
Algorithmica (2015) 72:860–883
DOI 10.1007/s00453-014-9878-4

D2-Tree: A New Overlay with Deterministic Bounds

Gerth Stølting Brodal · Spyros Sioutas ·
Kostas Tsichlas · Christos Zaroliagis

Received: 28 August 2012 / Accepted: 13 March 2014 / Published online: 8 April 2014
© Springer Science+Business Media New York 2014

Abstract We present a new overlay, called theDeterministic Decentralized tree (D2-
tree). The D2-tree compares favorably to other overlays for the following reasons: (a)
it providesmatching and better complexities, which are deterministic for the supported
operations; (b) the management of nodes (peers) and elements are completely decou-
pled from each other; and (c) an efficient deterministic load-balancing mechanism
is presented for the uniform distribution of elements into nodes, while at the same
time probabilistic optimal bounds are provided for the congestion of operations at the
nodes. The load-balancing scheme of elements into nodes is deterministic and general
enough to be applied to other hierarchical tree-based overlays. This load-balancing
mechanism is based on an innovative lazy weight-balancing mechanism, which is
interesting in its own right.

Part of this work was done while the last author was visiting the Karlsruhe Institute of Technology.

G. S. Brodal
MADALGO, Department of Computer Science, University of Aarhus, Åarhus, Denmark
e-mail: gerth@madalgo.au.dk

S. Sioutas
Department of Informatics, Ionian University, 49100 Corfu, Greece
e-mail: sioutas@ionio.gr

K. Tsichlas
Department of Informatics, Aristotle University of Thessaloniki, Thessaloníki, Greece
e-mail: tsichlas@csd.auth.gr

C. Zaroliagis (B)
Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece
e-mail: zaro@ceid.upatras.gr

C. Zaroliagis
Computer Technology Institute & Press “Diophantus”, 26504 Patras, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9878-4&domain=pdf

Algorithmica (2015) 72:860–883 861

Keywords Overlay · Indexing scheme · Decentralized system · Distributed data
structure · Load-balancing

1 Introduction

Decentralized systems and in particular Peer-to-Peer (P2P) networks have become
very popular lately and are widely used for sharing resources and storing very large
data sets. Data are stored at the nodes (or peers) and the most crucial operations
are data search (identify the node that stores the requested information) and updates
(insertions/deletions of data). Searching and updating is typically done by building
a logical overlay network that facilitates the assignment and indexing of data at the
nodes. Sometimes,wedistinguish between the overlay structure per se and the indexing
scheme used to access the data.

Following the typical modeling, a decentralized communication network is repre-
sented by a graph. Its nodes correspond to the network nodes, while its edges cor-
respond to communication links. We assume constant size messages between nodes
through links and asynchronous communication. It is assumed that the network pro-
vides an upper bound on the time needed for a node to send a message and receive an
acknowledgment. The complexity of an operation is measured in terms of the number
of messages issued during its execution. Throughout the paper, when we refer to cost
we shall mean number of messages (internal computations at nodes are considered
insignificant). The overlay is another graph defined over the communication network.
The nodes of the overlay correspond to nodes of the original network, while its edges
(links) may not correspond to existing communication links, but to communication
paths.

With respect to its structure, the overlay supports the operations Join (of a new node
v; v communicates with an existing node u in order to be inserted into the overlay),
and Departure (of an existing node u; u leaves the overlay announcing its intent to
other nodes of the overlay).

The overlay is used to implement an indexing scheme for the stored data. Such a
scheme supports the operations search for an element, insert a new element, delete an
existing element, and range query for elements in a specific range.

In terms of efficiency, an overlay network should address the following issues:

– Fast queries andupdates: updates andqueriesmust be executed in aminimal number
of communication rounds, using a minimal number of messages.

– Ordered data: keeping the data in order facilitates the implementation of various
enumeration queries when compared to a simple dictionary that can only answer
membership queries, including those arising in DNA databases, location-based ser-
vices, and prefix searches for file names or data titles. Indeed, the ever-wider use
of P2P infrastructures has found applications that require support for range queries
(e.g., [8]).

– Size of nodes (peers): the size of a node is the routing information (links and related
data) maintained by this node and it is not related to the number of data elements
stored in it. Keeping the size of a node small allows for more efficient update oper-

123

862 Algorithmica (2015) 72:860–883

ations, but in general reduces the efficiency of access operations while aggravating
fault tolerance.

– Fault Tolerance: the structure should be able to discover and heal failures at nodes
or links.

– Congestion: it refers to the distribution of the load of search (access) operations per
node, aiming at distributing this load equally across all nodes. The congestion is
an expected quantity defined as the maximum, among all nodes, of the fraction of
the expected number of search operations at a node, due to a random sequence of
search operations on the structure, divided by the total number of search operations.

– Load balancing: it refers to the distribution of data elements on the nodes. The goal
of load balancing is to distribute equally the n elements stored in the N nodes of the
network (typically N � n). That is, if there are N nodes and n data elements, ideally
each node should carry approximately k elements, where �n/N� ≤ k ≤ �n/N�+1.

There has been considerable recent work in devising effective distributed search
and update techniques. Existing structured P2P systems can be classified into two
broad categories: distributed hash table (DHT)-based systems and tree-based systems.
Examples of the former, which constitute the majority, include Chord [15], CAN
[20], Pastry [19], Symphony [16], and Tapestry [25]. DHT-based systems support
exact match queries well and use (successfully) probabilistic methods to distribute the
workload among nodes equally. DHT-based systems work with little synchrony and
high churn (the collective effect created by independent burstly arrivals and depar-
tures of nodes), a fundamental characteristic of the Internet. Since hashing destroys
the ordering on keys, DHT-based systems typically do not possess the functionality to
support straightforwardly range queries, or more complex queries based on data order-
ing (e.g., nearest-neighbor and string prefix queries). Some efforts towards addressing
range queries have been made in [11,21], getting however approximate answers and
also making exact searching highly inefficient. The most recent effort towards range
queries is reported in [24].

Tree-based systems are based on hierarchical structures. They support range queries
more naturally and efficiently as well as a wider range of operations, since they main-
tain the ordering of data. On the other hand, they lack the simplicity of DHT-based
systems, and they do not always guarantee data locality and load balancing in thewhole
system. Important examples of such systems include Family Trees [23], BATON [13],
and Skip List-based schemes [18] like Skip Graphs (SG) [5,9], NoN SG [17], SkipNet
(SN), Deterministic SN [12], Bucket SG [4], Skip Webs [2], Rainbow Skip Graphs
(RSG) [10] and Strong RSG [10] that use randomized techniques to create and main-
tain the hierarchical structure.

In this work, we focus on tree-based overlay networks that support directly range
and more complex queries. Let N be the number of nodes present in the network and
let n denote the size of data (N � n). Let M be the size of available memory at each
node, Q(n, N) be the cost of a single query,U (n, N) be the cost of an update,C(n, N)

be the congestion per node (measuring the load) incurred by search operations, and
let L(n, N) be the cost for load balancing the overlay with respect to (w.r.t.) element
updates. Regarding congestion, each node issues one operation, while the destination
node of the operation is assumed to be selected uniformly at random among all nodes

123

Algorithmica (2015) 72:860–883 863

Table 1 A comparison between previous methods and the D2-tree

Methods N M Q(n, N) U (n, N) C(n, N) L(n, N)

SG [5,9] ≤ n O(log N) ̂O(log N) w.h.p. ̂O(log N) w.h.p. ̂O(
log N
N) ˜O(log N)

NoN SG [17] n O(log2 n) ̂O(
log n

log log n) ̂O(log2 n) ̂O(
log2 n

n) –

Determ. SN [12] n O(log n) O(log n) O(log2 n) O(n
0,32
n) –

BATON [13] ≤ n O(log N) O(log N) O(log N) – O(log n)

Family Trees [23] n O(1) ̂O(log n) ̂O(log n) ̂O(
log n
n) –

Bucket SG [4] ≤ n O(n
N + log N) ̂O(log N) ̂O(log N) ̂O(1

N + log N
n) No bounds

Skip Webs [2] n O(log n) ̂O(
log n

log log n) ̂O(
log n

log log n) ̂O(
log n
n) –

Rainbow SG [10] n O(1) ̂O(log n) w.h.p. O(log n) w.h.p. ̂O(
log n
n) –

Strong RSG [10] n O(1) O(log n) ˜O(log n) ̂O(n
ε

n) –

D2-tree ≤ n O(1) O(log N) ˜O(log N) ̂O(
log N
N) ˜O(log N)

By ̂O we represent expected bounds, by ˜O we represent amortized bounds, and by O expected amortized
bounds. All other bounds are worst-case. Typically, N � n

of the network. Congestion depends on the distribution of elements into nodes as
well as on the topology of the overlay. It provides hints as to how well the structure
avoids the existence of hotspots (i.e., nodes which are accessed multiple times during
a sequence of operations – the root of a tree is usually a hotspot in decentralized tree
structures).

A comparison of the aforementioned tree-based overlays is given in Table 1. We
would like to emphasize that w.r.t. load balancing, there are solutions in the literature
either as part of the overlay (e.g., [13]) or as a separate technique (e.g., [4,9]). These
solutions are either heuristics, or provide expected bounds under certain assumptions,
or amortized bounds but at the expense of increasing the memory size per node. In par-
ticular, in BATON [13], a decentralized overlay is provided with load balancing based
on data migration. However, their O(log n) amortized bound is valid only subject to a
probabilistic assumption about the number of nodes taking part in the data migration
process, and thus it is in fact an amortized expected bound. In the case of Bucket
Skip Graphs [4], elements are structured in buckets attached to nodes. Although it is
a solution which can be applied to a large set of P2P structures, it has two drawbacks:
(i) a list of free nodes is required, and (ii) a global control for the size of the buckets
is imperative. The latter is very crucial and is tackled by heuristics with no analysis
whatsoever. The solution proposed in this paper can be used to tackle the problem of
bucket size control efficiently in an amortized sense. A deterministic solution for load-
balancing comes from [9], in which a O(log N) amortized bound w.r.t. the elements
transferred is provided. Their solution, stemming from a centralized parallel database
framework, is a node migration process in which a lightweight node is selected, its
load is moved to an adjacent node and then it shares the load of the heavyweight
node. This process was initially developed for a parallel database in which there is
central control. The original process was translated to a decentralized framework by
applying a second overlay on the nodes where the order is defined w.r.t. the load of the
nodes. In particular, they maintain two skip graphs on the nodes, one w.r.t. the order
of elements and one w.r.t. the load of the nodes (in fact the second one can be replaced

123

864 Algorithmica (2015) 72:860–883

by a decentralized min-heap [22]). Apart from this deficit, one more problem with
this method is that it assumes that node migration is possible and each time an update
takes place the structure of the overlay is changed. This incurs an additive cost equal to
the cost update of the structure. Additionally, in structures that strive for deterministic
bounds (like BATON) this is not possible since such structures are quite strict and do
not allow the placement of a node anywhere in the structure.

The basic characteristic of a decentralized overlay is that the balancing information
is local. Locality is a must in a decentralized structure since there are no means to
acquire global information. For example, internal memory height-balanced trees have
local balancing information and thus lend themselves nicely to P2P environments but
they have problems with congestion w.r.t. updates. In particular, in a sequence of n
operations the root can be accessed O(

√
n) times. However, weight balanced trees

avoid this bottleneck having very good congestion w.r.t. updates but they need a lazy
mechanism as the one described in this paper to update the weight information.

1.1 Our Contribution

In this paper we present a new tree-based overlay, called theDeterministic Decentral-
ized tree or D2-tree. The D2-tree (see also Table 1):

– uses O(1) space per node;
– achieves a deterministic O(log N) query bound;
– achieves a deterministic (amortized) O(log N) update bound for elements as well
as for node joins and departures;

– achieves optimal congestion;
– exhibits a deterministic (amortized) O(log N) bound for load-balancing;
– supports ordered data queries optimally, and tolerates node failures.

The D2-tree is an overlay consisting of two levels. The upper level is a perfect
binary tree. The leaves of this tree are representatives of the buckets that constitute the
lower level of the D2-tree. Each bucket is a set of nodes and these nodes are structured
as a doubly linked list. Each bucket contains O(log N) nodes. Since N changes, the
size of buckets is dynamically maintained by the overlay.

In the D2-tree, we separate the index from the overlay structure using the load-
balancing mechanism. The number of elements per node is dynamic w.r.t. node joins
and departures and it is controlled by the load-balancing mechanism. Moreover, the
number of nodes of the perfect binary tree is not connected by anymeans to the number
of elements stored in the structure. The overlay structure supports the operations of
node join and node departure, while at the same time it tackles failures of nodes
whenever these are discovered.

Our load-balancing technique distributes almost equally the elements among nodes
by making use of weights. Weights are used to define a metric of load-balance, which
shows how uneven the load is between nodes. When the load is uneven, then a data
migration process is initiated to equally distribute elements.

Our load-balancing technique is quite general and can be applied to any hierarchical
decentralized overlay (e.g., BATON, Skip Graphs) with the following specifications:

– The overlay structure must be a tree with height O(log N) and with each node
having O(1) children.

123

Algorithmica (2015) 72:860–883 865

– Nodes at level i having the same father have approximately (within constant factors)
the same weight, which is Ω(i4).

– Updates are performed at the leaves. Alternatively, if each node has access to a leaf
in O(1) messages then this is enough, since the update is simply forwarded to this
leaf.

Finally, to avoid hotspots in our weight-balanced tree, we provide a technique that
lazily updates the weights on the nodes of a tree. In this way, it is not necessary to
access the root each time an update takes place at the leaves.

1.2 Related Work and Comparison

A related method for maintaining a weight-balanced binary search tree appeared in
[3]. In that work, a single update at the leaves requires that all weights are updated from
a leaf to the root. This means that employing a weight balanced tree without changes
in a distributed setting would make the root a hotspot (in fact, the nearer a node to
the root, the more of a hotspot it becomes). The lazy technique introduced in this
paper helps in avoiding this phenomenon. In addition, our lazy technique for updating
weights achieves this in O(1) amortized time, which is an improvement over the naive
solution of just updating all weights on the path that costs O(log n) in the worst-case
[3]. Hence, our lazy technique is of independent interest and can be straightforwardly
applied to weighted balanced trees, improving the bound in [3].

A somehow related technique for load-balancing with the help of clusters appeared
in [6]. In particular, a general method is provided on how to maintain a mapping
between a virtual object space and a set of memory modules in a decentralized envi-
ronment that can be used to solve the load-balancing problem. However, that technique
suffers from the existence of multiple overlays for different type of nodes, while at
the same time it requires randomization for symmetry breaking, and thus resulting in
probabilistic complexities.

Finally, a somehow related strategy for linking nodes in the same level as the onewe
use here for the D2-tree (cf. Sect. 4) was presented in [1]. In that paper, de Bruijn type
of connections are proposed for linking nodes in the same level, in order to keep the
degree at each level constant. That approach, however, is not applicable in our context,
since de Bruijn connections require the knowledge of the identifier of the target node.
In particular, our search method does not have any knowledge of the identifier of the
target node, but only of the search element that belongs to its range.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 presents some definitions and
notation used throughout the paper.We discuss the load balancing technique in Sect. 3,
and present the D2-tree in Sect. 4. We conclude in Sect. 5. A preliminary version of
this work appeared as [7].

2 Definitions and Notation

In this section, we give some definitions regarding tree structures that will be used
throughout the paper.

123

866 Algorithmica (2015) 72:860–883

Let T be a tree. Based on T ancestor-descendant relationships are defined in a
natural way. There is a node that has no ancestor (the root) and there are nodes with
no descendants (the leaves). All nodes which are not leaves are called internal. The
subgraph induced by the descendants of node v (including v) in T is the subtree of
v. The height of node v is the length (in number of edges) of the longest path from
v to one of its leaves. The depth or level of node v is the length of the path from v

to the root. Two nodes are called brothers when they have the same father and they
are consecutive in his child list. We define the right adjacent node of v to be u, if u
is right after node v in the inorder traversal of the binary tree. Similarly, we define
the left adjacent node of v to be w if w is just before v in the inorder traversal of the
binary tree.

Theweight w(v) of a node v is equal to the number of elements stored in its subtree.
The number of elements residing in a node v is denoted by e(v).

We define the size of v, denoted by |v|, as the number of nodes of the subtree of v

(including v) in T . The density d(v) of node v is defined as d(v) = w(v)
|v| and represents

the mean number of elements per node in the subtree of v.
Let v be a node at height h, let p be a child of v and let q be the right brother of p;

both p and q are at height h − 1.
The criticality c(p, q) of the two brother nodes p and q is defined as c(p, q) = d(p)

d(q)
and represents their difference in densities.

Let T ′ be a perfect binary tree. The node criticality ncv of a node v ∈ T ′ at level �
with left and right childrenw and z at level �+1, respectively, is defined as ncv = |w|

|v| .
The node criticality represents the difference in size between a node (v) and its left
child (w).

3 Deterministic Load Balancing

The main idea of our load-balancing mechanism is as follows. It distributes almost
equally the elements among nodes by making use of weights, which are used to define
a metric showing how uneven the load is between nodes. When the load is uneven,
then a data migration process is initiated to equally distribute the elements.

We describe the load-balancing mechanism in two steps. First, we provide a mech-
anism that allows for efficient and local updates of weight information in a tree when
elements are added or removed at the leaves. This is necessary to avoid hotspots. Then,
we describe the load-balancing scheme in a tree overlay. In the following, we assume
that the overlay structure is a tree T .

3.1 A Technique for Amortized Constant Weight Updating

We provide a technique that lazily updates the weights on the nodes of a tree. When an
element is added/removed to/from a leaf u in T , the weights on the path from u to the
root must be updated. If the height of T is H , then the cost of the weight updating is
O(H). Assume that node v lies at height h and its children are v1, v2, . . . , vs at height
h − 1. We relax the weight of a node and its recomputation. We define the virtual

123

Algorithmica (2015) 72:860–883 867

weight b(v) of v as the weight stored in node v. In particular, for node v the following
invariants are maintained

Invariant 1 b(v) > e(v) + (1 − εh)
(∑s

i=1 b(vi)
)

Invariant 2 b(v) < e(v) + (1 + ε′
h)

(∑s
i=1 b(vi)

)

where εh and ε′
h are appropriate constants depending on h. These invariants imply that

the weight information is approximate, at most by a multiplicative constant.
Assume that an update takes place at leaf u. Apparently, only the weights of its

ancestors need to be updated by±1 and no other node is affected. We traverse the path
from u to the root until we find a node z for which Invariants 1 and 2 hold. Let v be
its child for which either Invariant 1 or 2 does not hold on this path. We recompute all
weights on the path from u to v. In particular, for each node z on this path, we update
its weight information by taking the sum of the weights written in its children plus the
number of elements that z carries.

The parameters εh and ε′
h are chosen such that for all nodes the virtual weight will

be within a constant factor c > 0 of the real weight, i.e.,

1

c
· w(v) < b(v) < c · w(v)

First we prove the lower bound on v. At height h:

b(v) > (1 − εh)

⎛

⎝

s
∑

j=1

b(v j) + e(v)

⎞

⎠

By recursing and lower bounding to get clean bounds we get

b(v) > w(v)

h
∏

j=2

(1 − ε j)

Choosing1 ε j = 1
j2

, we get

h
∏

j=2

(

1 − 1

j2

)

=
∏h

j=2 (j − 1) × ∏h
j=2 (j + 1)

∏h
j=2 j2

= (h − 1)!∏h+1
j=3 j

(h!)2 = h + 1

2h
>

1

2

Similarly, for the upper bound we get b(v) < w(v)
∏h

j=1 (1 + ε′
j). Choosing ε j = 1

j2

and taking into account that 1 + 1
j2

< 1
1− 1

j2
, we have

1 We have chosen this ε j for simplicity. In fact for any η > 0, choosing ε j = 1
j1+η is sufficient.

123

868 Algorithmica (2015) 72:860–883

h
∏

j=2

(

1 + 1

j2

)

<

h
∏

j=2

(

1

1 − 1
j2

)

= 1
∏h

j=2

(

1 − 1
j2

) <
1
1
2

= 2

As a result, by choosing εh = ε′
h = 1

h2
we get that:

1

2
· w(v) < b(v) < 2 · w(v) (1)

The following lemma states how frequently the weight information in each node
changes.

Lemma 1 The minimum number of updates in the subtree of v, causing a weight
update at v, is �(εhw(v)).

Proof The weight update of node v is a result of the violation of either of Invari-
ants 1 or 2. After the update, it holds that b(v) = ∑s

i=1 b(vi) + e(v). Node
v has its weight updated again when b(v) < (1 − εh)

(∑s
i=1 b(vi) + e(v)

)

(or
b(v) > (1 + εh)

(∑s
i=1 b(vi) + e(v)

)

symmetrically). This will happen only when
the weight of the subtree of v changes by εh

(∑s
i=1 b(vi) + e(v)

)

. This change is a
lower bound on the number of operations performed in this subtree, no matter when
they have been performed. Taking into account (1), we get the lemma. 	

The following theorem states that the weight updating mechanism is efficient in an
amortized sense.

Theorem 1 The amortized cost of the weight update algorithm is O(1).

Proof Lemma 1 states that if we make εhw(v) update operations then the maximum
number of weight changes at node v is 1. As a result, the amortized cost per update
operation at height h is 1

εhb(v)
. In the following, given that v(i) is the node on the path at

height i and by the assumption that b(v(i)) = Ω(i4) we get that the amortized cost is:

H
∑

i=0

1

εi b(v(i))
=

H
∑

i=0

i2

b(v(i))
=

H
∑

i=0

O

(

i2

Ω(i4)

)

= O(1)

	

3.2 Updates and Load Balancing

We now investigate how load balancing is realized on the balanced tree structure T .
For clarity of exposition, we assume that T is a binary tree. The following discussion
can be easily generalized for trees with O(1) maximum degree, simply by looking
between brother nodes.

First, bear in mind that this mechanism does not tamper with the structure of T . An
update operation (either insertion or deletion of an element) is initiated at node v. Node
v issues a search for the involved element and the appropriate node u is returned. Then,

123

Algorithmica (2015) 72:860–883 869

the update request is forwarded from v to u. Node u executes the update operation
and signals v for the status of the update. The load balancing mechanism redistributes
the elements among nodes when the load between nodes is not distributed equally
enough.

Assume that node v at height h has child p and its right brother q at height h − 1.
Recall that |v| denotes the size of v (number of nodes in the subtree of v, including v)
in the overlay structure, d(v) = w(v)

|v| denotes the density of v (representing the mean

number of elements per node in the subtree of v), and that c(p, q) = d(p)
d(q)

denotes the
criticality of the two brother nodes p and q (representing their difference in densities).
The following invariant guarantees that there will not be large differences between
densities.

Invariant 3 For two brothers p and q, it holds that 1
c ≤ c(p, q) ≤ c, 1 < c ≤ 2.

For example, choosing c = 2 we get that the density of any node can be at most
twice or half of that of its brother. In the more general case where the number of
children of node v is O(1), we get that no child of v has more density than a constant
factor w.r.t. the other children of v.

When an update takes place at leaf u, weights are updated by using the mechanism
described in Sect. 3.1. In this way, we guarantee that no hotspot exists w.r.t. weight
updating as implied by Lemma 1. Then, starting from u, the highest ancestor w is
located that is unbalanced w.r.t. his brother z, meaning that Invariant 3 is violated.
Finally, the elements in the subtree of their father v are redistributed uniformly so that
the density of the brothers becomes equal; this procedure is henceforth called redis-
tribution of node v. Assume that the redistribution phase has a cost of O(f (w(v))),
for some increasing function f : N → N. The following theorem provides amortized
bounds for the redistribution.

Theorem 2 The load balancing has an amortized cost of O
(

H f (n)
n

)

.

Proof If a node v with weight w(v) has the elements in its subtree redistributed, then
this node will go through this process again after O(w(v)) updates of elements in its
subtree. In particular, when v is redistributed the criticality c(p, q) of its children p,
q is 1. To move the criticality out of bounds again at least w(p)

2 or w(q)
2 elements must

be inserted or deleted from p or q respectively. By the assumption that the number of
nodes in the subtree of p is approximately equal (within constant factors) to that of q,
we deduce that O(w(v)) elements must be inserted or deleted from v. Since the cost

of the redistribution of v is O(f (w(v))), the amortized cost for node v is O
(

f (w(v))
w(v)

)

.

This is true for all nodes on the path from a leaf to the root, and thus the amortized

cost is O
(

H f (w(root))
w(root)

)

. 	

4 The D2-tree

In this section we design and analyze the D2-tree overlay.We first describe the overlay
structure, thenmove to the description of the index, and finally discuss efficiency issues
regarding congestion and fault-tolerance.

123

870 Algorithmica (2015) 72:860–883

4.1 The D2-tree Structure

The D2-tree is a binary tree, where each node maintains an additional set of links to
other nodes apart from the standard links which form the tree. Each node v in the tree
maintains the following links:

1. Links to its father (if there is one) and its children.
2. Links to its adjacent nodes based on an inorder traversal of the tree.
3. Links to its leftmost and rightmost leaves of its subtree.
4. Links to nodes at the same level as v. These links facilitate an exponential search

on the nodes of the same level. Assume that node v lies at level �. In a binary tree,
the maximum number of nodes at level � is equal to 2�. Node v maintains at most
2� links: � links to nodes to the right and � links to nodes to the left. The links are
distributed in exponential steps, that is the first link points to a node (if there is
one) 20 positions to the left (right), the second 21 positions to the left (right), and
the i-th link 2i−1 positions to the left (right). These links constitute the routing
table of v.

The next lemma captures some important properties of the routing tables w.r.t. their
construction. It follows immediately from the aforementioned link structure and the
fixed distances between successive links in the routing tables.

Lemma 2 (i) If a node v contains a link to node u in its routing table, then the parent
of v also contains a link to the parent of u, unless u and v have the same father.

(ii) If a node v contains a link to node u in its routing table, then the left (right) sibling
of v also contains a link to the left (right) sibling of u, unless there are no such
nodes.

(iii) Every non-leaf node has two adjacent nodes in the inorder traversal, which are
leaves.

4.1.1 A Weight-Balanced Overlay

The overlay consists of two levels. The upper level of the overlay is a Perfect Binary
Tree (PBT). The leaves of the tree are representatives of buckets that constitute the
lower level of the overlay. Each bucket is a set of O(log N) nodes and it is structured
as a doubly linked list. Each node of the bucket points to the node which is a leaf of
the PBT and is called the representative of the bucket. Additionally, it maintains its
routing table w.r.t. the nodes of all buckets.

When a node z makes a join request to v, then this node is forwarded to its left
adjacent leaf u. Recall, that u is the node just before v in the inorder traversal of the
tree. Then, node z is added to the doubly linked list representing the bucket of u by
manipulating a constant number of links. The routing table of z is updated by using
Lemma 2(ii). When a node v leaves the network, then it is replaced by its left adjacent
node u (if there is no left adjacent node then we choose the right one) which in turn is
replaced by its first node z in its bucket (Fig. 1). Link and data information are copied
from v to u and from u to z.

When a node v is discovered to be unreachable, its left adjacent node u is first
located. This is accomplished by traversing the path to the rightmost leaf starting from

123

Algorithmica (2015) 72:860–883 871

Fig. 1 To the left (right) the join of z (leave of v) is depicted. The dotted labeled arrows represent the
movement of the nodes denoted by the label

the left child of v. Node u fills the gap of v and the first child z in the bucket of u
fills the gap left by u. The data contents of u are not moved to another node but the
navigation data (routing tables and other links) are moved to node z that takes its place.
Node u has its routing tables recomputed by using Lemma 2. In addition, its links to
adjacent nodes are set and finally the links to the rightmost and leftmost leaves of its
subtree are copied from its left and right child respectively.

The join and departure of nodes may cause the size of the buckets to be uneven,
which in the long run renders the structure unbalanced (imagine a bucket holding
almost all nodes). To control the size of the buckets we employ a weight-based
approach2. Each node v of the PBTmaintains its size |v|, which is equal to the number
of nodes in the buckets of its subtree. The size control is accomplished by using the
method introduced in Sect. 3.1, in order to avoid the existence of hotspots.

Recall that the node criticality ncv of a node v at level � with left and right children
w and z at level � + 1, respectively, is defined as ncv = |w|

|v| . The following invariant
bounds the criticality of nodes.

Invariant 4 The node criticality of all nodes is in the range
[1
4 ,

3
4

]

.

Invariant 4 implies that the number of nodes in buckets in the left subtree of a node
v is at least half and at most twice the corresponding number of its right subtree (this
definition can be easily generalized when v has a O(1) number of children).

When an update takes place at bucket x , then we locate the highest ancestor v of
x whose node criticality is out of bounds, w.r.t. Invariant 4, and we redistribute the
nodes in its subtree.

The redistribution is carried out as follows. A traversal of all buckets of the subtree
of v at level � is performed in order to determine the exact value of |v|. Then, the
number of nodes per bucket should be

⌊ |v|
2�

⌋

+ 1. The redistribution of nodes in the

subtree of v starts from the rightmost bucket and it is performed in an inorder fashion
so that elements in the nodes are not affected. The transfer of nodes is accomplished

2 The alternative of following a height-based approach, resulting in a height (instead of weight) balanced
overlay, would render update operations inefficient.

123

872 Algorithmica (2015) 72:860–883

by maintaining a link (called dest henceforth) for the position in which nodes should
be put or taken from. In addition, this pointer plays the role of a token indicating which
node implements the redistribution process. The transfer process involving bucket b
is implemented by its representative that maintains the pointer dest.

Assume that bucket b has q extra nodes which must be transferred to other buckets.
Pointer dest points to a bucket b′ in which these extra nodes should be put. All these
nodes are put in b′ as well as in adjacent nodes if necessary. Note that during this
procedure internal nodes of PBT are also updated since dest implements an inorder
traversal following the respective pointers. When bucket b has the correct size, the
link dest is transferred to the representative of the next bucket and the same procedure
applies again. In each visited bucket there are nodes which have been transferred
and are in their correct position and there are nodes which are to be transferred. The
distinction between these nodes is quite easy by the total number of nodes in the bucket
as well as by the keys they contain. The case where q nodes must be transferred to
bucket b from bucket b′ is completely symmetric. The cost for the redistribution for
node v is f (|v|) = O(|v|).

The redistribution guarantees that if there are z nodes in total in the y buckets of
the subtree of v, then after the redistribution each bucket maintains either �z/y� or
�z/y� + 1 nodes. However, the result still holds (with minor changes) even if the
redistribution phase guarantees that the minimum and maximum size of the buckets
is within constant factors. The cost for the redistribution we propose for node v is
f (|v|) = O(|v|).
We guarantee that each bucket contains O(log N) nodes, throughout joins or depar-

tures of nodes, by employing two operations on the PBT, the contraction and the exten-
sion. When a redistribution takes place at the root of the PBT, we also check whether
any of these two operations can be applied to the PBT. The extension operation adds
one more level of nodes at the PBT from existing nodes in the buckets, thus increasing
its height by one. The contraction operation removes one level of nodes from the PBT
and puts them into the buckets, thus decreasing its height by one. In order to decide
whether the PBT needs extension or contraction we compare the size of the buckets
B after the redistribution with the height of the PBT. Note that after redistribution, the
sizes of all buckets may differ by at most 1. If the size is larger than the height of the
PBT by at least 1 then an extension takes place. If the size of the bucket is smaller
than the height of the PBT by at least 1 then a contraction takes place (see Fig. 2).
The height of the PBT can be deduced by the size of the routing table in the nodes of
the last level of the PBT. These two operations involve a reconstruction of the overlay
which rarely happens as shown in the following lemma.

Lemma 3 If a redisribution operation is performed at a node with size s, then this
node will be redistributed again after Ω(s) joins or departures have been performed
in its subtree.

Proof Assume that node v with size s is redistributed. Then, ncv = 0.5, meaning that
the number of nodes in the buckets for both subtrees are equal. The bound of 0.5 on
criticality after redistribution is not strict in the sense that any bound in the interval
[14 + ζ, 3

4 − ζ], where ζ > 0, suffices. The same holds for their subtrees recursively.
Node v will be redistributed again only when the criticality of one of its children

123

Algorithmica (2015) 72:860–883 873

F
ig

.2
In

th
e
m
id
dl
e,
th
e
st
ru
ct
ur
e
of

th
e
w
ei
gh

tb
al
an
ce
d
ov
er
la
y
is
de
pi
ct
ed
.T

o
th
e
le
ft
(r
ig
ht
)
is
th
e
re
su
lt
of

th
e
ap
pl
ic
at
io
n
of

an
ex
te
ns
io
n
(c
on
tr
ac
ti
on

)
op

er
at
io
n

123

874 Algorithmica (2015) 72:860–883

gets out of bounds. Since it was 0.5 at least s/4 joins or departures of nodes must
be performed in order to redistribute v. This is a worst-case sequence of operations
that trigger a redistribution at v. Assuming a uniform distribution of updates, a much
larger bound can be obtained. 	

Lemma 3 states that the expensive operations of extension and contraction take
place when the number of nodes has at least doubled or halved. Assuming that the
redistribution of v has O(f (|v|)) cost, it follows by Lemma 3 that the amortized cost

for join/departure of a node v at height h is O
(

f (|v|)
|v|

)

. Since the PBT has height H ,

we establish the following.

Lemma 4 The amortized cost of join/departure of a node v is O
(

H f (N)
N

)

.

4.1.2 O(1) Space Per Node

The routing tables require O(log N) space for each node. To make the space con-
sumption constant, one could apply on the overlay the schemes described in [10,23].
However, on the one hand the complexities will not be deterministic while on the
other hand even in the case of Strong Rainbow Skip Graphs [10] with deterministic
bounds our congestion for searching is much better than theirs. To achieve constant
space we distribute the routing tables to many nodes doing the same also for nodes
in the buckets. A set of nodes with constant degree is grouped together and a routing
table is distributed on all these nodes, such that each node uses constant space. Thus, a
node can recreate approximately its routing table by accessing nodes inside the same
group. We call each such group a hypernode.

A hypernode at level � consists of at most � nodes, numbered from left to right
1, 2, This number is the rank of the node within the hypernode. A node v with
rank i maintains two links to the nodes that are approximately 2i positions to the right
and to the left. In particular, node v either points to a node z in the same hypernode
whose distance is 2i or to a node z′ whose rank is i and lies in a different hypernode
than that of v which contains a node whose distance is 2i from v. The concatenation of
all such links constitutes the routing table for the hypernode. Additionally, each node
with rank i maintains two links to nodes with ranks i − 1 and i + 1, if there are such
nodes. Finally, each node with rank i in the hypernode maintains a link to the node
with the largest rank.

The following lemma translates Lemma 2(ii) in the setting of hypernodes.

Lemma 5 If node v contains a link to node u, then the left (right) sibling of v also
contains a link to the left (right) sibling of u, unless there do not exist such nodes.

Proof Direct implication of the distances between successive links in the routing tables
as well as of the increasing ranks in the hypernodes. 	

Using Lemma 5 we can update the links of a node v by simply looking at the links
of its siblings u and w and update the links of v by pointing to the adjacent nodes
of the nodes pointed to by u and w. Hypernodes are static in the overlay and only
in the case of contraction we destroy the hypernodes of the last level while in the

123

Algorithmica (2015) 72:860–883 875

case of extension we create new hypernodes for the new level. A faulty node inside a
hypernode will not disconnect it since by accessing the parents we can find its siblings
and reconstruct the missing routing information.

4.2 The Index Structure of the D2-Tree

The overlay provides the infrastructure for the index to efficiently support various
operations. The overlay is used as a node-oriented tree. The range of all values stored
in the overlay is partitioned into subranges each one of which is assigned to a node
of the overlay. An internal node v with range [xv, x ′

v] may have a left child u and
a right child w with ranges [xu, x ′

u] and [xw, x ′
w] respectively such that xu < x ′

u <

xv < x ′
v < xw < x ′

w. Thus, if an element x ∈ [xv, x ′
v] then it must be stored at node

v. Ranges are dynamic in the sense that they depend on the values maintained by the
node.

In the following, we discuss the search and update operations supported by the
index. Our arguments refer to the case where nodes use O(log N) space but they can
be trivially changed to hold in the case they use O(1) space. In the few cases where
these arguments do not transfer trivially we make further explanations.

4.2.1 Search and Range Queries

The search for an element α in the overlay may be initiated from any node v at level
�. Let z be the node with range of values containing α. Assume O(log N) space per
node and assume that w.l.o.g. x ′

v < α. Then, by using the routing tables we search at
level � for a node u with right sibling w (if there is such sibling) such that x ′

u < α and
xw > α unless α is in the range of u and the search terminates. This step has O(�)

cost, since we simulate a binary search. If the search continues, then node z will either
be an ancestor of u or w or in the subtree rooted at the right child r(u) of u or in the
subtree rooted at the left child l(w) of w. First, we locate the rightmost leaf r of u and
the leftmost leaf l of w. If x ′

r ≥ α then α is in the subtree of r(u) and symmetrically
if xl ≤ α then α is in the subtree of l(w). Note that at most one of the two cases may
hold for α. For example, if x ′

r ≥ α then an ordinary top down search from node r(u)

suffices to find z in O(log N) steps (or in its bucket). Symmetrically, this is true also
for l(u). However, if both cases do not hold, then z is an ancestor of u or w. First, the
adjacent node p of leaves l and r is located, which is the nearest common ancestor of
u and w. If α < xp then α is not located on any node on the path from w to p. In this
case, a bottom-up search is initiated from u towards the root. In case α > x ′

p a search
for α is initiated from w towards the root. This step can be carried out in O(log N)

steps as well. The following lemma establishes the complexity of the search operation.

Lemma 6 The search for an element α in a D2-tree of N nodes is carried out in
O(log N) steps.

Proof The case of O(log N) space per node was analyzed in the paragraph preceding
the statement of the Lemma.

123

876 Algorithmica (2015) 72:860–883

In the case of O(1) space per node, assume that node v belongs in the hypernode V
at level �. The only change concerns the discovery of node u at level �. By following
the respective link, node p ∈ V with highest rank is reached. Then, by following the
backward links wemake the search on the level �. In particular, assume that during our
search in hypernode V we find that node u is somewhere between the nodes pointed
to by nodes with rank i and i + 1 in V . Assume that the node pointed by node with
rank i is in hypernode V ′. This means that we have narrowed down the search in a
subproblem consisting of 2i+1 − 2i = 2i nodes after having made � − i steps due to
the backward exponential search. The procedure is applied again from node with rank
i in V ′ until we find node u. This node in V ′ can be located in O(1) steps, since the
node with rank i of hypernode V maintains a link to node with rank i in hypernode
V ′. Thus, the number of steps is at most �. The vertical search on a path from a node
towards the root or a leaf is exactly the same as before. 	

A range query [a, b] reports all elements x such that x ∈ [a, b]. A range query [a, b]
initiated at node v, invokes a search operation for element a. Node u that contains a
returns to v all elements in this range. If all elements of u are reported then the range
query is forwarded to the right adjacent node (inorder traversal) and continues until
an element larger than b is reached for the first time.

4.2.2 Updates and Load Balancing

Assume that an update operation is initiated at node v involving element α. By invok-
ing a search operation we locate node u with range containing element α. Finally, the
update operation is performed on u. The main issue is how to balance the load of all
nodes of the overlay as equally as possible. To do that we employ the machinery devel-
oped in Sect. 3. Assume thatw is the node for which the redistributionmust be applied.
It remains to determine how the redistribution will be realized. An implementation of
this redistribution follows.

First we make a scan of all nodes in the subtree of w by forwarding a message
which simply counts the number of nodes and the number of elements in the subtree.
Finally, this message ends up in the leftmost leaf of the subtree of w. Thus, w now
knows exactly how many elements should be distributed in each node in order to have
a uniform load. Then, a data migration procedure is initiated.

The idea is to migrate the elements to their final destination nodes in a simple step
and in an inorder traversal fashionwhich is facilitated by adjacency links. The link dest
facilitates the transfer of elements between nodes and at the same time functions as a
token which designates the node that implements at the moment the data migration.
Starting from the rightmost node of the rightmost bucket in the subtree of w, it checks
whether the number of elements is less or more than the ideal load. If they are less,
then by using the dest link the necessary number of elements is transferred from the
designated node to the node containing dest. If they are more, the necessary number of
elements are moved to the node designated by dest. If during this procedure the node
designated by dest fills up (meaning it reaches the desired load) or empties (meaning
we transferred a lot of elements) then dest is moved to the next node w.r.t. the inorder
traversal. When the node containing dest has reached its ideal load then dest is moved

123

Algorithmica (2015) 72:860–883 877

to the next nodew.r.t. the inorder traversal and the procedure continues. This procedure
requires a linear number of messages w.r.t. the number of elements in the subtree of
node w.

The cost for the redistribution of a node v is O(|v| log N) for the case of O(log N)

space per node or O(|v|) for the case of O(1) space per node. This is because, during
the transfer of elements the routing tablesmust be reconstructed. The following lemma
states that the load balancing is efficient in an amortized sense when the structure is
subject to insertions and deletions of elements.

Lemma 7 The load rebalancing operation of the index has an amortized cost of
O(log N).

Proof This is a direct implication of Theorem 2 and the space used by the nodes. 	

One final comment is that the redistribution of elements may be affected by the

redistribution of nodes in the weight-balanced overlay. In order to avoid such a phe-
nomenon, the redistribution of nodes in the subtree of node v in the overlay is preceded
by a redistribution of elements.

4.3 Other Efficiency Issues and the Main Result

We are now ready to tackle the congestion and the fault-tolerance of the D2-tree
overlay, and to present the main results of this work.

4.3.1 Congestion

We assume that a sequence of searches s1, s2, . . . , sN is initiated from each of the N
nodes of the overlay. We assume that search si is looking for an element residing in a
node zi (target node for si). The target nodes z1, z2, . . . , zN are chosen independently
and uniformly at random from all nodes of the overlay. There are two phases in the
search. The first is the horizontal search phase, which makes use of the routing tables,
and the second is the vertical search phase on a path from a node either towards the
root or towards a leaf.

To establish a bound on the congestion, we need to provide bounds on the horizontal
and vertical searches. These bounds are provided by Lemmata 9 and 10 below. Before
proving these lemmata, we need the following result.

Lemma 8 The number of searches that stop at a node v at level � during the horizontal
phase of the search is O(1) in expectation.

Proof Since the destinations are chosen uniformly at random, the destination nodes at
level � for searches starting from this level depend on the weight of each node plus the
weight of the nodes on the path to the root which is almost equal. The weight of each
node at level � is approximately equal for all nodes. Thus, it is expected that O(1)
searches will have as a destination any node at level �. 	

The following lemma bounds the congestion due to the horizontal search.

123

878 Algorithmica (2015) 72:860–883

Lemma 9 The horizontal phase of the search at level � contributes to congestion
O(�) in expectation at each node of this level.

Proof Level � contains O(2�) nodes. We number the nodes from left to right by
0, 1, A path from a node j to a node k is the sequence of nodes that we access
when we search from node j to find node k at level � by using the routing tables. Let
Xi, j be the random indicator variable defined as follows:

Xi, j =
{

1 if node i is in the path that starts from node j
0 otherwise

Xi, j is a random variable since node j can choose its target among all nodes at level
� uniformly at random as implied by Lemma 8. The following quantity bounds the
expected number of paths passing through an arbitrary node i when all searches from
nodes at level � are accounted for.

E

⎡

⎣

O(2�)
∑

j=0

Xi, j

⎤

⎦ =
O(2�)
∑

j=0

E
[

Xi, j
]

Since Xi, j is a random indicator variable it follows that

E
[

Xi, j
] = Pr

{

Xi, j = 1
}

This probability is equal to the number of paths going through i divided by the total
number of paths starting from j and ending at all nodes of level �.

Pr
{

Xi, j = 1
} = # of paths passing through i from j

Total number of paths starting at j

The total number of paths starting from j to all nodes of level � is equal to the number
of target nodes which is O(2�). Note that we only count the number of search paths
as defined by the search procedure between two nodes and not all possible paths.

It is a little trickier to compute the number of paths going through node i . The
crucial observation is that the binary representations of the nodes, in their left to right
numbering at level �, provide a way to count the number of paths passing through a
particular node. Let the binary representation of node i be i�−1 . . . i1i0, where i�−1 is
the most significant bit. Then, if there is a link of length 2�−1 between node i and node
j it holds that i�−2 . . . i1i0 = j�−2 . . . j1 j0. The following observation holds.

Observation 1 Node i will be accessed by a link of length at most 2m in a search path
starting from j if im−1 . . . i1i0 = jm−1 . . . j1 j0.

Proof This is an implication of the construction of the routing tables aswell as from the
fact that during searching the sequence of links that are followed are of monotonically
decreasing length by powers of 2. 	

123

Algorithmica (2015) 72:860–883 879

Thus, we have to compute:

1

O(2�)

O(2�)
∑

j=0

(# of paths passing through i from j)

The number of paths that go through i starting from j with destination any node
at level � can be deduced by using Observation 1 and the properties of the binary
representations. In particular, if them less significant bits of numbers i and j are equal
and im
= jm , then at most 2m paths go through i by Observation 1. The number of
different nodes j that go through i in this case is 2�−m since those are the possible
numbers that have the m least significant bits the same as i . Thus, the previous sum
can be expressed by summing over all possible m:

1

O(2�)

�−1
∑

m=0

2�−m2m = �2�

O(2�)
= O(�)

and the lemma follows. 	

The following lemma bounds the congestion due to the vertical search.

Lemma 10 The vertical phase of the search starting at level � contributes to conges-
tion O(1) in expectation at each node in its subtree or on the path to the root.

Proof By Lemma 8, only an expected O(1) number of searches will stop at any node
due to the horizontal search phase. Assume a node u at level �. This node has � − 1
ancestors and 2H−� descendants. Thus, in total at most O(2H−� + �) searches in
expectation can affect node u. We start by investigating how ancestors affect node
u. The ancestor at level � − 1 can choose between two children, the one of which
is u, as well as from its path of ancestors. Thus, the probability of choosing u is

O
(

2H−�

2H−�+1+�−2

)

. In general, the probability of node z at level �′ < � going through

u is O
(

2H−�

2H−�′+�′−1

)

. Thus, the expected number of searches going through u due to

its ancestors is

�
∑

�′=1

O

(

2H−�

2H−�′ + �′ − 1

)

= O

(

2H−�
�

∑

�′=1

1

2H−�′

)

= O(1) (2)

Now we move to the descendants of u. The probability that the leaves of the subtree

of u go through u during a search is O
(

� 2H−�

n

)

. This is because the probability of

choosing any node as a destination node of the search operation is 1
n , the number of

leaves is O(2H−�) and there are � nodes in total from u to the root. Similarly, for the

i-th level, i > �, the probability of going through u is O
(

� 2H−�−i

n

)

. Thus, in total we

123

880 Algorithmica (2015) 72:860–883

get that the expected number of searches going through u from its descendants is

�−1
∑

i=0

O

(

�
2H−�−i

n

)

= O

(

�2H−�+1

n

)

= O

(

�2H−�+1

2H−1

)

= O

(

�

2�−2

)

= O(1)

(3)

By (2) and (3) and the fact that during the vertical search the algorithm makes O(1)
probes to leaves and one internal node to discover where the search should be directed
we get the lemma. 	

The following theorem establishes the congestion bound.

Theorem 3 The (expected) congestion due to the search operations is O
(

log N
N

)

in a

D2-tree with N nodes, when each node uses O(log N) space.

Proof ByLemmata 9 and 10, we deduce that O(log N) searches in expectation will go
through each node of the tree. Since the tree has N nodes, the theorem is established.

	

The following theorem extends Theorem 3 by using O(1) space per node.

Theorem 4 The (expected) congestion due to the search operations is O(
log N
N) in a

D2-tree with N nodes, where each node uses O(1) space.

Proof This proof is very similar to the proof of Theorem 3 and we simply sketch it.
Lemma 8 still holds. Searching is again divided into two phases. The vertical search
phase is identical to the one in Lemma 10 and hence this lemma still holds. However,
horizontal search has slightly changed and Observation 1 is not valid anymore. First,
the search always starts from the highest rank node in a hypernode V which results
in O(�) accesses from the searches that start from all nodes of V . From this point
and on, the horizontal search is similar to the one of Lemma 9. The proof that the
congestion remains optimal is a result of the following similar argument to Lemma 9.
The probability that a node i will be part of the search path which starts at node j is
large for very few nodes j among the O(2�) such possible nodes. Most of the nodes
have a very small probability of using node i , since node i can be accessed after O(�)

steps. This follows directly fromLemma8.Using this fact and the fact that highest rank
nodes have at least O(�) accesses we are driven to the conclusion that the expected
bound on the number of accesses to nodes of level � due to the horizontal search is
O(1) and the theorem follows. 	

4.3.2 Fault Tolerance

If a node v discovers (during the execution of an operation) that node u is unreachable,
then it contacts a sibling of u through the routing tables of the siblings of v [(by
making use of Lemma 2(ii)]. This sibling of u is able by Lemma 2(ii) (or Lemma 5) to

123

Algorithmica (2015) 72:860–883 881

reconstruct all links of node u and a node departure for u is initiated, which resolves
this failure.

Searches and updates in the D2-tree do not tend to favor any node, and in particular
nodes near the root. This is a direct consequence of the way the search operation is
implemented by first moving horizontally at the same level as the node that initiated
the search and then by moving vertically (see Theorem 4). As a result, near to root
nodes are not crucial and their failure will not cause more problems than the failure of
any node. However, a single node can be easily disconnected from the overlay simply
when all nodes with which it is connected fail. This means that 4 failures (two adjacent
nodes and two children) are enough to disconnect the root (recall that the routing table
of the root is empty). For the O(1) space per node solution, a O(1) number of failures
is enough to disconnect any node. For the O(log N) space per node solution, a node
at level � can be disconnected after O(�) failures in the worst-case.

When routing tables have O(log N) size, to disconnect a group of k nodes at least
k failures must happen. The most easily disconnected nodes are those which are near
the root since their routing tables are small in size. Thus, they can be disconnected by
simply letting their respective adjacent nodes (which are leaves) fail which provides the
bound. When routing tables have O(1) size, fault tolerance is naturally deteriorated.
When the representative of a bucket fails then the leftmost node among the nodes of
the bucket replaces it, initiating a departure operation.

4.3.3 Main Result

We are now ready for the main result of this work.

Theorem 5 A D2-tree overlay with N nodes and n data elements residing on them
achieves: (i) O(1) space per node; (ii) deterministic O(log N) searching cost; (iii)
deterministic amortized O(log N) update cost both for element update and for node

joins and departures; (iv) optimal congestion of O
(

log N
N

)

expected cost; (v) deter-

ministic amortized O(log n) bound for load-balancing. The D2-tree overlay supports
ordered data queries optimally, and tolerates node failures.

Proof Space usage is O(1) by construction. The search cost follows from Lemma 6.
Node join and departures are O(log N) amortized by Lemma 4 and the fact that
f (n) = O(N). The congestion bound comes from Theorem 4. Finally, the load-
balancing bound comes from Lemma 7. 	

5 Discussion and Future Work

Our load-balancing scheme (Sect. 3) can be applied straightforwardly to BATON
[13]. BATON is a balanced tree-like overlay that satisfies the specifications set in
the Introduction. The same goes also for Skip Graphs [5] with the exception that
the specifications hold probabilistically and thus the bounds are also probabilistic.
Additionally, it provides a mechanism to control the bucket size of [4].

We provide a technique that lazily updates the weights on the nodes of a tree
(Sect. 3.1). This technique is interesting by itself and can be straightforwardly applied

123

882 Algorithmica (2015) 72:860–883

to weighted balanced trees [3] in the Pointer Machine model of computation for
single processor internal memory machines. In this manner, the update of balancing
information is supported in O(1) amortized time, an improvement over the currently
best known bound of O(log n).

Future work includes the extension of the load-balancing mechanism to accom-
modate weighted elements (weights representing preference). Additionally, the load
balancing mechanism provides amortized complexities which results in the existence
of very few indeed but very costly rebalancing operations (imagine the root being redis-
tributed). To fully tackle the existence of churn, one needs to come up with worst-case
complexities for the load balancingmechanism. Note that churn is the collective effect
created by independent burstly arrivals and departures of nodes.

With respect to the overlay, future work includes tackling multidimensional data,
integrating the network topology with the overlay topology as well as taking into
account locality of reference.

It is also an open problem the application of the proposed balancing scheme to the
BATON∗ [14] structure (the latest version of BATON), where the overlay structure is
a tree with height O(logm N) with each node having O(m) children.

Finally, the mechanisms we provide require extensive experimental verification.

Acknowledgments We would like to thank the referees for their valuable comments that improved the
presentation of this paper.

References

1. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A generic scheme for building
overlay networks in adversarial scenarios. In: Proceedings of the 17th IPDPS, 40 (2003)

2. Arge, L., Eppstein, D., Goodrich, M.T.: Skip-Webs: efficient distributed data structures for multidi-
mensional data sets. In: Proeedings of the 24th PODC, 69–76 (2005)

3. Arge, L., Vitter, J.: Optimal external memory interval management. SIAM J. Comput. 32(6), 1488–
1508 (2003)

4. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load-balancing and locality in range-queriable data struc-
tures. In: Proceeding of the 23rd PODC, 115–124 (2004)

5. Aspnes, J., Shah, G.: Skip graphs. In: Proceedings of the 14th SODA, 384–393 (2003)
6. Awerbuch, B., Scheideler, C.: Consistent and compact data management in distributed storage systems.

In: Proceedings of the 16th SPAA, 44–53 (2004)
7. Brodal, G., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-Tree: A New Overlay with Deterministic

Bounds. In: Algorithms and Computation—ISAAC 2010, Lecture Notes in Computer Science, vol.
6507, Part II, Springer, pp. 1–12 (2010)

8. Li, Dongsheng, Cao, Jiannong: Efficient range query processing in peer-to-peer systems. IEEE Tran.
Knowl. Data Eng. 21(1), 78–91 (2009)

9. Gasenan, P., Bawa,M.,Garcia-Molina,H.:Online balancing of range-partitioned datawith applications
to peer-to-peer systems. In: Proceedings of the 13th VLDB, 444–455 (2004)

10. Goodrich, M.T., Nelson, M.J., Sun, J.Z.: The rainbow skip graph: a fault-tolerant constant-degree
distributed data structure. In: Proceedings of the 17th SODA, 384–393 (2006)

11. Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries in peer-to-peer systems.
In: Proceedings of the 1st CIDR (2003)

12. Harvey, N., Munro, J.I.: Deterministic SkipNet. In: Proceedings of the 22nd PODC, 152–153 (2003)
13. Jagadish, H.V., Ooi, B.C., Vu, Q. H.: BATON: a balanced tree structure for peer-to-peer networks, In:

Proceedings of the 31st VLDB, 661–672 (2005)
14. Jagadish, H.V., Ooi, B.C., Tan, K.L., Vu, Q.H., Zhang, R.: Speeding up search in P2P networks with

a multi-way tree structure. In: Proceedings ACM International Conference on Management of Data
(SIGMOD), pp. 1–12, Chicago, IL (2006)

123

Algorithmica (2015) 72:860–883 883

15. Karger, D., Kaashoek, F., Stoica, I., Morris, R., Balakrishnan, H.: Chord: A scalable peer-to-peer
lookup service for internet applications. In: Proceedings of the SIGCOMM, 149–160 (2001)

16. Manku,G.S., Bawa,M.,Raghavan, P.: Symphony: distributed hashing in a smallworld. In: 4thUSENIX
Symposium on Internet Technologies and Systems (2003)

17. Manku, G.S., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in ran-
domized P2P networks. In: Proceedings of the 36th STOC, 54–63 (2004)

18. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–676
(1990)

19. Rowstron, A., Druschel, P.: Pastry: a scalable.Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems, In: Middleware, LNCS 2218, 329–350 (2001)

20. Ratnasamy, S., Francis, P., Handley,M., Karp, R., Shenker, S.: A scalable content addressable network.
In: Proceedings ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), pp. 161–172, San Diego, CA (2001)

21. Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for caching range
queries. In: Proceedings of the 20th ICDE, 165 (2004)

22. Scheideler, C., Schmid, S.: A distributed and oblivious Heap. In: Proceedings of the 36th ICALP,
571–582 (2009)

23. Zatloukal, K.C., Harvey, N.J.A.: Family trees: an ordered dictionary with optimal congestion, locality,
degree and search time. In: Proceedings of the 15th SODA, 301–310 (2004)

24. Zhang, Y., Liu, L., Li, D., Liu, F., Lu, X.: DHT-based range query processing for web service discovery.
In: Proceedings of the 2009 IEEE ICWS, 477–484 (2009)

25. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: a resilient
global-scale overlay for service deployment. IEEE J. Sel. Areas Commun. 22(1), 41–53 (2004)

123

	D2-Tree: A New Overlay with Deterministic Bounds
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work and Comparison
	1.3 Paper Organization

	2 Definitions and Notation
	3 Deterministic Load Balancing
	3.1 A Technique for Amortized Constant Weight Updating
	3.2 Updates and Load Balancing

	4 The D2-tree
	4.1 The D2-tree Structure
	4.1.1 A Weight-Balanced Overlay
	4.1.2 O(1) Space Per Node

	4.2 The Index Structure of the D2-Tree
	4.2.1 Search and Range Queries
	4.2.2 Updates and Load Balancing

	4.3 Other Efficiency Issues and the Main Result
	4.3.1 Congestion
	4.3.2 Fault Tolerance
	4.3.3 Main Result

	5 Discussion and Future Work
	Acknowledgments
	References

