
Processing of Spatiotemporal

Queries in Image Databases?

Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis Manolopoulos

Data Engineering Lab, Department of Informatics
Aristotle University, 54006 Thessaloniki, Greece

theo@delab.csd.auth.gr

manolopo@csd.auth.gr

mvass@computer.org

Abstract. Overlapping Linear Quadtrees is a structure suitable for stor-
ing consecutive raster images according to transaction time (a database
of evolving images). This structure saves considerable space without sac-
rificing time performance in accessing every single image. Moreover, it
can be used for answering efficiently window queries for a number of
consecutive images (spatio-temporal queries). In this paper, we present
three such temporal window queries: strict containment, border intersect
and cover. Besides, based on a method of producing synthetic pairs of
evolving images (random images with specified aggregation) we present
empirical results on the I/O performance of these queries.

Keywords: Spatio-temporal databases and queries, transaction time,
access methods, indexing, B+trees, linear region quadtrees, overlapping,
time performance.

1 Introduction

Several spatial access methods have been proposed in the literature, for storing
multi-dimensional objects (e.g. points, line segments, areas, volumes, and hyper-
volumes) without considering the notion of time. These methods are classified
in one of the following two categories according to the principle guiding the
hierarchical decomposition of data regions in each method: data space hierarchy
and embedding space hierarchy. The book by Samet [10] and the recent survey by
Gaede and Guenther [3] provide excellent information sources for the interested
reader.

On the other hand, temporal access methods have been proposed to index
data varying over time without considering space at all. The notion of time
may be of two types: transaction time (i.e., time when the fact is current in the
database and may be retrieved) and valid time (i.e., time when the fact is true in
the modeled reality) [4]. A temporal DBMS would support at least one of these
? Research performed under the European Union’s TMR Chorochronos project, con-

tract number ERBFMRX-CT96-0056 (DG12-BDCN).

Eder et al. (Eds.): ADBIS’99, LNCS 1691, pp. 85–97, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

86 Theodoros Tzouramanis et al.

two types of time. A wide range of access methods has been proposed to support
multi-version/temporal data by keeping track of data evolution over time. For
excellent recent surveys on temporal access methods see [7,9].

Until recently the field of temporal databases and spatial databases remained
two separate worlds. However, modern applications (e.g. geographical informa-
tion systems, multimedia systems, scientific and statistical databases, such as
medical, meteorological, astrophysics oriented databases) involve the efficient
manipulation of moving spatial objects, and the relationships among them.
Therefore, there is an emerging growing need to study the case of “spatio-
temporal databases”. According to the first attempt towards a specification and
classification scheme for spatio-temporal access methods [13], up until the time
it was written, only four spatio-temporal indexing methods had appeared in the
literature: 3D R-trees [12], MR-trees and RT-trees [18], and HR-trees [8]. All
these methods are extensions of the R-tree, which is based on the “conservative
approximation principle”, i.e. spatial objects are indexed by considering their
minimum bounding rectangle (MBR). These methods are not suitable for repre-
senting regional data, in cases where a lot of empty (“dead”) space is introduced
in the MBRs, since this fact decreases the index ability to prune space and
objects during a top-bottom traversal.

In [15], a different paradigm was followed, that of quadtrees. Quadcodes
were used to decompose image data in an exact (i.e. non-rough) manner. As
a result, a new spatio-temporal structure was presented, named Overlapping
Linear Quadtrees, suitable for storing consecutive raster images according to
transaction time (a database of evolving images). This structure is based on lin-
ear quadtrees which are enhanced by using the overlapping technique in order
to avoid storing identical sub-quadrants of successive instances of image data
evolving over transaction time. In [15] it is shown by experimentation with syn-
thetic regional data that the new structure saves considerable space, without
sacrificing time performance in accessing every single image. Moreover, in [15]
an abstract algorithm for answering temporal window queries with Overlapping
Linear Quadtrees is presented.

In the present paper, we elaborate on spatio-temporal queries that can be
answered efficiently with this structure. More specifically, we present three tem-
poral window query processing algorithms: strict containment, border intersect
and cover. We also report on I/O efficiency results of experiments performed
with these algorithms. The experiments were based on synthetic pairs of evolv-
ing images. The first image of each pair was formed according to the model of
random images with specified aggregation of black regions [6]. The second image
of each pair was formed by random change of pixels, a rather pessimistic method
of image changing. In real situations it is expected that the above algorithms
will perform even better.

The rest of the paper is organized as follows. Section 2 describes the building
blocks of the implementation of Overlapping Linear Quadtrees. Section 3 pro-
vides a detailed description of the three algorithms that use the new structure
and answer spatio-temporal queries. Section 4 presents the experimental setting

Processing of Spatiotemporal Queries in Image Databases 87

and reports on the I/O performance of these algorithms in terms of the number
of disk assesses. Section 5 provides conclusions and suggestions for future work
directions.

2 The Spatiotemporal Structure

The notion of overlapping consecutive instances of access methods has been
mentioned in the previous section. Except for the cases of MR-trees and HR-
trees, overlapping has been also used in a number of occasions, where successive
data snapshots are similar. For example, it has been used as a technique to
compress similar text files [1], B-trees and B+trees [2,5,14], as well as main-
memory quadtrees [16,17]. In this section, first we make a short presentation
of region quadtrees, and second we describe the application of overlapping to
secondary memory quadtree variations.

2.1 Region Quadtrees

The region quadtree is the most popular member in the family of quadtree-
based access methods. It is used for the representation of binary images. More
precisely, it is a degree-four tree. Each node corresponds to a square array of
pixels (the root corresponds to the whole image). If all of them have the same
color (black or white), then the node is a leaf of that color. Otherwise, the node
is colored gray and has four children. Each of these children corresponds to one
of the four square sub-arrays to which the array of that node is partitioned. For
more details regarding quadtrees see [10]. Figure 1 shows an 8 × 8 pixel array
and the corresponding quadtree. Note that black (white) squares represent black
(white) leaves, whereas circles represent gray nodes.

i

i i

����
HHHH

�� @@

@
@

�
� i

�
�
L
L

@
@

�
� i

�
�
L
L

@
@

�
�

�
�
L
L

@
@

�
�

�
�
L
L

000

030 032 322 323

330

Fig. 1. An image, its Quadtree and the linear codes of black nodes

2.2 Overlapping Linear Quadtrees

Variations of region quadtrees have been developed for secondary memory. Linear
region quadtrees are the ones used most extensively. A linear quadtree represen-
tation consists of a list of values where there is one value for each black node
of the pointer-based quadtree. The value of a node is an address describing the
position and size of the corresponding block in the image. These addresses can

88 Theodoros Tzouramanis et al.

be stored in an efficient structure for secondary memory (such as a B-tree or one
of its variations). The most popular linear implementations are the FL (Fixed
Length), the FD (Fixed length – Depth) and the VL (Variable length) linear im-
plementations [11]. In the FD implementation, the address of a black quadtree
node has two fixed size parts: the first part denotes the path (directional code)
to this node (starting from the root) and the second part the depth of this node.
In Figure 1, one can see the directional code of each black node of the depicted
tree.

Each quadtree, in a sequence of quadtrees modeling time evolving images,
can be represented in secondary memory by storing the linear FD codes of its
leaves in a B+tree. The structure of Overlapping Linear Quadtrees is formed
by overlapping consecutive B+trees, that is by storing the common subtrees
of the two trees only once (for more details regarding this structure, see [15]).
Since in the same quadtree two black nodes that are ancestor and descendant
cannot co-exist, two FD linear codes that coincide at all the directional digits
cannot exist neither. This means that the directional part of the FD codes is
sufficient for building B+trees at all the levels. At the leaf-level, the depth of each
black node should also be stored so that images are accurately represented and
that overlapping can be correctly applied. The above part of Figure 2 depicts the
B+trees that correspond to two region Quadtrees and the below part depicts the
resulting overlapped linear structure. Note that in Overlapping Linear Quadtrees
there is no extra cost for accesses in a specific linear quadtree.

�
�

@
@

322

�
�

@
@

032 330

000

030

032 322

323

330

322

�
�

@
@

032 330

000

031

032 322

323

330

�
�

033

322

032 330

000 032 322 330

322

032

000 032

030 323 031 033

@@

Fig. 2. Two B+trees storing linear quadtree codes and the corresponding linear
overlapped structure.

All nodes of Overlapping Linear Quadtrees have an extra field, called “Start-
Time”, that can be used to detect whether a node is being shared by other trees.
We assign a value to StartTime during the creation of a node and there is no
need for future modification of this field. Moreover, leaf-nodes have one more
extra field, called “EndTime”, that is used to register the transaction time when
a specific leaf changes and becomes historical.

Processing of Spatiotemporal Queries in Image Databases 89

In order to keep track of the image evolution (in other words, the evolution of
quadcodes) and efficiently satisfy spatio-temporal queries over the stored raster
images, we embed some additional horizontal pointers in the B+tree leaves. This
way there will be no need to top-down traverse consecutive tree instances to
search for a specific quadcode, thus avoiding excess page accesses. More specif-
ically, we embed two forward and two backward pointers in every B+tree leaf
to support spatio-temporal queries. The F-pointer of a node points to the first
of a group of leaves that belong in a successive tree and have been created
from this node after a split/merge/update. The FC-pointers chain this group of
leaves together. The B and BC pointers play analogous roles when traversing
the structure backwards.

t=1

B BC

C1 C2 C3 -

FC F

t=2

INS C4-C11

C1 C2 C4 C5

C6 C7 C8 C3

C9 C10 C11 -

DEL C6-C8

& C10-C11

C3 C9 - -

?

? ?

?

?

t=3

6

6

Fig. 3. Forward and backward chaining for the support of temporal queries.

Figure 3 shows how the leaves of three successive B+trees can be forward-
and backward-chained to support temporal queries. The leaf on the left-top
corner of the figure corresponds to the first time instant, t=1, and contains the 3
quadcodes. Suppose that during time instant t=2, 8 quadcodes are inserted. In
such a case, we have a node split. During time instant t=3, a set of 5 quadcodes
is deleted. Thus, two nodes of the tree corresponding to time instant t=2 are
merged to produce a new node as depicted in the figure.

3 Temporal Window Query Processing

In Spatial Databases and Geographical Information Systems there exists the
need for processing a significant number of different spatial queries. For example,
nearest neighbor finding, similarity queries, spatial joins of various kinds, window
queries, etc. In this section we provide algorithms for the solution of various
temporal window queries for evolving regional data. Given a window belonging in
the area covered by our images and a time interval the following spatio-temporal
queries may be expressed:

90 Theodoros Tzouramanis et al.

3.1 The Strict Containment Query

– Find the black regions that totally fall inside the window (including the ones
that touch the window borders from inside) at each time point within the
time interval.

In Figure 4 an example of a raster image corresponding to a specific time
point, partitioned in quadblocks and a query window are depicted. The Strict
Containment window query for this time point would return quadblocks 2 and
4. The algorithm that processes such temporal window queries is as follows:

1. Break the window into maximal sub-quadrants, as if it were a black region
represented by a region quadtree.

2. For each of these sub-windows (in order according to the directional code
of their North-West corner), compute the smallest and largest directional
codes that may appear in the sub-window. The range of these codes includes
all the codes (black sub-quadrants) that are strictly included within the
sub-window. Perform a respective range search in the B+tree of the first
time point and discover the leaves that either contain such codes or would
contain them if they had been inserted. The codes that fall within the above
range and appear in these nodes are the black sub-quadrants that are strictly
contained within the window for the specific time point.

3. For each leaf discovered in step 2, following the F-pointer at first step and the
chain of FC-pointers at second step, discover the leaves that evolve from this
leaf at the next time point. Discard from further consideration the leaves,
the range of which does not intersect with the respective range specified in
step 2. The codes that fall within this range and appear in the remaining
leaves are the black sub-quadrants that are strictly contained within the
sub-window for the specific time point. Proceed to the tree for the next time
point by repeating step 3 for each remaining leaf. Stop when the last time
point of the time interval is reached.

Note, that when we process the query for a tree of a specific time point, we
keep in main memory the nodes discovered for this tree, as well as some of the
nodes of the tree of the preceding time point (only those that may lead us to
nonaccessed nodes of the tree of the current time point). This holds for all the
algorithms presented, except for the one related to the Cover query.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .1
2

3 4

5
6

Fig. 4. The quadblocks of a raster image and a query window (thick lines).

Processing of Spatiotemporal Queries in Image Databases 91

3.2 The Border Intersect Query

– Find the black regions that intersect a border of the window (including the
ones that touch a border of the window from inside or outside) at each time
point within the time interval.

The Border Intersect window query for the time point corresponding to Fig-
ure 4 would return quadblocks 1, 3, 4 and 5. The algorithm that processes border
intersect is as follows:

1. Create a rectangular strip that is formed by keeping the pixels that make up
the border of the query window and the pixels outside the query window that
touch its borders. For those sides of the query window that possibly touch
the image borders there are no such outside pixels. Therefore, the resulting
strip is up to 2 pixels thick. Break the strip into maximal sub-quadrants (of
size 2×2, or 1×1).

2. For each of these sub-quadrants (in order according to the directional code
of their North-West corner), compute the smallest and largest directional
codes that may appear in the sub-quadrant. Then, perform a range search
in the B+tree of the first time point and discover a number of leaves (as in
step 2 of the previous algorithm). If such a search returns no quadblocks,
search for an ancestor of the sub-quadrant. The quadblocks discovered (if
any) intersect the border of the window for the specific time point.

3. For each leaf discovered in step 2, following the F-pointer at first step and the
chain of FC-pointers at second step, discover the leaves that evolve from this
leaf at the next time point. Discard from further consideration the leaves the
range of which does not intersect with the respective range specified in step
2. If there are no codes that fall within this range, search for an ancestor
of the sub-quadrant corresponding to this range. The codes (quadblocks)
discovered (if any) intersect the border of the window for the specific time
point. Proceed to the tree for the next time point by repeating step 3 for
each remaining leaf. Stop when the last time point of the time interval is
reached.

Note, that a search for an ancestor of a quadblock, is a search for the max-
imum FD code that is smaller than the FD code of the quadblock. If (i) such
a code exists, (ii) has a depth D smaller than the quadblock and (iii) the two
FD codes coincide in their first D bits, then this FD code corresponds to an
ancestor of the quadblock. Such a search can be performed, in most cases, by
accessing a very small number of extra disk pages. In more detail, the following
sequence of actions is performed. In case the FD under consideration is not the
first in its node, we examine the presence of an ancestor in this node. Otherwise,
if the previous node is among the nodes that reside in main memory, we examine
the presence of an ancestor in this node. If it is not in main memory, but the
respective previous node of the preceding tree is in main memory, we use F and
possibly FC pointers to reach the previous node for the current tree with very
few disk accesses. If, however, none of the above holds, we have to perform a

92 Theodoros Tzouramanis et al.

search in the current tree for the previous node, starting from the root. This
search accesses a number of nodes which equals the height of the tree.

Note, also, that the ancestors of a quadblock may be common to a number of
subsequent quadblocks (due to the order under which sub-quadrants are treated
in step 3). Thus, keeping in a variable the ancestor discovered (if any) for one
sub-quadblock may help us to avoid the repetition of the same disk accesses later
in the processing of the same time point.

3.3 The Cover Query

– Find out whether or not the window is totally covered by black regions at
each time point within the time interval.

The Cover window query returns YES/NO answers. For the time point cor-
responding to Figure 4, it would return as answer NO. The algorithm that pro-
cesses this kind of queries is as follows:

1. Break the window into maximal sub-quadrants.
2. For the first of these sub-quadrants (in order according to the directional

code of their North-West corner), perform a search in the B+tree of the first
time point and access (discover) the leaf that should contain the related FD
code. If the code of the sub-quadrant is present in the leaf, continue. If not,
examine the FD codes in the same leaf that are before and after the code of
the sub-quadrant (one of them at least exists). If these codes correspond to a
sibling or successor of the sub-quadrant mark that the answer for the specific
time point will be NO (the window cannot be totally covered). However,
continue processing for this time point in order to discover leaves needed for
the remaining time points. If the adjacent FD codes do not correspond to
siblings or successors, search for an ancestor of this node. If such an ancestor
does not exist, mark NO.

3. For the leaf discovered in step 2, following the F-pointer at first step and
the chain of FC-pointers at second step, discover the leaves that evolve from
this leaf at the next time point. Examine these leaves for the presence of the
code of step 2, or any of its ancestors or successors (in rare cases, a search
from the root of the related tree may be needed in order to examine the
presence of an ancestor). According to the nodes discovered, NO may be
marked for this time point. Repeat step 3, until you have reached the last
image. For those images that have been marked with NO, such that all the
images after them have been also marked with NO, the answer is definitely
NO. The algorithm does not need to visit them in a subsequent stage and
these images are excluded from further consideration. This means that the
time interval gets smaller, when we conclude that a number of subsequent
images covering its right end have all been marked with NO. Next, repeat
step 2 and handle the next unprocessed subquadrant. The algorithm stops
when, for every image that has not been excluded, all the sub-quadrants have
been processed. For those images that a NO answer has not been marked,
the answer for the corresponding time points is YES.

Processing of Spatiotemporal Queries in Image Databases 93

Note the difference of policy from the previous algorithms. In the Cover query
we keep in main memory only the nodes related to one quadrant of the current
tree, as well as the respective nodes of the preceding tree. It is evident that,
we must reserve space for holding the YES/NO answers for all the images in
the time interval. This approach is likely to produce NO answers for groups of
images and not single images, while it saves us from unnecessary disk accesses.

The Cover window query algorithm can be extended so as to work for par-
tially black windows, where the black percentage exceeds a specified threshold.
That is, we could answer a Fuzzy Cover window query of one of the following
two forms:

– Find out whether or not the percentage of the window area that is covered
by black regions is larger than a given threshold at each time point within
the time interval.

– Find out the percentage of the window area that is covered by black regions
at each time point within the time interval.

3.4 General Comment for Window Query Algorithms

Alternative naive algorithms for answering the above spatio-temporal queries are
easy to devise. These algorithms would perform a suitable range search for all
the trees that correspond to the given time interval (starting from the respective
roots). This alternative approach would not take into account the “horizontal”
pointers that link leaves of different trees and is expected to have significantly
worse I/O performance.

All the presented algorithms can be easily transformed to work backwards:
by starting from the end of the time interval and by using the B-pointer and
BC-pointers.

4 Experiments

We implemented the structure of Overlapping Linear Quadtrees in C++. Note
that, in order to maximize overlapping, in our implementation a disk page may
host a number of consecutive B+tree leaves (more details on this B+tree variation
appear in [15]). We performed experiments for page sizes equal to 1K and 2K
bytes. For 1K pages, the capacity of internal nodes was 124 keys and the size of
each leaf was 1/12 of a page. For 2K pages, the capacity of internal nodes was
252 keys and the size of each leaf was 1/24 of a page. The size of our images
was 512 × 512 pixels and we used the algorithm OPTIMAL BUILD described
in [11] for converting the images from raster to linear FD representation.

At the start, the first image was created and its FD codes were inserted in
an empty B+tree. The codes were inserted one at a time, as they were produced
by OPTIMAL BUILD. Thus, we obtained the result of a typical B+tree with
average storage utilization equal to ln 2. This image represents the last image
in a large sequence of overlapped images and its quadcodes were also kept in a
main memory compacted binary array (512 × 512/8 bytes). Next, the second

94 Theodoros Tzouramanis et al.

image was created as a modification of the first image and its FD codes were
inserted in the second B+tree, so that the identical subtrees between the two
trees overlapped. There was no I/O cost for black quadrants that were identical
between the two consecutive images, since, by making use of the main memory
compacted array, we were able to sort out the respective identical FD codes.

The first image of each pair was created according to the model of increased
image aggregation coefficient [6], agg(I), of an image I. This quantity has been
defined and studied in [6] and expresses the coherence of unicolor regions of the
image. Starting from a random image with given black/white analogy (an image
where each pixel has been colored independently with probabilities that obey
this black/white analogy) and using the algorithm presented in [6], an image
with the same black/white analogy and higher aggregation (more realistic) can
be created.

The second image of each pair was formed by randomly changing the color
of a given percentage of the image pixels. Note that the random changing of
single pixels is an extreme method of producing evolving images and the results
produced by this policy should be seen as very pessimistic. In practice, much
better I/O performance is expected for the algorithms presented.

Every experiment was repeated 10 times using a pair of similar images. After
the two images were created, windows of sizes equal to 64×64 or to 128×128
pixels were set and each of the three algorithms was executed 10 times for a
random window position. In other words, each of the algorithms was run 10×10
= 100 times. Besides, for each window position, the analogous naive algorithms
were executed (algorithms that do not make use of horizontal pointers, but
perform independent searches through roots). In each run, we kept track of the
number of disk reads needed to perform the query.

In the following, various experimental results are depicted, by assuming that
the change probability is 2%. In the left part of Figure 5, for the Strict Con-
tainment query (processed by making use of horizontal pointers) one can see the
number of node accesses as a function of aggregation for various black/white
analogies of the first image. The window size is 64×64 pixels and the page size
1K. In the right part of the same figure, for the Strict Containment query one
can see the number of node accesses as a function of aggregation for the naive
algorithmic approach and the one that uses horizontal pointers. The black per-
centage is 70% and the page size is again 1K. Results (different plots) for window
sizes equal to 64×64 and 128×128 pixels are depicted.

In the left part of Figure 6, another diagram for the Strict Containment
query is depicted. Except for the page size which is equal to 2K, the rest of
experimental setting is the same as in the previous diagram. In the right part of
the same figure an analogous diagram for the Border Intersect query, for page
size equal to 1K, is depicted.

In the left part of Figure 7, another diagram for the Border Intersect query
is depicted. The experimental setting is identical to the one of the previous
diagram, with the exception of the page size which is equal to 2K. The right
part of Figure 7 refers to the Cover query: one can see the number of node

Processing of Spatiotemporal Queries in Image Databases 95

12

13

14

15

16

17

18

19

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

I/O
 c

os
t (

pa
ge

 a
cc

es
se

s
pe

r
qu

er
y)

Aggregation Coefficient

50%
70%
80%
90%
95%

0

100

200

300

400

500

600

700

800

900

1000

0.7 0.75 0.8 0.85 0.9 0.95

I/O
 c

os
t (

pa
ge

 a
cc

es
se

s
pe

r
qu

er
y)

Aggregation Coefficient

independent searches (128x128)
use of horizontal pointers (128x128)

independent searches (64x64)
use of horizontal pointers (64x64)

Fig. 5. The I/O efficiency (when page size is 1K) of the Strict Containment
query, as a function of aggregation, for various black percentages (left) and for
two algorithmic approaches (right).

0

100

200

300

400

500

600

700

800

900

1000

0.7 0.75 0.8 0.85 0.9 0.95

I/O
 c

os
t (

pa
ge

 a
cc

es
se

s
pe

r
qu

er
y)

Aggregation Coefficient

independent searches (128x128)
use of horizontal pointers (128x128)

independent searches (64x64)
use of horizontal pointers (64x64)

0

50

100

150

200

250

300

350

400

450

500

0.7 0.75 0.8 0.85 0.9 0.95

I/O
 c

os
t (

pa
ge

 a
cc

es
se

s
pe

r
qu

er
y)

Aggregation Coefficient

independent searches (128x128)
use of horizontal pointers (128x128)

independent searches (64x64)
use of horizontal pointers (64x64)

Fig. 6. The I/O efficiency of the Strict Containment auery, for page size of 2K
(left) and of the Border Intersect query, for page size of 1K (right), as a function
of aggregation.

accesses as a function of aggregation for the naive algorithmic approach and the
one that uses horizontal pointers. The window size is 64×64 pixels and the black
percentage is 70%. Results (different plots) for page sizes equal to 1K and 2K
are depicted.

Note that, since the Cover query is of the YES/NO type and the intelligent
exclusion of group of images from further consideration (see subsection 3.3) has
been used, the number of node accesses is extremely small. A general remark that
can be made for the diagrams in which the naive approach and the approach of
Section 3 are compared, is that the use of horizontal pointers leads to significantly
higher I/O efficiency for all the three algorithms.

In the future, we plan to perform further experiments for a number of cases.
The parameters that may vary in these experiments are: the image size, the disk
page size (or the number of leaves fitting in a page), the method of creating the
first image, the window size (in relation to the whole image), the black/white
analogy for the model based on aggregation, and the percentage of difference in
creating the second image of each pair.

96 Theodoros Tzouramanis et al.

0

50

100

150

200

250

300

350

400

450

500

0.7 0.75 0.8 0.85 0.9 0.95

I/O
 c

os
t (

pa
ge

 a
cc

es
se

s
pe

r
qu

er
y)

Aggregation Coefficient

independent searches (128x128)
use of horizontal pointers (128x128)

independent searches (64x64)
use of horizontal pointers (64x64)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.7 0.75 0.8 0.85 0.9 0.95

I/O
 c

os
t (

pa
ge

 a
cc

es
se

s
pe

r
qu

er
y)

Aggregation Coefficient

independent searches (page 1kb)
use of horizontal pointers (page 1kb)

independent searches (page 2kb)
use of horizontal pointers (page 2kb)

Fig. 7. The I/O efficiency of the Border Intersect query for page size of 2K,
(left) and of the Cover query for page sizes of 1K and 2K (right), as a function
of aggregation.

5 Conclusions

In this paper, we presented three algorithms for processing spatio-temporal
queries in an image database that is organized with Overlapping Linear Quad-
trees. More specifically, we presented three temporal window query processing
algorithms: strict containment, border intersect and cover. Besides, we presented
experiments that we performed for studying the I/O efficiency of these algo-
rithms. The experiments were based on synthetic pairs of evolving images. The
first image of each pair was formed according to the model of random images
with specified aggregation of black regions [6]. The second image of each pair
was formed by random change of pixels, a rather pessimistic method of image
changing. In real situations it is expected that the above algorithms will perform
even better. Even in this case, our experiments showed that, thanks to the pres-
ence of “horizontal” pointers in the leaves of the Overlapping Linear Quadtrees,
our algorithms run with very few disk accesses.

In the future, we plan to develop algorithms for other/new spatio-temporal
queries that take advantage of Overlapping Linear Quadtrees and study their
behavior. Moreover, we plan to investigate the possibility of analyzing the per-
formance of such algorithms.

Acknowledgments

The second author, who is a Post-doctoral Scholar of the State Scholarship Foun-
dation of Greece, would like to thank this foundation for its financial assistance.

References

1. F.W. Burton, M.W. Huntbach and J. Kollias: “Multiple Generation Text Files
Using Overlapping Tree Structures”, The Computer Journal, Vol.28, No.4, pp.414-
416, 1985. 87

Processing of Spatiotemporal Queries in Image Databases 97

2. F.W. Burton, J.G. Kollias, V.G. Kollias and D.G. Matsakis: “Implementation of
Overlapping B-trees for Time and Space Efficient Representation of Collection of
Similar Files”, The Computer Journal, Vol.33, No.3, pp.279-280, 1990. 87

3. V. Gaede and O. Guenther: “Multidimensional Access Methods”, ACM Computer
Surveys, Vol.30, No.2, pp.170-231, 1998. 85

4. C.S. Jensen, J. Clifford, R. Elmasri, S.K. Gadia, P. Hayes and S. Jajodia (ed.):
“A Consensus Glossary of Temporal Database Concepts”, ACM SIGMOD Record,
Vol.23, No.1, pp.52-64, 1994. 85

5. Y. Manolopoulos and G. Kapetanakis: “Overlapping B+trees for Temporal
Data”, Proceedings of the 5th Jerusalem Conference on Information Technolo-
gy (JCIT), pp.491-498, Jerusalem, Israel, 1990. Address for downloading: http:
//delab.csd.auth.gr/publications.html 87

6. Y. Manolopoulos, E. Nardelli, G. Proietti and M. Vassilakopoulos: “On the Gen-
eration of Aggregated Random Spatial Regions”, Proceedings of the 4th Interna-
tional Conference on Information and Knowledge Management (CIKM), pp.318-
325, Washington DC, 1995. 86, 94, 94, 94, 96

7. M. Nascimento and M. Eich: “An Introductory Survey to Indexing Techniques for
Temporal Databases”, Southern Methodist University, Technical Report, 1995. 86

8. M.A. Nascimento and J.R.O. Silva: “Towards Historical R-trees”, Proceedings of
ACM Symposium on Applied Computing (ACM-SAC), 1998. 86

9. B. Saltzberg and V. Tsotras: “A Comparison of Access Methods for Time Evolving
Data”, ACM Computing Surveys, to appear. Address for downloading: ftp://ftp.
ccs.neu.edu/pub/people/salzberg/tempsurvey.ps.gz. 86

10. H. Samet: “The Design and Analysis of Spatial Data Structures”, Addison-Wesley,
Reading MA, 1990. 85, 87

11. H. Samet: “Applications of Spatial Data Structures”, Addison-Wesley, Reading
MA, 1990. 88, 93

12. Y. Theodoridis, M. Vazirgiannis and T. Sellis: “Spatio-Temporal Indexing for Large
Multimedia Applications”, Proceedings of the 3rd IEEE Conference on Multimedia
Computing and Systems (ICMCS), 1996. 86

13. Y. Theodoridis, T. Sellis, A. Papadopoulos and Y. Manolopoulos: “Specifications
for Efficient Indexing in Spatiotemporal Databases”, Proceedings of the 7th Con-
ference on Statistical and Scientific Database Management Systems (SSDBM),
pp.123-132, Capri, Italy, 1998. 86

14. T. Tzouramanis, Y. Manolopoulos and N. Lorentzos: “Overlapping B+trees - an
Implementation of a Transaction Time Access Method”, Data and Knowledge En-
gineering, Vol.29, No.3, pp.381-404, 1999. 87

15. T. Tzouramanis, M.Vassilakopoulos and Y. Manolopoulos, “Overlapping Lin-
ear Quadtrees: a Spatio-temporal Access Method”, Proceedings of the 6th ACM
Symposium on Advances in Geographic Information Systems (ACM-GIS), pp.1-7,
Bethesda MD, November 1998. 86, 86, 86, 88, 93

16. M. Vassilakopoulos, Y. Manolopoulos and K. Economou: “Overlapping for the
Representation of Similar Images”, Image and Vision Computing, Vol.11, No.5,
pp.257-262, 1993. 87

17. M. Vassilakopoulos, Y. Manolopoulos and B. Kroell: “Efficiency Analysis of Over-
lapped Quadtrees”, Nordic Journal of Computing, Vol.2, pp.70-84, 1995. 87

18. X. Xu, J. Han, and W. Lu: “RT-tree - an Improved R-tree Index Structure for
Spatiotemporal Databases”, Proceedings of the 4th International Symposium on
Spatial Data Handling (SDH), 1990. 86

	Introduction
	The Spatiotemporal Structure
	Region Quadtrees
	Overlapping Linear Quadtrees

	Temporal Window Query Processing
	The Strict Containment Query
	The Border Intersect Query
	The Cover Query
	General Comment for Window Query Algorithms

	Experiments
	Conclusions

