easy-to-use, rather straightforward API and
provides a variety of extra graph manipulation facilities, such as checks for possible
inconsistencies and support for both directed and undirected edges. Moreover, it
requires constant time for adding, removing, or accessing a property and creating,
deleting, or accessing a node or relationship, whereas it requires linear time for
accessing the relationships that involve a given node. However, although in general
Neo4j can be considered as fast when concurrent reads take place, it is slower with
concurrent updates. This requires careful consideration of the number of operations
that will be packed in a Neo4j transaction, which is also affected by the available
size of RAM. Moreover, transactions may be useful for ensuring data integrity, but
sometimes they can seriously decrease the speed of operations.

It is claimed that Neo4j can scale up to billions of nodes, relationships and prop-
erties, but this is a maximum capability relevant only for servers with more than
16 GB of RAM. In general, the scalability of Neo4j is greatly affected by the hard-
ware specifications of the computer station hosting it. For example, it is claimed
that an average laptop with 1-2 GB RAM handles tens of millions of primitives,
whereas a standard server of 4-8 GB RAM handles hundreds of millions of primi-
tives. However, our experiments with Neo4j (see Section 6) did not give proof for
such scalability.

Although Neo4j does not provide a native indexing mechanism yet, it supports
indexing facilities by use of the Apache Lucene text indexing library. This utility
allows indexing nodes with key-value pairs, just like properties, so that they can be
queried and retrieved using a given key. The querying process can be accelerated
via a LRU cache that holds the most recently accessed results. A limitation of this
indexing scheme, however, is that it does not allows indexing relationships.

Another example of native graph store is grDB [30], In grDB graph data are
stored grouped in blocks, with the block being the smallest amount of information
inserted or extracted from the database. The information that grDB stores for a graph
is structured in the form of adjacency lists for each node using an integer identifier
per node. A grDB instance consists of the storage component, that stores the blocks
containing parts of the adjacency lists of one or more nodes, and the block cache
component, that caches some storage blocks in order to improve performance. It
also supports multiple levels of storage files.

Special-purpose graph stores: Data encoded in the XML format exhibit an in-
nate tree-like structure that could be used for modeling certain relations that exist
in web graphs. More specifically, since a tree is by definition a connected graph

Massive Graph Management for the Web and Web 2.0 29

that does not contain any cycles, XML could be possibly used for modeling data
nodes with relations that conform to these limitations, or at least can be normal-
ized in more than one trees. For the efficient storage and management of XML data,
special databases have been developed. Although the design and functionality of
these special-purpose graph stores have been optimized for the storage and retrieval
of XML data, they could provide a framework for the storage of graph data (with
the aforementioned limitations). Native XML databases, such as Apache Xindice
and Tamino XML Server [79], constitute an interesting alternative to RDBMS, as
they do not require the definition of a schema (schema-free), thus allowing storing
records (XML documents) including semi-structured data that do not necessarily
follow a strict predetermined structure. In such databases the storage and retrieval
of XML documents takes place according to a (logical) model, such as the XPath
model, whereas data retrieval is usually performed by means of the XQuery lan-
guage. On most occasions, indexing is used to accelerate the querying process [61].
XML databases have, however, received criticism about not being very scalable,
as in general XML queries and other mechanisms result in very slow retrievals
across large document repositories [58,59]. It also should be mentioned that XML
databases are not required to have any particular underlying physical storage model,
as they can be built on top or other data storage infrastructures.

Apart from XML databases, structured data can also be stored in RDF7 or OWL8

repositories. In general, RDF is a semantically richer way to represent graph-based
data, in the form of RDF statements, i.e.subject-predicate-object expressions, known
as triples, that connect with a specific relationship the subject to the object of the
statement. OWL is an extension of RDF that exhibits more expressive power than
RDF and enables efficient reasoning. RDF repositories are frameworks dedicated to
the management of RDF data in general, that could also be used for the manage-
ment of web graph data. OWL repositories could also be used for the same purpose,
however they are considered to be more specialized than RDF repositories, with
the expressive power of OWL being rather needless for the modeling of simple web
graph data. Some of the most efficient repositories that support the storage of graph-
shaped data either in RDF, OWL, or both, as well as SPARQL queries are Jena [71],
Sesame [78], AllegroGraph [64], Virtuoso [80] and OWLIM [76].

3.4 Custom

Apart from the previous infrastructures, custom disk-based solutions that do not
belong to a specific category can be employed for the management of web graph
data. For instance, the use of a framework based on Lucene is proposed. Lucene
is text search engine library, that can be easily incorporated in any application that
requires text indexing and searching. Indexing with Lucene offers high scalability,
cross-platform support, rather small memory requirements, and also fielded search
capabilities. Apart from indexing and searching data from other sources, Lucene

7 http://www.w3.org/RDF/
8 http://www.w3.org/TR/owl-features/

30 M. Giatsoglou, S. Papadopoulos, and A. Vakali

also provides the possibility of storing the data in their original form. In general,
data are indexed in Lucene as documents that contain fields of text.

The generic nature of Lucene in combination with its scalability renders it a
promising candidate back-end infrastructure for a graph storage framework. A pos-
sible implementation would index and store nodes and edges with Lucene, creating
a separate document for each entity, and using terms to store the properties of each
entity. Depending on the application and type of data, for each document, the terms
that store the properties that are intended to be used as keywords for querying, will
be indexed. In Section 6.1, an implementation of a framework for managing STS
data based on Lucene is described in more detail.

3.5 Distributed Transactional Databases

Distributed graph management frameworks are recent solutions that try to solve the
problem of limited memory, by distributing the graph in more than one computer
nodes that form a cluster. In order to achieve this and for the resulting framework
to be efficient, distributed frameworks should employ an appropriate graph parti-
tioning policy and also a query mechanism that will seek and retrieve data from the
appropriate computer nodes, minimizing needless queries to irrelevant nodes.

An early research work in distributed transactional graph management, namely
MSSG [30] presents a middleware framework for storing, accessing and analyz-
ing massive-scale semantic graphs with update capabilities. The development of
MSSG aims to support the storage and analysis of very large graphs reaching tril-
lions of vertices and edges. In order to handle such massive datasets, MSSG has
been designed as a distributed database, that supports a large cluster architecture of
computer nodes for storing data. Moreover, the framework utilizes the grDB graph
database (described in subsection 3.3). The framework, combined with a new par-
allel external memory breadth-first search algorithm enables fast query responses
to the database. The way that MSSG functions is described in brief in the follow-
ing paragraphs, however it should be stressed that little information has been made
available as to how MSSG partitions the graph in order to enable distributed storage.

MSSG was designed using DataCutter [5], a development and deployment
framework for establishing “filter” services that operate on data “streams” between
storage systems and user applications, as a base infrastructure, with the Ingestion
Service, the Query Service, and the GraphDB Service modules having been added
as integrated components and interfaces. In brief:

• the Ingestion Service is used for entering graph data that are stored to the back-
end storage nodes after having been clustered,

• the Query Service allows the analysis of the stored graph,
• the GraphDB Service provides an interface for the available methods imple-

mented for storing and accessing graph data.

The adjacency list of a node can be stored in either a single computer of the clus-
ter, or it can be distributed in more than one computers. Experimental results indi-
cate that the MSSG framework can handle large graph datasets, managing to store

Massive Graph Management for the Web and Web 2.0 31

and query a graph of 100,000,000 nodes and 1,999,999,640 directed edges, even
though a query with length 5 between the source and destination node is answered in
about 12 minutes, which is relatively slow. Experiments also showed that grDB out-
performs BerkeleyDB and MySQL in storage and retrieval, considering the tested
graphs. Moreover, the performance of grDB on a search query is relatively close to
the performance of the implemented in-memory methods under test.

4 Data Mining-Oriented Solutions

In situations where the storage and analysis of static graphs is required, database
transactions can be omitted for the sake of performance, and alternative solutions are
usually employed. The most efficient solution seems to be to manage to fit the graph
structure in main memory by means of graph compression techniques. Another more
scalable possibility is to encode the graph’s structure in human-readable text files
stored in the computer’s filesystem and stream the data into memory for analysis.
However, this approach requires the adaptation of data mining algorithms to the
streaming or semi-streaming model.

In the following subsections both compression-based as well as streaming solu-
tions for the analysis of graph data will be discussed. Moreover, some recent dis-
tributed solutions for the management of massive graphs will be discussed.

4.1 Compression-Based Databases

When the available main memory does not suffice to load the whole graph dataset,
but fast access to data is required, an efficient graph data compression method is nec-
essary. In the following paragraphs we will present some examples of compression-
based graph databases.

WebGraph. One of the earliest and more successful efforts in the compression of
web data has been the WebGraph framework [6], a suite of codes, algorithms and
tools for storing and manipulating large web graphs. The algorithms of WebGraph
were based on the Link Database [33], an earlier work employing compression tech-
niques to store web graphs that can fit in main memory. Both Link and WebGraph
perform well in compressing large graphs, combining a number of techniques, such
as referentiation and intervalization. However, WebGraph outperformed its prede-
cessor achieving compression rates of e.g. 3.08 bits per link for a graph consisting
of 118 million nodes and 1 billion links.

The success of the WebGraph compression approach is justified considering that
the properties of locality, similarity and consecutivity that are typical on the Web
were seriously taken into consideration during its development. The property of
locality describes the fact that pages belonging to the same host often point to each
other via navigational links. Therefore, if we consider a lexicographical ordering
of URLs, the source and destination URLs of a link are “close”. The property of
similarity expresses the observation that pages whose URLs are lexicographically
“close”, tend to have links to common destination pages (successors). Consecutivity

32 M. Giatsoglou, S. Papadopoulos, and A. Vakali

means that the successors of a web page also tend to be lexicographically “close”,
as they usually belong to the same level of site hierarchy. In order to exploit the
aforementioned properties of the Web, WebGraph applies the following technique.

• Given a set of URLs and the information that some of them are linked, URLs
are sorted lexicographically and assigned integer identifiers.

• The successor lists of each node are created and sorted by the node identifier.
• The successor list of a node x is expressed with respect to the successor list of

a node y with smaller identifier via a reference list comprising (a) the copy list,
i.e. a list of the two nodes’ common successors and (b) the list of extra nodes,
i.e. the set of the successors of x not present in the successor list of y.

• Applying the technique of differential compression with encoding methods such
as γ coding to the copy list, WebGraph manages to code a link in less that one
bit. The list of extra nodes is also compressed using integer intervalization and
gap encoding.

After the compressed graph has been created, WebGraph provides methods for ac-
cessing the graph either randomly (selecting to access random nodes) or sequentially
(iterating over all nodes defining the sequence by increasing number identifier). The
provided access algorithms are very efficient as they employ lazy techniques to ac-
cess the compressed graph, thus delaying decompression until it is actually needed.
Moreover, WebGraph offers a number of parameterization options in order to al-
low a trade-off between the compression ratio and the time needed to compress the
graph, as well as between the decompression speed and the size of the offset array.
The compressed graph can either be loaded to RAM, or accessed offline.

The developers of WebGraph also investigated and experimented with different
codes to encode the gaps that exist between nodes belonging to an ordered successor
list [7], after proving empirically that they follow a power-law distribution. They in-
troduced a new set of flat codes for integers, the ζ codes, and proved experimentally
that on most cases they are superior to traditional coding methods such as, Elias γ ,
Elias δ and variable-length nibbling, when they are applied to integers that follow
a power-law distribution similar to the distribution of the successor list gaps.

Extensions of WebGraph. A recent work [8], focuses on determining whether
WebGraph could be used for efficiently compressing graphs created by data from
sources other than web graphs, such as a Social Tagging System. Based on the no-
tion that the compression rate achieved when compressing a web graph depends
greatly on the ordering of the nodes, several ordering methods either: extrinsic (us-
ing information other than that conveyed in the graph itself), or intrinsic (using only
the information conveyed by the graph structure), have been investigated to deter-
mine their effect on the compression rate. As the efficiency of an extrinsic method,
such as URL ordering, is doubtful for the case of a network other than a web graph,
finding an intrinsic ordering that yields good compression rates is generally consid-
ered a challenging problem. In [8], the proposed method is to:

Massive Graph Management for the Web and Web 2.0 33

1. order the nodes of the graph randomly,
2. create the adjacency matrix considering each row as a sequence of bits, with 0

denoting the absence, and 1 the existence of a link between two nodes,
3. permute the rows and columns of the matrix so that in the resulting matrix two

rows are similar only if they appear consecutively, or almost consecutively.

The two methods that were applied were to either find a permutation that sorts the
rows of the adjacency matrix based on the lexicographic ordering, or find a per-
mutation based on the Gray ordering of the row bit vectors. Moreover, two mixed
methods combining extrinsic as well as intrinsic characteristics were tested. Both
methods use the Gray ordering but limit its application based on the information
of the distribution of the nodes within hosts. Experiments with the aforementioned
methods using URL ordering showed that (a) the efficiency of each method depends
on the structure of the graph itself, (b) intrinsic methods perform very well for the in-
verse graph, and (c) mixed methods yield better performance on every tested graph.

A recent study [17] focuses on determining whether social networks can be ef-
ficiently compressed. This work was motivated by the approach followed in Web-
Graph considering the properties of locality and similarity that exist for web graphs
in order to improve compression ratios. The question posed in this study is whether
social networks in general can be effectively compressed by a method similar to the
one followed in WebGraph. An easy observation is that the URL lexicographic or-
dering of the nodes that is a part of the WebGraph compression technique and also
a reason for its success cannot be applied to generic social networks. Thus, a new
node ordering technique is proposed that uses a simple heuristic based on shingles.
If we consider two sets A and B, and σ as a random permutation of the elements
in A∪B, then Mσ (A) = σ−1(mina∈A{σ(a)}) is the smallest element in A according
to σ , and is called a shingle. The probability that the shingles of set A and set B
are identical equals to the Jaccard coefficient of the two sets, which is a measure
of their similarity. The proposed method regards the out-neighbors of each graph
node as separate sets, computes their shingles for an appropriate permutation and
then orders the graph nodes according to their corresponding shingles. As a result,
nodes with many out-neighbors in common will end up to be close to each other.
An alternative technique, double shingle ordering, has also been proposed that uses
a second shingle for breaking ties produced by the first one.

After the nodes have been ordered, their adjacency lists are compressed using a
technique similar to the one employed in WebGraph. Apart from referential and gap
encoding, the technique introduces an alternative method for encoding the links that
are reciprocal, that is the links that are undirected. In particular, this method encodes
the reciprocal links in the adjacency list of the node with the smallest integer iden-
tifier, and also adds a bit flag for each neighbor encoded in the adjacency list, that
declares whether the link is reciprocal or not. With this approach, reciprocal links
are encoded only once, thus improving the compression ratio, but this also causes
slower queries in the compressed graph.

Experimental results on various datasets indicate that the proposed compression
method yields better compression ratios than WebGraph when applied to social net-
works that are highly reciprocal in structure. Moreover, after experimenting with

34 M. Giatsoglou, S. Papadopoulos, and A. Vakali

various ordering techniques such as, Gray, natural, and random orderings, the dou-
ble shingle ordering managed to achieve the best compression performance. The
success of shingle ordering with respect to the other methods is attributed to: (a) the
reduction of the lengths of the gaps that exist between the neighbors of the adjacency
lists, and (b) the exploitation of the properties of locality and similarity. Finally, ex-
perimental results indicated that social networks appear to be less compressible than
web networks, mainly due to the presence of nodes with low degree.

Taking the above into consideration, WebGraph seems to be a very effective so-
lution as it manages to store a graph in limited disk space and also fetches the
neighbors of a node when requested in little time. However, one drawback of the
WebGraph framework is that it represents each node with a number without giving
the possibility of compressing more information related to a given node. Moreover,
it does not provide edge indexing capabilities.

Re-Pair. Several researchers, motivated by the WebGraph compression approach
and using the WebGraph framework as a basis for comparisons, tried to find meth-
ods with improved performance in terms of compression rates or graph access speed.
One such effort [18] proposed a method based on the Re-Pair compression tech-
nique [36] in order to store a representation of a given graph. Re-Pair is a phrase-
based compressor that receives as an input a sequence of symbols, finds the most
frequent pair of symbols in it and replaces it with a new symbol, storing the corre-
sponding mapping in a dictionary. This procedure is repeated until every pair in the
sequence is unique. Although it is a rather fast (linear-time) technique, it requires
a large amount of memory, especially when the initial sequence is long. Therefore,
an approximate technique is proposed [18] that can be applied in external mem-
ory. In any case, an in-memory hash-table is required to hold the unique pairs of
symbols occurring in the sequence (represented by their position in it) along with
their frequency. After the hash-table is filled up to a load threshold, no new pairs
are inserted, although the traversal is completed so as to calculate the frequencies of
the pairs that have already been inserted. Afterwards, the k most frequent pairs are
selected and replaced in the sequence with new symbols with a new traversal. The
process is repeated traversing the sequence from the position where the insertion of
new pairs in the hash-table had previously stopped. When the sequence of symbols
resides on secondary memory, the hash-table can store more pairs of symbols as it
can occupy all the main memory that is available and also special techniques have
been employed so as to avoid unnecessary random access to disk.

In order to apply the Re-Pair technique on a graph representation, the graph is
modeled as a sequence of integers representing the graph nodes, each one followed
by its adjacency list. However, each node maps to two different distinct integers;
one that is used when the integer is placed in the sequence before its adjacency list
and one that is used when it is included in the adjacency list of other nodes, thus
preventing the integers that mark the start of an adjacency list from being replaced.
These alternative representations are removed from the sequence after Re-Pair has
been applied, and they are stored in main memory along with pointers to the begin-
ning of their adjacency list. In general, the proposed method takes advantage of the

Massive Graph Management for the Web and Web 2.0 35

similarity of the adjacency lists. Moreover, in order to achieve better compression
rates, differential compression can also be applied to the lists.

Experiments showed that the proposed method yields compression rates compa-
rable to WebGraph providing faster graph navigation. For example, a graph with
22,744,080 nodes and 639,999,458 edges was compressed into 420 MB (a plain
representation would require around 2.4 GB of RAM), achieving two times faster
navigation to the compressed graph than when using the WebGraph compression.
When differential compression is also applied, slightly better compression rates are
achieved, but graph navigation is somewhat delayed.

Virtual Node Miner. Another approach, the Virtual Node Miner [14], provides a
solution for web graphs that need to be updated after having been compressed,
and that also performs well without requiring URL sorting, which is a relatively
time-consuming process. The main innovation is that it employs a pattern mining
approach in order to compress a web graph, using an effective itemset mining al-
gorithm that finds directed bipartite cliques. Moreover, the fact that this method is
not based on URL encoding, indicates that it may possibly be used in application
domains other than web graphs, such as social networks. The proposed algorithm
considers the outlinks (or inlinks) of each graph node as an itemset and aims to iden-
tify frequent subsets that in fact represent common links between the graph nodes.
The algorithmic steps are described roughly below:

• The graph nodes are clustered on basis of the similarity of their adjacency lists.
This step uses k min-wise independent hash functions to sample the adjacency
lists of each node and then sort the rows of the resulting adjacency matrix lexi-
cographically, in order to bring closer similar adjacency lists and form clusters.

• For every cluster, the algorithm searches for frequent recurring patterns of
neighbors, which are actually directed bipartite cliques.

• Every pattern is replaced by a new node, called a Virtual Node, that has outlinks
to the nodes that formed each specific pattern. After that, the nodes that demon-
strated the pattern in their adjacency lists, replace all the outlinks to the nodes
that belong to the pattern with just a single outlink to the Virtual Node.

• The process is repeated allowing Virtual Nodes to be reused as actual graph
nodes.

• The remaining edges are compressed with an appropriate compression method,
such as: ζ or Huffman coding.

The resulting graph has a number of extra nodes, the Virtual Nodes, but significantly
less links, therefore it is considered to be compressed. Experiments indicated that the
Virtual Nodes added are about 20% of the original number of nodes, and therefore a
moderate overhead to the offset array. Moreover, when compared with WebGraph,
experiments showed that the above methods are comparable regarding the compres-
sion they achieve. The proposed method has been proven to be rather scalable, as it
manages to compress a graph with 3 billions of edges on a computer with 16 GB
of RAM in about 2.5 hours. The time required for compression also scales linearly
with the graph’s size. It is also of interest that if the available memory does not

36 M. Giatsoglou, S. Papadopoulos, and A. Vakali

suffice, Virtual Node Miner can run in batches, thus enabling incremental updating
of the compressed graph.

Research with the Virtual Node Miner continued with an effort that used this
compression technique to adjust several web graph algorithms so that they could
run directly on the compressed graphs and thus demonstrate reduced time complex-
ity [32]. The basis for these algorithms was the invention of a method operating on
the compressed graph, that speeds up the multiplication of a graph’s adjacency ma-
trix. This multiplication routine was used for computing random walk distributions,
finding top singular vectors, estimating the size of neighborhoods, and others, and
the resulting methods were used to speed up the implementation of well-known link
analysis algorithms such as PageRank [10,37], SALSA [38] and HITS [35]. Ex-
periments showed that the performance of the proposed algorithms was better than
the traditional implementations, increasing speed almost up to a ratio close to the
respective compression ratios.

4.2 Streaming Solutions

Probably the most intuitive way to encode a graph in a human readable file is either
in the form of adjacency lists 9, or in the form of an edge list (e.g. in its simpler form
an edge can be expressed as a pair of nodes that are related). The existence of disk-
resident files satisfies the persistence requirement for the storage of the graph data,
with their sizes being limited only in terms of the available size of external memory.
However in order to perform graph analysis tasks, data should be loaded in main
memory in an efficient way. In the streaming model graph data are streamed from
the disk into memory as a sequence of edges. However, the streaming model poses
some constraints on the graph mining algorithms, which should be designed so that
they can process the edges of a graph in an arbitrary order given only a limited RAM
space and desirably making only one pass over them [24]. In order to achieve this,
algorithms should be able to make space-efficient data summaries in RAM as data
are streamed. This is a considerable challenge, since in general the streaming model
poses the constraint of using O{polylogN} space and per-item processing time for
a given graph with N nodes [41].

There have been some efforts in trying to solve simple graph problems in the
stream model, such as the problem of counting triangles in a graph [15].The triangle
counting problem in the streaming model is defined as finding the ε-approximation
of the number of triangles in a graph with probability at least 1-δ , making one
pass over the data stream. The method proposed in [15] assumes that the set of
the graph’s nodes is known in advance and the graph’s edges appear as a stream. It
manages to calculate approximately the number of triangles via a technique that uses
reservoir sampling, requiring O(1

ε2 × log 1
δ × (1+ |T1|+|T2|

|T3|)) memory cells, where Ti

stands for the number of triples of nodes in the graph which have i edges between
them. In [13] authors try to provide lower bounds for the more complex problem of
finding pairs of vertices that share c neighboring nodes. They give proof that any

9 The adjacency list of a node is a sequence of its neighboring nodes.

Massive Graph Management for the Web and Web 2.0 37

one-pass, randomized data-stream algorithm that determines if a pair of nodes in a
directed graph with N nodes shares more than c neighbors requires O(

√
c×n

3
2) bits

of space. The large memory bound of the aforementioned method indicates that the
application of the streaming model for general graph problems seems to be difficult
due to the strict space constraint it imposes [23].

A more relaxed model is the semi-streaming model that was initially suggested
in [41], as a solution for graph problems where the available main memory suffices
for the storage of the graph’s nodes, but not for the storage of the graph’s edges. This
model bounds the storage space for an algorithm that operates on a graph stream by
O(N × polylogN). In [23] the semi-streaming model was further elaborated, allow-
ing also a small number of sequential passes over the graph data. Authors in [23] dealt
with various graph problems in the semi-stream model such as the computation of the
shortest-path distances between the graph’s nodes, as well as the diameter and girth
of a graph. They showed that these problems can be approximately solved even with
one-pass over the data, via an approximation technique that uses graph spanners10 to
calculate shortest distances. In addition to the aforementioned problems, algorithms
for the problem of graph matching in the semi-streaming model were also presented
in the same research paper. Feigenbaum et al. [24] later improved their method for
constructing graph spanners decreasing the processing time per edge from O(N) to
O(polylogN). Moreover, they proved that the computation of Breadth-First-Search
(BFS) trees is not efficiently executed in the semi-streaming model.

Another recent work [2], studies the problem of graph sparsification in the one-
pass semi-streaming model. Graph sparsification involves the construction of a com-
pact representation of a given graph through which the size of any cut can be
estimated. This problem is therefore connected to the problem of finding an ap-
proximate min-cut in a graph. The method proposed in [2] constructs and stores
a summary of the graph in main memory, that is updated based on the newly-
arrived edges. The original algorithm for finding the sparsification of a graph in-
volves the calculation of the connectivity of every new edge which is impossible
unless all the graph’s edges are available. However, the proposed method calcu-
lates the connectivity of each new edge on the current sparsification, achieving an
1± ε approximation of the cut values of a graph with N nodes and M edges, while
requiring O(N(logN + logM)× log M

N × (1 + ε)2/ε2) edges in main memory.The
semi-streaming model has also been applied to the problem of local triangle
counting in graphs [4] (i.e. given a node u, count the number of triangles that are
incident to node u). In this research work, apart from the space constraint of the
semi-streaming model, algorithms are allowed to O(logN) passes over the data that
reside in the external memory. Two algorithms are proposed: one that requires the
storage of some intermediate counters in external memory and another that main-
tains all information in main memory. Given a newly-arrived edge (u, v), both algo-
rithms are based on the approximate calculation of the Jackard coefficient between
the two sets of nodes that are adjacent to nodes u and v, respectively.

10 A subgraph G′(V,E ′) is a t-spanner of graph G(V,E) if the distance between any pair of
nodes in G′ is at most t times the distance in G.

38 M. Giatsoglou, S. Papadopoulos, and A. Vakali

A similar graph access approach that is mentioned here, but not presented in
detail, is the semi-external model [1]. This model allows for enough main memory
to store the graph nodes, but not the graph’s edges as well. On the contrary, the
graph’s edges are stored in external memory, with the model allowing random access
to them. However, random access to the disk-residing edges can make the whole
process seriously slow.

4.3 Distributed Data Mining-Oriented Solutions

The requirement to perform data mining on massive graphs in a relatively short time
has also motivated research in the field of distributed data mining-oriented solutions.
Bader and Madduri have recently presented a study including combinatorial tech-
niques for the analysis of large-scale dynamic networks [39]. Their innovation is
that they have designed and implemented efficient graph data structures and kernels
for modeling temporal graphs of massive sizes that are processed on parallel sys-
tems. Temporal information related to e.g. the update or insertion of a node or an
edge, are handled by assigning time-stamps to the respective nodes or edges. After
experimenting with a number of structures, they proposed a hybrid data structure
combining dynamic resizable adjacency arrays for low-degree vertices, with simple
self-balancing binary trees, referred to as “treaps” [46], for high-degree vertices.
This structure was found to achieve good performance for both insertions as well
as deletions, that may be batched or streaming. The data models as well as the al-
gorithms have been designed for multithreaded servers, with multiple cores and a
significant amount of both shared cache and main memory. These architectures have
been proven to perform much faster in graph analysis algorithms than optimized ex-
ternal memory based architectures [3].

In order to solve or avoid conflicts when e.g. multiple threads try to add data to
the adjacency list of the same node, various methods are proposed, such as: follow-
ing the simple lock-based approach, or allowing each processor to have access to
the adjacency lists of only a subset of the graph nodes. In addition, several algo-
rithms have been designed and implemented to execute efficiently graph operations
such as: connectivity, path-related and centrality queries. Experiments show that
the proposed algorithms scale well on parallel architectures, with e.g. an algorithm
based on an implementation of the link-cut tree being able to process queries in time
proportional to the diameter of the network. It is also important that the proposed
implementation can answer queries related to the evolution of the graph during time.

MapReduce: MapReduce [20] is a programming model with an associated imple-
mentation for processing large data sets that may be stored in a distributed filesystem
or database. The proposed model, introduced by Google, is applicable for computa-
tional problems that can be formed as a set of key-value pairs, e.g. web page index-
ing based on keywords. The computational process is in general divided into two
steps: map and reduce. Programmers are responsible for creating an application-
specific map function that processes the input key/value pair to generate a set of
intermediate key/value pairs, and also implement a reduce function that merges
all intermediate values associated with the same intermediate key. Each operation

Massive Graph Management for the Web and Web 2.0 39

initializes with the splitting of the input files and continues with the assignment of
different map and reduce tasks to worker nodes by a special master node. The mas-
ter node is also responsible for the final aggregation of all results and the production
of the output to the original computational problem.

This model has proven to be very efficient for problems that involve accessing
large sets of data, however it is disputable whether it can be applied for graph re-
lated problems. Some graph related problems can be successfully solved by use of
MapReduce. For instance, the computation of PageRank over the Web can be im-
plemented as a chained MapReduce application. However, the main difficulty with
solving graph-related problems with MapReduce is that it is is very inefficient for
graph traversals, as map workers have access to only a part of the graph. A recent
research work [19] investigates the possibility of decomposing graph operations,
such as graph simplification, triangle and rectangle enumeration, finding trusses and
components, and performing Barycentric clustering, into a sequence of MapReduce
processes. In order to overcome the problem that exists with graph traversals, tech-
niques such as the use of multiple map and reduce iterations, or the use of custom
optimized graph representations, such as sparse adjacency matrices are proposed.

5 A Case for Web 2.0 Graph Stores: Social Tagging Systems

In this section we focus on a recently evolved research area: the analysis of Social
Tagging Systems. An introduction to Social Tagging Systems is provided, along with
a short review of the most current progress made in several related analysis tasks,
and we discuss their special characteristics. Social Tagging Systems are presented
as an application setting for massive graph data management frameworks, due to the
special requirements that their analysis imposes on the underlying infrastructure.

5.1 Introduction to Social Tagging Systems

An important functionality that has been embraced by many on-line applications is
Social Tagging. Social Tagging Systems (STS) enable their users to upload content,
and to annotate it by means of freely chosen keywords, called tags. By relating re-
sources with tags, users enrich them with a semantic meaning that can be of use to
other people that come across it. Moreover, the information from STS can be ex-
ploited by use of data mining in order to provide enhanced services to users, e.g.
recommendations, sophisticated content navigation (e.g. by means of a concept hi-
erarchy representing a resource collection). The study of STS has led to the formal-
ization of folksonomies, i.e. lightweight knowledge structures that emerge from the
use of a shared vocabulary to characterize resources (emergent semantics) [31,40].
The folksonomy model has been established as the most widely-used means to rep-
resent and analyze STS-related information, thus its definition is given below.

Definition 1. A folksonomy is defined as the tuple F = (U,T,R,Y), where U , R
and T are the disjoint sets of users, resources and tags, respectively, and Y ⊆ U ×
R×T is a triadic relation between them, representing the annotation of a resource

40 M. Giatsoglou, S. Papadopoulos, and A. Vakali

with a tag by a user. Another way to represent the folksonomy is as an undirected
hypergraph G = {V,E} consisting of a set of nodes V =U∪T ∪R that are connected
by hyperedges that formulate the set E = {{u,r, t}|(u,r, t) ∈ Y}.

Rather than working on a hypergraph, on many occasions and depending on the
corresponding analysis task, a simplified bipartite graph is produced representing
the associations between either: (a) users and resources, (b) users and tags, or (c)
resources and tags.

This technique makes the graph analysis easier, as it transforms the hyperedges of
the tripartite hypergraph into simple edges. The resulting edges are usually weighted,
e.g. in the user-tag bipartite graph, an edge exists between a user and a tag if the user
has used this tag to annotate at least one resource, and is weighted by the number
of resources that have been annotated with this tag. This graph can be symbolized
as: UT = {U ×T,Eut},Eut = {(u, t)|∃u ∈U : (u,r, t) ∈ E},w : Eut → N,∀e : (u, t)∈
Eut ,w(e) := |{r : (u,r,t) ∈ E}| [31]. Relevant expressions can be formulated for the
bipartite graph between resources and tags (RT), as well as for the graph between
users and resources (UR). A bipartite graph can be represented with a model, such
as an adjacency matrix, with each row relating to a member of the first entity type
and each column to a member of the other, whereas the value of a cell stores the
number of co-occurrences of the respective entity members.

A further simplification can take place, resulting in a graph that represents the
co-occurrences between members of the same entity type only. For example, con-
sidering the user-tag bipartite graph, two graphs can be produced; one that comprises
tags as vertices and edges that represent the annotation of some resource with two
tags by a common user, and another that comprises users as vertices and edges that
represent the annotation of some resource with a common tag by two users.

If required, a tripartite graph can be also produced, combining the three bipar-
tite graphs, where all the resource-tag, resource-user, tag-user co-occurrences are
represented with simple weighted edges. However, the use of bipartite graphs is
more often than the use of tripartite, as most algorithms focus on the correlation
between the members of two or one entities. For example, the associations between
resources and tags is of most interest for a tag recommendation system, whereas the
information about which user tagged a resource is not that interesting in this sce-
nario. However, the associations between resources and users would be useful for
an application e.g. that recommends resources that may interest users.

5.2 Social Tagging Systems: Analysis Tasks

Ontology extraction: One of the first expectations of researchers was to take ad-
vantage of the emerging folksonomies in order to construct ontologies for the Se-
mantic Web [40]. However, early works indicated that the derivation of ontologies
from folksonomies presented some serious difficulties, especially because tagging
is not necessarily hierarchical such as the ontology structure, meaning that unless
it is otherwise stated, an assignment of tags to a resource signifies that the latter is
equally characterized by all tags, but it does not imply a hierarchical relationship
between the tags. Moreover, there is the widely-discussed problem of tag ambiguity

Massive Graph Management for the Web and Web 2.0 41

and polysemy, i.e. tags that have ambiguous meaning and are used by users to an-
notate resources that are not relevant to each other. Another issue is the existence of
synonyms, that should be identified as tags with a common meaning [26].

Tag meaning disambiguation: Tag ambiguity poses serious challenges to applica-
tions that analyze the information included in the STS structure. The annotation of
two resources that belong to semantically different categories with common polesy-
mous tags creates a relation between them that is not intended. Therefore, recent
research has attempted to address the problem of ambiguous tags. An early effort
tried to discover the different dimensions of knowledge in a folksonomy, and after
calculating the conditional probabilities of tags in different conceptual dimensions,
ambiguous tags were found to have high probabilities on more than one dimen-
sions [52]. In [53], a clustering technique based on the community identification
algorithm of Girvan and Newman [42] was employed to find clusters of tags that
indicate the different meanings of ambiguous tags in a folksonomy. This work was
continued in [55] where the different contexts in which a tag can be used were again
on focus, and therefore analysis was conducted for every tag on the associated subset
of the folksonomy. Several kinds of network representation were tested and experi-
mental results indicated that tag co-occurrence networks that explicitly incorporate
the user-tag associations provide better results in identifying the different contexts
a tag can appear in. The results of the proposed automatic tag clustering technique
were successfully applied to classify documents retrieved by Web searches.

Study of usage dynamics: Research was also directed towards unveiling the dy-
namics that characterize the evolution of an STS. Research on the users’ behavior in
delicious showed that users tag collections are growing and evolving over time, due
to new interests [26]. However, it was discovered that the set of tags that were used
for annotating most of the bookmarks (the resources in delicious) tended to stabilize
after a while, exhibiting a stable pattern with fixed frequencies for each tag. This in-
dicates the existence of shared knowledge amongst users, as well as imitation. In
addition, the tags that were used to annotate a bookmark by larger numbers of users
(the most popular) and also the ones that were used earlier were found to be more
representative of the larger category the resource belongs in, therefore have great
significance for further analysis. In [29] it was proven, based again on data from de-
licious, that the distribution of tags is indeed stabilized after some time, following a
power law distribution. Moreover, it appeared that after stabilization, analysis of the
high-frequency tags of an STS can reveal the collective categorization scheme. Sim-
ilar results have also been found in [51], where it is stated that tags used to annotate
a specific resource are relatively strongly semantically related.

Statistics analysis: It is also interesting to find out the distribution of the user partic-
ipation in an STS. Earlier research results in social networks in general indicated that
user participation follows a power law [50], however subsequent works showed that
there were more users contributing content in social networks than those expected
from a power law distribution [34]. A recent work [27] showed that the distribution
of different users participation follows the stretched exponential distribution, which
means that top users are distributed much flatter than those in power law networks.

42 M. Giatsoglou, S. Papadopoulos, and A. Vakali

However, this distribution depends also on the type of content; for example, the dis-
tribution of user contribution on content that is more “difficult” to create is more
skewed towards a few core users. It should be noted though that the results from this
last work have not been based on results from STS.

Clustering: Another direction that has won vivid research interest is clustering,
either in users, resources or tags of an STS. The discovery of clusters within a
STS has been mainly approached as a community identification problem in a graph-
structured network. There are different approaches, however, that use either: (a) a
bipartite or tripartite graph representation [21], or (b) a simplified tag-tag, user-user,
or resource-resource co-occurrence graph. On the first case, the resulting communi-
ties are strongly-knit connected components that exist in the graph and are formed
by two (or three) kinds of entities, whereas on the second case communities com-
prise of members of just one type of entity (e.g. tags). Due to their complexity, there
have been few methods that have applied clustering for community identification to
the induced tripartite hypergraph [9,11].

Tag clustering is a research subject with numerous interesting applications. E.g.,
the tag clusters resulting from a tag-tag network can be used in a system that rec-
ommends to users tags for annotating resources, as they comprise of tags that are
semantically “close”. Similarly, resource clusters can be used to group objects be-
longing to the same category, whereas user clusters group people that have exhibited
similar behavior patterns in an STS. A tag clustering approach is based on the appli-
cation of classical community identification methods in the implied graph featuring
tag relationships, such as in [16] where a spectral community identification method
is employed, in [48] which identifies communities based on graph modularity [42]
and in [44,45] where a seed-based community expansion method has been applied.
Moreover, some efforts dealt with the problem of tag clustering, using vector-based
agglomerative hierarchical clustering methods rather than the structural properties
of the STS graph [12,47]; however they are very slow for large sets of tags. Apart
from clustering methods, tags have also been used for the classification of web re-
sources, using optimization techniques that use tag annotations as a feature space for
resources and also exploit the link relationships between resources and tags [56].

5.3 Application Setting

All the analysis and mining tasks that are applied to STS and have been discussed in
the previous subsection, require a robust graph management infrastructure providing
a number of features, dictated by the special characteristics of these systems. The
sizes of the graphs formed in the context of STS render them an excellent application
setting and motivation for massive graph storage and access frameworks. In the
following, the most characteristic STS properties are summarized in order to derive
the requirements for a framework developed for their analysis and storage.

• STS users are increasing in numbers and also tend to contribute more in ei-
ther providing new or annotating existing content. This results in the gradual
development of massive folksonomies from STS data that can be available for

Massive Graph Management for the Web and Web 2.0 43

analysis. Folksonomy data are encoded in graph structures of hundreds of mil-
lions of nodes and ten times or even more edges. delicious, for example, was
estimated in 2008 to have 462,168,833 bookmarks and 1,632,204 monthly visi-
tors [43]. These numbers combined with the number of tags used for annotation
in delicious is indicative of the massive size of tripartite graphs induce from
STS (where both resources, users and tags are considered as nodes).

• STS entities follow power law or skewed distributions. This means that the in-
duced graph exhibits scale free characteristics, i.e there are few nodes that have
high frequency and many nodes that are infrequent, thus the network is on its
larger proportion rather sparse.

• Information in an STS is updated on a daily basis. However, the number of tags
that have been used for annotating a resource is not constantly increasing. On
the contrary, after some time the tag distribution stabilizes and each tag used to
annotate a resource is characterized by a stable frequency [29,26]. This implies
that users often follow common tagging patterns [26].

• STS graphs are often used as an application area for various mining tasks, such
as community identification. During graph analysis, algorithms need to access
random nodes, extract information that is related to them (e.g. the name of a
resource), and also find the edges that are attached to them along with their
destination nodes. Taking into consideration the size of the graphs and also the
frequency of node and edge accesses that are required in mining algorithms, it
is evident that these operations should happen as fast as possible.

• When the induced tripartite hypergraph is simplified in a simple e.g. tag-tag
co-occurrence network, some information is lost and cannot be recreated. This
information, however, may be useful or necessary for some applications. For
example, it is possible that community identification in a bipartite graph will
result in more semantically “correct” communities than when using its projec-
tion in a simplified entity-entity graph [44]. There is also evidence that explicit
information about e.g. user contribution [55] helps dealing with the problem of
tag ambiguity.

• Depending on the STS analysis application, the graph representation may in-
clude directed on undirected edges. For example, maybe an edge with a resource
node as source and a tag node as destination is desirable but the reverse edge
does not need to be stored, because it is not useful for the application.

• The STS related data include a number of parameters that may differ, e.g. re-
sources in Flickr may have different attributes than resources in delicious (Flickr
resources are images that may have attributes like dimensions, file type, and file
size, apart form their URL, whereas delicious resources are bookmarks that may
have less attributes such as a title).

On the basis of the above characteristics, the requirements of the framework for the
analysis and storage of STS graphs are formulated below.

Graph access methods. The basic graph access operations should be supported,
namely node and edge lookup, insertion/update and deletion. Since the stored graphs
represent an STS, specializations of the above access operations depending on node

44 M. Giatsoglou, S. Papadopoulos, and A. Vakali

and edge types (U/R/T and UR/UT/RT respectively) should be exposed. In addition,
specializations of neighbourhood access operations should be available (i.e. get all
neighbour tags for a given user). Finally, the framework should provide graph nodes
and edges iterators (predicated with the type of node/edge). In addition, node and
edge properties (e.g. frequency values) should be possible to store and access along
with the corresponding nodes/edges.

Memory constraints. The framework should support storage and analysis of graphs
that do not fit in the main memory of a typical workstation. Partial graph load,
external node and edge indices, as well as caching schemes are desired attributes for
the foreseen framework.

Support for graph analysis. Since most graph mining techniques require fast ac-
cess to the graph’s structure, it is necessary to hold in memory the largest possible
portion of the graph’s structure in order to support fast random node and edge ac-
cess. Such information takes precedence over additional node/edge property values
which can be stored in external memory.

6 STS Data Management Framework Benchmark

In order to test the performance of different infrastructures when used as underly-
ing technologies for the management of STS data, we implemented three STS data
management frameworks. The design of the frameworks was based to some extent
on the requirements stated in the previous section. The developed frameworks, that
can be characterized as transactional graph databases, are based on H2, Lucene, and
Neo4j, representing the categories of RDBMS, custom, and native graph stores, re-
spectively. The rest of the section is structured as follows. Subsection 6.1 describes
the three implemented frameworks in details, subsection 6.2 presents the benchmark
tests that have been designed in order to evaluate the frameworks’ performance, and
subsection 6.3 presents and discusses and results of the benchmarking procedure.

6.1 Participating Frameworks Description

In general, the interesting information that can be drawn from an STS can be ex-
pressed as statements, with a given statement representing the assignment of an
online resource with a tag by a given user. We made the assumption that the STS-
related information (statements) is provided to the data management frameworks
in the format of triplets consisting of labels. The first label of each triplet refers to
the username of the user that characterized a resource, the second refers to the hash
value of the URI of the resource, whereas the third refers to the tag that was assigned
by the specific user to the resource. Triplets of STS data can be provided as input to
the frameworks either separately (one at a time) or in batches.

Graph Model Description. All frameworks support the management of a graph
consisting of user (U), resource (R) and tag (T) nodes. Each node entity includes:
(i) a string value (label) denoting a username, the hash value of a URI or a key-
word if the node represents a user, a resource or a tag respectively, and also (ii) an

Massive Graph Management for the Web and Web 2.0 45

arithmetic value that denotes the node’s frequency of appearance in the STS dataset.
For example, if a certain user has made 10 tag assignments to resources then the
respective node’s frequency would be equal to 10.

The nodes of the graph are interconnected via three types of directed edges: (a)
User-to-resource edges (UR), (b) User-to-tag edges (UT), and (c) Resource-to-tag
edges (RT). Each edge entity also includes an arithmetic value denoting its fre-
quency, e.g. if an edge starting from a resource R and ending to a tag T has frequency
10, this means that tag T has been assigned 10 times to resource R.

Supported Functionality. The developed frameworks support node-, edge-, and
graph-based operations. The main operations are lookup, insert/update and delete.
More specifically:

• Node lookup, insertion/update and deletion. A node can be of any of the three
supported types (U/R/T). A node insertion entails a node lookup (in case of
existence, instead of node insertion, a node frequency update is performed). A
node deletion entails the deletion of the node’s inlinks and outlinks.

• Node neighborhood iteration.
• Edge lookup, insertion/update and deletion. An edge can be of any of the three

supported types (UR/UT/RT). An edge insertion entails an edge lookup (in case
of existence, instead of edge insertion, an edge frequency update is performed.

• Graph node/edge iteration.
• Graph statistics (number of nodes/edges per type of node/edge.

H2-based Framework. This RDBMS-based framework uses three SQL tables for
the storage of the graph’s nodes: the USER, RESOURCE and TAG tables. Each
table includes three fields: (a) an integer identifier, (b) a string label, and (c) an
integer frequency value. All tables storing nodes support the ON DELETE CAS-
CADE SQL feature, so that in case a node is deleted, its outlinks and/or inlinks are
also automatically deleted. Moreover, three tables are dedicated to the storage of the
graph’s edges: the USER-RESOURCE, USER-TAG and RESOURCE-TAG tables.
Each table includes three fields: (a) the integer identifier of the source node, (b) the
integer identifier of the destination node and (c) an integer frequency value.

Apart from the functionalities mentioned in the previous paragraph, the frame-
work supports also the retrieval of the integer identifier of a node for a given la-
bel. Integer identifiers are used in general in order to follow the classical relational
database model, and most of all, to reduce the required amount of space for the stor-
age of the graph data. Each communication with the database, whether it is a read,
write or delete operation is handled as a separate SQL transaction.

Lucene-based Framework. The Lucene framework uses three separate indexes for
indexing and storing the U/R/T nodes and also three indexes for indexing and storing
the three types of directed edges. Each entity (either node of edge) is represented in
Lucene as a document that contains a number of fields. In our implementation each
node document contains a key field that stores the node’s label and is indexed so that
it can be used for retrieving the document when needed. Moreover, each document
contains a frequency field to store the number of node’s occurrences.

46 M. Giatsoglou, S. Papadopoulos, and A. Vakali

The structure of an edge document includes: (i) a key field created by combining the
labels of the source and destination nodes, (ii) a field storing the label of the source
node (iii) a field storing the label of the destination node, and (iv) a field storing the
edge’s frequency. The key field is indexed to enable efficient queries for determining
whether a specific edge exists. However, the fields storing the labels of the source
and destination nodes are also indexed in order for the implementation to support
the retrieval of the outlinks and inlinks of a given node. Writes are committed to
the indexes in batch, in order to limit the time consuming disk accesses. During
subsequent commits the intermediate writes are stored in a cache memory.

Neo4j-based Framework. The Neo4j-based Framework stores all the graph nodes
and edges in a common database. However, it allows the definition of a number of re-
lationships types that in our implementation allow distinguishing the category of the
graph entities. In total, six relationship types are defined for characterizing UR, UT,
and RT edges, and also defining that a node is a user, resource, or tag11. Each node
includes two properties: the node’s label and frequency. Each edge is represented
with a relationship that also includes a property storing the edge’s frequency. Nodes
are indexed using the Lucene-based index implementation provided by Neo4j, so as
to allow retrieving a node with its label. Moreover, in order to increase performance
the most frequently queried nodes are cached, and also multiple database operations
(reads, writes, updates, deletes) are grouped in a database transaction.

6.2 Benchmark Tests Description

The frameworks described in the previous subsection participate in a number of
benchmark tests. These tests have been designed to provide an indication of the
frameworks’ performance with respect to various operations. In particular, the pro-
posed benchmark suite includes the following measurements:

• graph load time (from a triples file)
• disk space usage
• node/edge insertion time (for batches of 1,000 insertions)
• node/edge deletion time (in case of nodes, their in-/out-links are also deleted)
• batch random node query execution times
• batch random edge query execution times (for existing and non-existing edges)
• graph node/edge iteration times
• neighborhood fetch and iteration for a number of randomly selected nodes.

The tests described above are conducted on graphs that contain: (i) real data from
a well known STS (Flickr), or (ii) synthetic random data generated by the Erdős-
Rényi model [22]. For the synthetic random graph a string generator is used that
allows the generation of strings of up to 10 characters. The main difference between
the synthetic and real graph data is that the nodes of the synthetic graph are con-
nected with a fixed probability value, whereas the edges of a real STS graph follow

11 User nodes are connected via the user relationship type to a special root node. Similar
connections are created for the resource and tag nodes.

Massive Graph Management for the Web and Web 2.0 47

the power law distribution. Apart from the type of data there are also some other
differences between the loading and insertion tests on real and synthetic graphs. In
particular, when the tests are executed on synthetic graphs, a given node or edge is
supplied as input only once (along with a frequency value), therefore no updates take
place during the testing procedure, and thus there is no need for checking whether
the input node or edge exists. Therefore, the nodes and edges are simply added to
the graph with the specified frequency parameter as soon as they appear as input.
The experiments described above are summarized in Table 1, which also presents
the notation that will be used for each type of experiment throughout the rest of the
chapter. For example, the notation for a node iteration experiment that runs on a
synthetic graph with 1 million edges would be IN-S-1M.

Table 1. Benchmark test notation

Symbol Position Meaning Comments

L 1 Load graph Load a graph into the graph store.
DN 1 Delete graph nodes Deletes 10,000 nodes (and their associated edges) from the

graph.
DN 1 Delete graph edges Deletes 10,000 edges from the graph.
QN 1 Query nodes Executes 10,000 random node queries on the graph.
QEx 1 Query edges 1 Executes 10,000 random edge queries for existing edges on the

graph.
QEn 1 Query edges 2 Executes 10,000 random edge queries for non-existing edges on

the graph.
DS 1 Disk space Reports the disk space usage by the graph under test.
IN 1 Node iteration Iterates over all nodes of the graph.
IE 1 Edge iteration Iterates over all edges of the graph.
INN 1 Node neighborhood iter-

ation
Iterates over 10,000 random node neighborhoods of the graph.

R 2 Real A graph created from real-world data is used.
S 2 Synthetic A graph generated based on the E-R model is used.
K 3 Thousands Quantifies the size of the graph under test.
M 3 Millions Quantifies the size of the graph under test.

6.3 Benchmark Results

In the following paragraphs the performance of the developed frameworks based on
the results of the benchmark tests will be discussed. Tables 2, 3, 4 and 5 present
the experimental results for the disk usage, load, delete, and query experiments,
respectively, whereas Figures 3, 4, 5, and 6 illustrate in a a diagrammatic way the
results for the node and edge insertion experiments.

The disk usage test results (Table 2) indicate that the H2-based framework has the
lowest disk usage for all sizes of real as well as synthetic graphs. This however was
somewhat expected as an edge entity stored in the H2-based framework includes the
integer identifiers of the source and destination nodes rather than their string labels
that naturally occupy more disk space. Between the other two frameworks, the one
based on Neo4j seems to be more compact for real graph data. However, when
synthetic data are used the disk space usage remains the same for the Neo4j-based
framework, whereas it is reduced for the Lucene-based framework. One difference
between the synthetic and real graph data is that the label’s length for the synthetic

48 M. Giatsoglou, S. Papadopoulos, and A. Vakali

graph nodes is limited to 10 characters the most, whereas the labels of the real
graph nodes can contain more characters. For example, the URI hash values that are
used as labels for the R nodes have a high possibility of containing more than 10
characters. From the above, it can be concluded that the disk space required for the
storage of the documents of the Lucene-based framework has a stronger dependency
on the labels’ length in relation to the space required for the storage of the entities
of the Neo4j-based framework.

Table 2. Disk space usage results

disk space usage (in Mbytes)

Disk space test nodes H2 LUCENE NEO4J

DS-R-100K 28,388 6,9 14,5 13,2
DS-R-500K 125,942 36,3 72 61,8
DS-R-1M 235,984 72,8 143,1 119,6
DS-R-5M 1,032,947 379,3 712 559,9
DS-R-10M 1,983,803 766,7 1433,6 1126,4

DS-S-100K 28,388 5,1 8,1 12,8
DS-S-500K 125,942 28 38,9 60
DS-S-1M 235,984 56,2 78,4 116,1
DS-S-5M 1,032,947 283 391,5 542,9
DS-S-10M 1,983,803 570,9 782,4 1126,4

Table 3 presents the total time required to build a graph given either a set of
triples of U/R/T labels (real graph), or a set of synthetically generated U/R/T nodes
with the respective edges (synthetic graph). According to the benchmark results,
the Lucene-based framework is the fastest, whereas the Neo4j-based framework is
the slowest of the three, with the Lucene-based framework loading: (i) the largest
real graph (10 million edges) 6 times quicker than the Neo4j-based one, and (ii) the
largest synthetic graph 4.5 times quicker. In general, synthetic graphs are built in
less time than real graphs of the same size which is explained by the differences in
the experimental procedure (as it has been stated in subsection 6.2), when loading a
synthetic graph there is no need to check whether a node or edge has already been
added to the graph). Another observation is that the H2-based framework seems
to perform relatively well, with the time required to build a graph being almost
proportional to the graph size on most occasions.

Table 3. Load test results

Load test nodes H2 LUCENE NEO4J

L-R-100K 28,388 24,277sec 2,166sec 1,44min
L-R-500K 125,942 2,19min 42,326sec 9,19min
L-R-1M 235,984 5,2min 2,1min 19,13min
L-R-5M 1,032,947 28,49min 17,37min 1,55hr
L-R-10M 1,983,803 1,1hr 43,34min 4,25hr

L-S-100K 28,388 7,670sec 874,700ms 21,816sec
L-S-500K 125,942 37,869sec 9,601sec 2,27min
L-S-1M 235,984 1,15min 35,807sec 5,4min
L-S-5M 1,032,947 7,9min 5,5min 30,6min
L-S-10M 1,983,803 15,10min 14,6min 1,5hr

Massive Graph Management for the Web and Web 2.0 49

The results of the node and edge insertion experiments for the real graph data
are presented as diagrams in Figures 3 and 5, respectively, whereas the respective
results for the synthetic graph data are presented in Figures 4, and 6. Each figure
includes three diagrams (one for each framework) that plot the average time for the
insertion of a new node or edge calculated for every 1,000 insertions. The diagrams
also illustrate the dispersion of the values around the average, with use of the stan-
dard deviation values that have also been calculated for every 1,000 insertions. The
results of the node insertion benchmark for both real and synthetic graph data indi-
cate that the H2-based framework is the most effective for node insertion requiring
on average less than 20msec for the insertion of a node, and managing to maintain
a rather stable performance as the size of the graph increases. The slowest solution
is the Neo4j-based framework, which also exhibits the highest values of standard
deviation. The Lucene-based framework, on the other hand, has the lowest values
of standard deviation, thus proving to be very stable. As it can be observed from the
diagrams, the average node insertion time for the Lucene-based framework seems
to be rising until a number of insertions is reached, and then rapidly fall. This rapid
fall indicates that at this point the framework cache is full so the Lucene writer com-
mits the changes that have been cached so far to the disk. Afterwards, the cache is
emptied to enable the storage of the new insertions (and possible updates), so the
performance of the framework improves. The results for the edge insertion tests
(Figures 5, and 6) yield similar findings. Both the H2-based and Lucene-based
frameworks are much faster than the Neo4j-based framework. It is noticable that
the average times per edge insertion for the latter framework reach very large values
as the size of the graph increases. This serious delay of the Neo4j-based framework
did not allow us to complete the edge insertion experiment. Between the H2-based
and Lucene-based frameworks, although their performance is comparable, the H2-
based framework seems to maintain a more stable performance regardless of the
graph size. The Neo4j-based framework had an even worse performance for the
edge insertion test on synthetic graph data. Apart from the average times calculated
for the first 2,000 insertions of edges, the successive results for the first next thou-
sands of insertions were approximately 10 times larger than the respective results for
the H2-based and Lucene-based frameworks, however they soon began to increase
exponentially. In order to present the comparative results for the three frameworks,
Figure 6 has been included using a logarithmic scale for the time axis.

Table 4 presents the results for the node and edge deletion experiments. The av-
erage times for node deletion indicate that the H2-based framework performs better
than the other two frameworks, whereas the slowest framework for every test has
proved to be the one based on Lucene. The Neo4j-based framework maintained the
same performance for every graph size. In general, the deletion of a node causes
the deletion of all edges that are adjacent to it. Therefore, the time measured for a
node deletion includes an extra delay required for fetching and deleting the node’s
neighbors. The deletion of the neighbors of a node seems to be a serious overhead
for the Lucene-based framework, whereas it is automatically executed in the H2-
based framework due to the SQL ON DELETE CASCADE constraint. However, it
can be observed that the times measured for the Lucene-based framework have the

50 M. Giatsoglou, S. Papadopoulos, and A. Vakali

Fig. 3. Diagram of mean time per node insertion in a real graph (per 1,000 insertions)

Fig. 4. Diagram of mean time per node insertion in a synthetic graph (per 1,000 insertions)

Fig. 5. Diagram of mean time per edge insertion in a real graph (per 1,000 insertions)

Massive Graph Management for the Web and Web 2.0 51

Fig. 6. Diagram of mean time per edge insertion in a synthetic graph (per 1,000 insertions).
The time axis is plotted in a logarithmic scale as the time values for the Neo4j-based frame-
work are much higher than the corresponding times for the other two frameworks.

Table 4. Delete test results

mean time standard deviation

Delete test H2 LUCENE NEO4J H2 LUCENE NEO4J

DN-R-100K 357,947us 567,391ms 3,349ms 5,287ms 0ns 30,187ms
DN-R-500K 1,427ms 1,768sec 3,574ms 13,500ms 0ns 30,162ms
DN-R-1M 1,502ms 3,290sec 3,481ms 7,164ms 0ns 30,171ms

DN-S-100K 182,778us 82,178ms 2,407ms 4,846ms 0ns 30,277ms
DN-S-500K 717,940us 102,943ms 1,766ms 26,585ms 0ns 26,614ms
DN-S-1M 1,102ms 119,799ms 2,602ms 30,351ms 0ns 30,259ms

DE-R-100K 140,674us 1,778us 484,522us 959,511us 9,493us 8,697ms
DE-R-500K 214,985us 2,313us 405,613us 1,735ms 17,285us 8,244ms
DE-R-1M 87,791us 1,808us 348,789us 704,322us 5,711us 7,416ms

DE-S-100K 109,413us 1,624us 704,770us 989,403us 4,371us 8,969ms
DE-S-500K 165,929us 1,638us 465,800us 1,219ms 4,338us 7,418ms
DE-S-1M 62,773us 1,564us 455,313us 17,778us 4,7us 8,47ms

lowest values of standard deviation among all frameworks, something that has been
observed in the results of the previous test as well.

The results for the edge deletion experiments clearly show the superiority of the
Lucene-based framework. The results of these experiments in combination with the
results for the node deletion experiments indicate that this framework is particularly
efficient in deleting an edge (and probably a node as they are indexed in a similar
way), however it is not very efficient in retrieving the neighbors of a node. Moreover,
the average time for an edge deletion does not seem to change linearly with the graph
size, but it is affected by the randomness of the edge selection.

The results for the query experiments are presented in Table 5. The experimental
results of the tests that involve querying random nodes of real graphs show that the
Lucene-based framework has the best performance between all frameworks. Com-
paring the performance of the other two frameworks, it can be observed that the
Neo4j-based framework scales better than the one based on H2 for large graphs. In

52 M. Giatsoglou, S. Papadopoulos, and A. Vakali

addition, the results concerning the H2-based framework show a particularly high
value of standard deviation for the graph of 1 million edges. However, the same
experiments on the synthetic graph generated results that show that the H2-based
framework conducts queries faster than the other two frameworks, whereas Neo4j
has the worse performance.

Table 5. Query test results

mean time standard deviation

Query test H2 LUCENE NEO4J H2 LUCENE NEO4J

QN-R-100K 162,16us 94,74us 271,48us 991,29us 562,32us 1,48ms
QN-R-500K 352,649us 132,264us 374,78us 1,504ms 615,906us 1,155ms
QN-R-1M 1,281ms 182,273us 476,680us 3,247ms 1,151ms 1,966ms
QN-S-100K 28,620us 63,881us 203,272us 179,664us 205,149us 691,344us
QN-S-500K 60,307us 93,835us 226,427us 599,284us 370,230us 528,356us
QN-S-1M 99,469us 115,996us 253,828us 1,103ms 642,891us 942,900us

QEx-R-100K 126,499us 170,284us 96,998us 14,933us 686,622us 70,622us
QEx-R-500K 280,310us 259,337us 211,398us 1,361ms 1,161ms 277,977us
QEx-R-1M 4,483ms 397,403us 233,614us 8,536ms 2,739ms 119,956us
QEx-S-100K 181,804us 222,825us 7,200ms 489,827us 3,99ms 5,95ms
QEx-S-500K 302,62us 180,291us 30,204ms 1,375ms 685,576us 3,178ms
QEx-S-1M 2,329ms 288,105us 55,556ms 7,214ms 1,391ms 0ns

QEn-R-100K 72,585us 4,576us 30,95us 445,929us 1,416us 56,208us
QEn-R-500K 70,521us 6,160us 21,57us 171,65us 1,677us 53,164us
QEn-R-1M 73,515us 7,225us 21,774us 149,983us 2,164us 54,961us
QEn-S-100K 61,904us 7,147us 12,530us 39,135us 6,77us 49,602us
QEn-S-500K 52,799us 6,391us 16,113us 30,711us 28,855us 167,289us
QEn-S-1M 53,358us 3,675us 21,633us 64,305us 1,721us 709,977us

IN-R-100K 44,425us 9,131us 7,848us 48,857us 147,153us 41,66us
IN-R-500K 30,842us 1,599us 4,926us 0ns 29,726us 85,871us
IN-R-1M 30,859us 1,387us 4,789us 0ns 24,403us 155,118us
IN-S-100K 5,181us 1,901us 6,668us 19,959us 74,364us 45,639us
IN-S-500K 4,408us 1,544us 5,947us 28,378us 41,969us 86,139us
IN-S-1M 3,824us 1,362us 6,53us 15,509us 34,185us 125,898us

IE-R-100K 6,174us 2,587us 2,740us 17,906us 78,859us 5,81us
IE-R-500K 7,77us 2,466us 3,862us 13,814us 58,637us 964,668us
IE-R-1M 7,611us 2,592us 2,849us 11,598us 107,551us 13,986us
IE-S-100K 6,129us 1,390us 2,638us 16,993us 2,432us 86,702us
IE-S-500K 4,452us 1,468us 2,434us 14,588us 65,639us 128,164us
IE-S-1M 3,110us 1,410us 3,160us 12,598us 45,841us 696,530us

INN-R-100K 124,460us 329,298us 166,693us 528,406us 593,44us 412,642us
INN-R-500K 171,186us 445,346us 270,393us 831,722us 1,49ms 124,973us
INN-R-1M 194,627us 522,203us 281,274us 939,848us 1,884ms 241,676us
INN-S-100K 100,471us 280,704us 171,670us 314,960us 726,270us 351,630us
INN-S-500K 145,330us 384,964s 195,835us 823,617us 2,335ms 386,801us
INN-S-1M 276,626us 422,135us 226,636us 1,192ms 1,649ms 1,521ms

The results of the tests involving the query of existing edges from real graphs
indicate that the Neo4j-based framework has the best performance, as it conducts
queries faster than its competitors and also has the lowest value of standard devi-
ation. The H2-based framework, on the contrary, was proven to be very slow for
larger graphs, having also a high value of standard deviation. However, the same ex-
periment on synthetic graphs generated completely different results for the Neo4j-
based framework, as it was the slowest, with the measured average times being much
larger than the times measured for the real graph tests. The framework that had the
best performance in these experiments for the larger graphs is the Lucene-based one.

Massive Graph Management for the Web and Web 2.0 53

The Lucene-based framework was proved to be the fastest when querying non-
existing edges for both real and synthetic graphs, as well as the most stable as it
had the lowest standard deviation values. The slowest framework for both types of
tests was the one based on H2. Another observation is that the standard deviation for
the Neo4j-based framework was much larger for the synthetic graph tests, whereas
quite the opposite is true for the H2-based framework.

In all iteration tests (including both node as well as edge iteration) the Lucene-
based framework had the best performance. For the node iteration tests it is worth
noticing that this framework generated the same average times for all real and syn-
thetic graphs, on the exception of the smallest real graph for which it generated a
larger average time. Between the other two frameworks the Neo4j-based proved to
be faster for real graphs, whereas their performance was comparable for synthetic
graph tests. In general, both the Neo4j-based and H2-based frameworks were faster
when querying nodes of synthetic rather than real graphs. However, the Neo4j-based
framework was observed to have a very high value of standard deviation for the
larger graphs. The Neo4j-based framework performed relatively well in edge itera-
tion tests, with the calculated average times for the real graph tests being compara-
ble to the respective average times for the Lucene-based framework. An observation
about the edge iteration results for the Lucene-based framework is that it performed
two times faster for the synthetic graph tests in relation to real graph tests.

Finally, the tests that involved querying the neighbors of random nodes, indicate
that the H2-based framework is the most efficient for such type of queries for most
of the tests, whereas the Lucene-based framework has the worst performance. The
single test for which the H2-based framework was outperformed by the Neo4j-based
framework is the test conducted on the largest synthetic graph (1,000,000 edges). An
observation that gives proof of the poor performance of the Lucene-based frame-
work in relation to the other frameworks is that its performance, when the test was
conducted on the largest real graph, was 2.5 times worse than the best performance
for the same test, whereas it was approximately 2 times worse than than best per-
formance when the test was conducted on the largest synthetic graph. This again
indicates that the Lucene-based framework is particularly slow when retrieving the
neighbors of a node.

7 Conclusions and Outlook

The abundance of Web data has created the need for more efficient scalable graph
data management structures. With this problem in mind, we presented various solu-
tions for the management of massive web graphs. We considered the special case of
STS as an application setting and we defined the requirements that STS data impose
on the underlying management framework. Moreover, we developed three different
STS data management frameworks and presented their structure and functionality.
The developed frameworks were benchmarked in terms of the disk space required
for data storage, as well as in terms of how fast they perform data insertion, update,
and deletion operations. The experimental results showed that both frameworks have

54 M. Giatsoglou, S. Papadopoulos, and A. Vakali

their pros and cons, and that the choice of a suitable framework for the manage-
ment of STS data (or web graph data in general) depends on the type of operations
that are expected to be performed more often. In general, the custom Lucene-based
framework seems to be an efficient solution for the majority of operations, except
for those that involve accessing the neighbors of a node, where the H2-based and
Neo4j-based frameworks proved to be better solutions. Moreover, although the pro-
posed frameworks have been designed for the case of the STS, they can be easily
adjusted so that they are applicable for other types of Web and Web 2.0 graph data.
The possibility of testing the performance of frameworks that use other technolo-
gies as underlying infrastructures (such as object databases, presented in subsection
3.2, or data mining-based solutions, presented in Section 4) is also worthwhile to
be explored as future work.

From the above, it appears that there are different requirements for the manage-
ment of Web and Web 2.0 graph data, depending on the reasons why their storage,
and management in general, is desirable. A Web graph management framework
should consequently either be centered on a specific application, or be adaptable
to suit many application requirements. An interesting vision would be to combine
the characteristics of data mining-based solutions, such as the compression-based
databases, with the update functionalities of transactional databases, in a frame-
work able to support applications both for static graph analysis and for managing
time-varying graphs. In general, graph data management frameworks should be de-
veloped to maximally exploit the available main memory. Approaches towards this
direction would be to e.g. store part of the graph structure in main memory and the
rest of the data in external memory, or use a computer cluster to increase the size
of available main memory to fit the entire graph structure. An alternative approach
would be to differentiate between the way the adjacency lists of high-degree and
low-degree nodes are stored, so that e.g. the adjacency lists of high-degree nodes
are stored in main memory to decrease the time required for their access.

The possibility of developing a framework for handling temporal graphs that
would maintain information about the graph’s state in different time steps consti-
tutes another interesting future work area. Such functionality could be included in
a graph management framework e.g. information about when a node or edge was
added to (or deleted from) the graph is stored as an extra attribute of the node or
edge. Managing temporal graph data with such a framework would enable querying
about e.g. when an edge was added to the graph, which nodes were adjacent to a
node at a given time, etc.

References

1. Abello, J., Buchsbaum, A.L., Westbrook, J.: A Functional Approach to External Graph
Algorithms. Algorithmica 32(3), 437–458 (1998)

2. Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-streaming Model. In: ICALP(2),
pp. 328–338 (2009)

3. Bader, D., Madduri, K.: Designing multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2. In: Proceedings of the ICPP 2006. IEEE Computer
Society, Los Alamitos (2006)

Massive Graph Management for the Web and Web 2.0 55

4. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for
local triangle counting in massive graphs. In: Proceeding of the KDD 2008, pp. 16–24.
ACM Press, New York (2008)

5. Beynon, M.D., Kurc, T., Catalyurek, U., Chang, C., Sussman, A., Saltz, J.: Distributed
processing of very large datasets with DataCutter. Parallel Comput. 27(11), 1457–1478
(2001)

6. Boldi, P., Vigna, S.: The WebGraph Framework I: Compression Techniques. In: Proceed-
ings of the WWW 2004, pp. 595–602. ACM, New York (2004)

7. Boldi, P., Vigna, S.: The WebGraph Framework II: Codes For The World-Wide Web. In:
Proceedings of the DCC 2004, vol. 528. IEEE Computer Society, Los Alamitos (2004)

8. Boldi, P., Santini, M., Vigna, S.: Permuting Web Graphs. In: Avrachenkov, K., Donato,
D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 116–126. Springer, Heidelberg
(2009)

9. Bothorel, C., Bouklit, M.: An algorithm for detecting communities in folksonomy hyper-
graphs. Appeared in I2CS 2008, Schoelcher, Martinique, Sponsored by IEEE (2008)

10. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30(1-7), 107–117 (1998)

11. Brinkmeier, M., Werner, J., Recknagel, S.: Communities in graphs and hypergraphs. In:
Proceedings of CIKM 2007, Lisbon, Portugal, pp. 869–872. ACM, New York (2007)

12. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging
and hierarchical clustering. In: Proceedings of the WWW 2006, pp. 625–632. ACM,
New York (2006)

13. Buchsbaum, A.L., Giancarlo, R., Racz, B.: New results for finding common neigh-
borhoods in massive graphs in the data stream model. Theor. Comput. Sci. 407(1-3),
302–309 (2008)

14. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compres-
sion with communities. In: Proceedings of the WSDM 2008. ACM, New York (2008)

15. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting
triangles in data streams. Proceedings of the PODS 2006, pp. 253–262. ACM, New York
(2006)

16. Cattuto, C., Baldassarri, A., Servedio, D.P.V., Loreto, V.: Emergent Community Structure
In Social Tagging Systems. Advances in Complex Systems (ACS) 11(4), 597–608 (2008)

17. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.:
On compressing social networks. In: Proceedings of the KDD 2009, pp. 219–228. ACM,
New York (2009)

18. Claude, F., Navarro, G.: A Fast and Compact Web Graph Representation. In: Ziviani, N.,
Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 105–116. Springer, Heidelberg
(2007)

19. Cohen, J.: Graph Twiddling in a MapReduce World. Computing in Science & Engineer-
ing 11(4), 29–41 (2009)

20. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107–113 (2008)

21. Du, N., Wang, B., Wu, B., Wang, Y.: Overlapping Community Detection in Bipartite
Networks. In: Proceedings of the WI-IAT 2008, pp. 176–179. IEEE Computer Society,
Los Alamitos (2008)

22. Erdős, P., Rényi, A.: On Random Graphs I. Publicationes Mathematicae 6, 290–297
(1959)

23. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a
semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

56 M. Giatsoglou, S. Papadopoulos, and A. Vakali

24. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the
streaming model. SIAM J. Comput. 38(5), 1709–1727 (2008)

25. Furtado, P.: Evolving Application Domains of Data Warehousing and Mining: Trends
and Solutions. IGI Publishing (2009)

26. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf.
Sci. 32(2), 198–208 (2006)

27. Guo, L., Tan, E., Chen, S., Zhang, X., Zhao, Y.: Analyzing patterns of user content gen-
eration in online social networks. In: Proceedings of the KDD 2009, pp. 369–378. ACM,
New York (2009)

28. Guozhu, D., Leonid, L., Jianwen, S., Limsoon, W.: Maintaining Transitive Closure of
Graphs in SQL. Int. J. Information Technology 5 (1999)

29. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In:
Proceedings of the WWW 2007. ACM, New York (2007)

30. Hartley, T.D.R., Çatalyürek, Ü.V., Özgüner, F., Yoo, A., Kohn, S., Henderson, K.W.:
MSSG: A Framework for Massive-Scale Semantic Graphs. In: Proceedings of the 2006
IEEE International Conference on Cluster Computing, pp. 1–10. IEEE, Los Alamitos
(2006)

31. Hotho, A., Robert, J., Christoph, S., Gerd, S.: Emergent Semantics in BibSonomy. GI
Jahrestagung P-94, 305–312 (2006)

32. Karande, C., Chellapilla, K., Andersen, R.: Speeding up algorithms on compressed web
graphs. In: Proceedings of the WSDM 2009, pp. 272–281. ACM, New York (2009)

33. Keith, H.R., Raymie, S., Janet, L.W., Rajiv, G.W.: The Link Database: Fast Access to
Graphs of the Web. In: Data Compression Conference, vol. 0, p. 122. IEEE Computer
Society, Los Alamitos (2002)

34. Kittur, A., Chi, E., Pendleton, B.A., Suh, B., Mytkowicz, T.: Power of the Few vs. Wis-
dom of the Crowd: Wikipedia and the Rise of the Bourgeoisie. World Wide Web 1, 2,19
(2007)

35. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604–632 (1999)

36. Larsson, N.J., Moffat, A.: Offline Dictionary-Based Compression. In: Data Compression
Conference, vol. 0, p. 296. IEEE Computer Society, Los Alamitos (1999)

37. Lawrence, P., Sergey, B., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report. Stanford University (1998)

38. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and
the TKC effect. Comput. Netw. 33(1-6), 387–401 (2000)

39. Madduri, K., Bader, D.A.: Compact graph representations and parallel connectivity al-
gorithms for massive dynamic network analysis. In: Proceedings of the IPDPS 2009,
pp. 1–11. IEEE Computer Society, Los Alamitos (2009)

40. Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In:
International Semantic Web Conference, pp. 522–536 (2005)

41. Muthukrishnan, S.: Data streams: algorithms and applications. In: Proceedings of the
SODA 2003, pp. 413–413 (2003)

42. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69(2), 26113+ (2004)

43. Papadopoulos, S., Menemenis, F., Vakali, A., Kompatsiaris, Y.: Analysis of Content
Popularity in Social Bookmarking Systems. In: Evolving Application Domains of Data
Warehousing and Mining: Trends and Solutions. IGI Publishing (2009)

44. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: Leveraging Collective Intelligence
through Community Detection in Tag Networks. In: Proceedings of the CKCaR 2009
(2009)

Massive Graph Management for the Web and Web 2.0 57

45. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A Graph-based Clustering Scheme for
Identifying Related Tags in Folksonomies. In: Proceedings of the DaWaK 2010 (2010)

46. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16, 464–497 (1996)
47. Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in

social tagging systems using hierarchical clustering. In: Proceedings of the RecSys 2008,
pp. 259–266. ACM, New York (2008)

48. Simpson, E.: Clustering Tags in Enterprise and Web Folksonomies. Technical Report.
HP Labs (2008)

49. Stephens, S., Rung, J., Lopez, X.: Graph Data Representation in Oracle Database 10g:
Case Studies in Life Sciences. IEEE Data Eng. Bull. 27(4), 61–66 (2004)

50. Voss, J.: Measuring Wikipedia. In: The 10th International Conference of the International
Society for Scientometrics and Informetrics (2005)

51. Wu, C., Zhou, B.: Analysis of tag within online social networks. In: Proceedings of the
GROUP 2009, pp. 21–30. ACM, New York (2009)

52. Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Pro-
ceedings of the WWW 2006, pp. 417–426. ACM, New York (2006)

53. Yeung, C.A., Gibbins, N., Shadbolt, N.: Tag Meaning Disambiguation through Analysis
of Tripartite Structure of Folksonomies. In: Proceedings of the WI-IATW 2007, pp. 3–6.
IEEE Computer Society, Los Alamitos (2007)

54. Yeung, C.A., Gibbins, N., Shadbolt, N.: Collective User Behaviour and Tag Contex-
tualisation in Folksonomies. In: Proceedings of the WI-IAT 2008, pp. 659–662. IEEE
Computer Society, Los Alamitos (2008)

55. Yeung, C.A., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging
systems. In: Proceedings of the HT 2009, pp. 251–260. ACM, New York (2009)

56. Yin, Z., Li, R., Mei, Q., Han, J.: Exploring social tagging graph for web object classifi-
cation. In: Proceedings of the KDD 2009, pp. 957–966. ACM, New York (2009)

57. Alberton, L.: Graphs in the database: SQL meets social networks (2009),
http://techportal.ibuildings.com/2009/09/07/
graphs-in-the-database-sql-meets-social-networks

58. Bergman, M.K.: Scalability of the Semantic Web (2006),
http://www.mkbergman.com/227/scalability
-of-the-semantic-web

59. Bergman, M.K.: Enterprise Semantic Webs Demand New Database Paradigms (2006),
http://www.mkbergman.com/185/enterprise-semantic-webs
-esw-demand-new-database-paradigms

60. Obasanjo, D.: An Exploration of Object Oriented Database Management Systems
(2001),
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html

61. Staken, K.: Introduction to Native XML Databases (2001),
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

62. Wang, J.C., Huiling, G., Betsy, G.: Oracle White Paper? A Load-On-Demand Approach
to Handling Large Networks in the Oracle Spatial Network Data Model (2009),
http://www.oracle.com/technology/products/spatial/pdf/
11gr2 collateral/ ndmlod11gr2 wp 1009.pdf

63. Apache Xindice, http://xml.apache.org/xindice
64. AllegroGraph RDF store, http://www.franz.com/agraph/allegrograph
65. Benchmarks: Performance advantages to store complex object structures,

http://www.db4o.com/about/productinformation/benchmarks
66. db4o, http://www.db4o.com/about/productinformation/db4o

http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://www.mkbergman.com/227/scalability-of-the-semantic-web/
http://www.mkbergman.com/227/scalability-of-the-semantic-web/
http://www.mkbergman.com/185/enterprise-semantic-webs-esw-demand-new-database-paradigms/
http://www.mkbergman.com/185/enterprise-semantic-webs-esw-demand-new-database-paradigms/
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.oracle.com/technology/products/spatial/pdf/11gr2_collateral/_ndmlod11gr2_wp_1009.pdf
http://www.oracle.com/technology/products/spatial/pdf/11gr2_collateral/_ndmlod11gr2_wp_1009.pdf
http://xml.apache.org/xindice
http://www.franz.com/agraph/allegrograph
http://www.db4o.com/about/productinformation/benchmarks
http://www.db4o.com/about/productinformation/db4o

58 M. Giatsoglou, S. Papadopoulos, and A. Vakali

67. Facebook Statistics (2010),
http://www.facebook.com/press/info.php?statistics

68. Getting Started with Berkeley DB for Java - Release 4.8,
http://www.oracle.com/technology/documentation/berkeley-db/
db/gsg/ JAVA/BerkeleyDB-Core-JAVA-GSG.pdf

69. H2 database, http://www.h2database.com
70. How ODB Works, http://wiki.neodatis.org/how-odb-works
71. Jena Semantic Web Framework, http://jena.sourceforge.net
72. JUNG Graph Framework, http://jung.sourceforge.net
73. Neo4j graph database, http://neo4j.org
74. Object-relational impedance mismatch, http://en.wikipedia.org/wiki/

Object-relational impedance mismatch
75. Oracle Berkeley DB,

http://www.oracle.com/technology/
products/berkeley-db/index.html

76. OWLIM Repository, http://www.ontotext.com/owlim
77. PolePosition Benchmark NeoDatis1.9,

http://switch.dl.sourceforge.net/project/neodatis-odb/
NeoDatis%20ODB%20Performance/NeoDatis%201.9/
PolePosition NeoDatis-1.9.pdf

78. Sesame Framework, http://www.openrdf.org
79. Tamino XML Server,

http://www.softwareag.com/corporate/products/wm/tamino
80. Virtuoso Server platform, http://www.openlinksw.com/virtuoso

http://www.facebook.com/press/info.php?statistics
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/_JAVA/BerkeleyDB-Core-JAVA-GSG.pdf/
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/_JAVA/BerkeleyDB-Core-JAVA-GSG.pdf/
http://www.h2database.com
http://wiki.neodatis.org/how-odb-works
http://jena.sourceforge.net
http://jung.sourceforge.net
http://neo4j.org
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch/
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch/
http://www.oracle.com/technology/products/berkeley-db/index.html/
http://www.oracle.com/technology/products/berkeley-db/index.html/
http://www.ontotext.com/owlim
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://www.openrdf.org
http://www.softwareag.com/corporate/products/wm/tamino
http://www.openlinksw.com/virtuoso

	Massive Graph Management for theWeb andWeb 2.0
	Introduction
	Handling Massive Graphs on the Web
	Transactional Graph Databases
	RDBMS-Based Frameworks
	 Object Database-Based Frameworks
	Native Graph Stores
	Custom
	Distributed Transactional Databases

	Data Mining-Oriented Solutions
	Compression-Based Databases
	Streaming Solutions
	Distributed Data Mining-Oriented Solutions

	A Case for Web 2.0 Graph Stores: Social Tagging Systems
	Introduction to Social Tagging Systems
	Social Tagging Systems: Analysis Tasks
	Application Setting

	STS Data Management Framework Benchmark
	Participating Frameworks Description
	Benchmark Tests Description
	Benchmark Results

	Conclusions and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

