
S-Index: a Hybrid Structure for Text Retrieval

D. Dervos1,2 P. Linardis1 Y. Manolopoulos1

1 Dept. of Informatics, Aristotle University, 540 06 Thessaloniki, Greece
e-mail:{ddervos,manolopo}@athena.auth.gr

2 Dept. of Informatics, Technology Educational Institute, 541 01 Thessaloniki, Greece

Abstract

Today, two classes of indexing methods enjoying wide applica-
bility are the Inverted Index and the Superimposed Coding based
Signature File (SC-SF). The former is most efficient in query pro-
cessing but utilizes extra storage of size comparable to that of the
textbase, whereas the latter is most efficient in storage utilization.
The present study builds upon the results obtained in previous re-
search [2], and proposes a hybrid structure for text retrieval. The
new structure is labelled S-Index and is shown to be of a tunable
performance which ranges between two extreme ends. At the one
extreme end, S-Index turns into a Signature File, which involves
zero information loss and, in this respect, it is faster than the ordi-
nary SC-SF method. At the other extreme end, S-Index becomes
an Inverted Index. The advantage of the proposed access method is
that frequently queried sections of text are indexed via an Inverted
Index, whereas the bulk of the textbase, which is not frequently
targeted by user queries, is stored in the form of a Signature File.

1 Introduction

Two standard methods for processing Boolean type queries by an
Information Retrieval (IR) system are the Inverted Index [5] and
the Superimposed Coding based Signature File (SC-SF) [3]. In ei-
ther case, an intermediary index structure is utilized. The Inverted
Index excels in query processing efficiency, whereas the Signature
File involves a simpler structure and utilizes significantly less sec-
ondary storage. The Inverted Index is implemented as a B+tree
variant. By construction, the scheme registers multiple copies of
each real-text block address, i.e. once for each key-word present in
the block. The index needs to frequently undergo re-organization
under intensive information insertion/updating procedures. Also,
the method is reported to perform poorly for multiple term user
queries [6].

The SC-SF intermediary index is a sequential structure with
records consisting of a real text block address and a fixed size
binary signature. By construction, the scheme does not register
search key values and each real text block address is stored only
once. Compared to the Inverted Index, SC-SF is more efficient
in handling new document insertions. However, it introduces infor-
mation loss, i.e. the search engine output involves a number of false

Proceedings of the First East-European Symposium on
Advances in Databases and Information Systems (AD-
BIS’97). St.-Petersburg, September 2–5, 1997.

St.-Petersburg: University of St.-Petersburg, 1997.

matches. The latter may be identified only by applying a full text
scan operation on every real text block short-listed in the search
engine output. For each single word query processed, the entire
SC-SF structure needs to be scanned. This implies increased pro-
cessing cost, which is further overloaded by the full text scanning
stage mentioned earlier. In terms of query processing efficiency,
SC-SF is better only next to full text scanning.

A desirable development would be to combine the best of the
two worlds and establish a scheme, which encodes frequently ad-
dressed sections of the textbase via an Inverted Index, while the
bulk of the remaining text is compressed in the form of a fully re-
versible, i.e. lossless, signature file pattern.

In a previous paper, we have investigated the limits of SC-SF,
by introducing two new information encoding schemes: Perfect
Encoding (PE) and the Exactly Reversible Signature File (ERSF)
[2]. Both approaches introduce zero information loss, i.e. no false
matches occur at the query processing stage. The textbase is as-
sumed to utilize a vocabulary which may be of a large, yet finite,
sizeV . As in the case with SC-SF, text is seen to be divided into
logical blocks, each involvingD distinct vocabulary terms. PE
and ERSF differ from SC-SF in assuming each vocabulary term
(i.e. key-word) to be mapped on a distinct integer number in the
[0,...,V −1] range, an integer which becomes the ID number of the
word in question. This word-to-integer mapping scheme may be
implemented by means of a perfect hash function [4].

Perfect encoding considers the maximum number of messages
Bmax a given (V ,D) configuration may support:

Bmax =

(
V
D

)

Under PE, block signatures are encoded via a binary number in
the [0,...,dlog2Bmaxe−1] range. Evidently, PE comprises an upper
limit for SC-SF with regard to information compression. However,
PE involves an increased CPU overhead when compared to SC-SF.
This due to block signature encoding at signature file creation, and
due to block signature decoding at query processing.

204



In the case of ERSF, each block signature pattern isV bits long
and registers 1s in bit positions which correspond to theD numbers
of the vocabulary terms present in the block. The remaining bit
positions register zeroes.

The moment when PE comprises an upper limit for SC-SF with
regard to information compression, ERSF comprises an upper limit
with regard to processing efficiency. This is because ERSF sig-
natures involve zero information loss. As stated in the previous,
each SC-SF block candidacy short-listed in the search engine out-
put needs to undergo a full text scan operation. The latter deter-
mines the false matches and the qualifiers for the given search cri-
terion. However, this is not the case for ERSF: its search engine
output contains no false matches. In all other aspects, the ERSF
structure is of an SC-SF type, implying analogous CPU overhead
at signature file creation as well as at the query signature processing
stage.

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400

St
or

ag
e U

til
iz

at
io

n 
(in

 b
its

)

Blocking Factor (D)

ERSF
PE

Figure 1: Signature file size dependency on blocking factor for PE
and ERSF (assumingV =400 andN=1000).

Figure 1 is taken from [2]. It is representative of a number of
calculation results obtained for PE and ERSF storage utilization.
It considers an example textbase ofN=1000 words. The textbase
consists of words which are drawn at random from a vocabulary of
sizeV =400. Apparently, a vocabulary term may be selected more
than once. The curves reflect the upper limit values of storage each
method’s signature file utilizes, for a range of blocking factor (D)
values.

The PE and ERSF curves approach each other, with ERSF stay-
ing at higher storage values, in the region aroundD ≈ V

2
. For

ERSF, the latter translates into having half of the block signature
pattern register 1s. Summarizing, when the blocking factor is ap-
proximately equal half the vocabulary size, ERSF (which excels
SC-SF with regard to query processing efficiency) achieves nearly
optimal storage utilization.

The benefits of PE, ERSF and the Inverted Index may be com-
bined in a new hybrid text retrieval scheme which is introduced in
the sequel. The new method is labelledS-Index, whereS- stands
for “Signature” andIndeximplies the Inverted Index.

2 Description of S-Index

Hybrid structures which combine SC-SF with the Inverted Index
are reported to improve the performance of the Signature File

method [1, 6]. However, the information loss problem remains.
Consequently, significant processing and I/O overhead is intro-
duced during the full text scanning stage.

In our case, the aim is to combine the query processing effi-
ciency of ERSF with the information compression rate achieved
by PE. In accordance with Section 1, the two co-occur when the
blocking factorD is approximately half the size of the textbase
vocabularyV . SinceD is usually set to a value which is much
smaller thanV

2
, a divide-and-conquer strategy may be applied. In

order to take advantage of the maximum information compression
rate of ERSF, the vocabularyV is partitioned into two subvocabu-
laries which are equal in size. Each subvocabulary is then further
partitioned into smaller subvocabularies, and so on. Next, the sub-
vocabularies are mapped on nodes in a binary tree structure, each
node corresponding to one specific subvocabulary. The root which
is at level 0, represents the whole vocabulary, whereas the leaves
correspond to single vocabulary terms. This scheme is generalized
so that each node hasM children, i.e.M is the tree fanout.

One begins with an ERSF-like block signature at level zero.
However, it does not get appended to the signature file as such.
Sub-sections of the block signature are considered in a top-down
traversal of the tree structure. The block signature sub-section
which is considered for a given node relates directly to the node’s
local textbase subvocabulary.

A block signature sub-section is appended to the signature file
as soon as the number of 1s contained is larger than half the size of
the local subvocabulary. For as long as the latter is not true, block
signature sub-sections continue being divided into smaller parti-
tions each one of which is considered against the corresponding
node at the lower tree level. As soon as a signature sub-section is
appended to the signature file, neither it nor any one of its partitions
are considered any further in this top-down tree traversal process.

Evidently, S-Index consists of two parts. Theupperpart is a tree
with nodes relating to specific subvocabularies. The latter are not
registered since each one of them is implied by the corresponding
node’s positioning in the tree. Each tree node points to a linked list
of records. Linked records comprise thelowerpart of the S-Index.

Linked records pointed to by nodes in the same level of the up-
per S-Index are stored in the same physical file. For a node at level
i, each record registers three fields: apointer to the next record in
the list, ablock numberwhich is the address of the corresponding
real text block, and asignature sectionwhich is adV/M ie bits long
binary string. The latter registers the block signature sub-pattern,
which corresponds to the vocabulary which is local to the node in
question. For the special case of a leaf node, the local vocabulary is
of size one, i.e. the corresponding linked record registers only two
fields: apointer, and ablock number.

Furthermore, the pointer value may be dispensed with by allo-
cating a separate physical file to each node of the S-Index structure.
The linked records (if any) of the node would then reside in a single
file, all by themselves. As a result, each one of them would need to
register onlyblock numberandsignature sectionvalues. Even for
the case when a separate file is allocated to each tree level rather
than to each tree node, this is the case for level–0, since there is
only one node to it.
Example

Let V =8, D=3, M=2.The nodes of the binary tree in Figure
2 relate to specific subvocabularies: e.g. node B accommodates
words 0 through 3, node G has a local vocabulary of two words (6
and 7), etc. In the beginning, at signature creation time, the typical
block of text is mapped on an 8-bit signature of the ERSF type;
a signature which registers three 1s and five 0s. A perfect hashing
algorithm may be utilized to map each vocabulary term on a distinct
number in the [0,..,7] range.

The original (full size) signature is split into sub-sections which
are in direct relationship with the subvocabularies of the S-Index

205



tree structure. Sub-sections of each block signature are then con-
sidered to traverse the S-Index from the root to the leaves. Consid-
ering a typical node at leveli, the block signature sub-section and
the block’s address value are appended to the node’s linked records
for as long as the signature sub-section registers more 1s than 0s.

Figure 3 presents linked records pointed to by node “C” in Fig-
ure 2. The node has associated with it a local vocabulary of size
four. Consequently, each record in Figure 3 registers a block signa-
ture sub-section with three 1s and one 0. 2

A(0-7)

B(0-3) C(4-7)

D(0-1) E(2-3) F(4-5) G(6-7)

H(0) I(1) J(2) K(3) L(4) M(5) N(6) O(7)

"
"

"
""

b
b

b
bb









J
J
J









J
J
J

�
�
�

C
C
C

�
�
�

C
C
C

�
�
�

C
C
C

�
�
�

C
C
C

Figure 2: Binary S-Index forV =8.

0111

1011

1101

1110


-


-


-

�

�

�

�

-

-

-

-

...

...

...

...

...

Figure 3: Linked records and textbase.

One more special case should be considered for S-Index. It
is by construction that nodes in the level which is just above the
leaves will have their linked records register signature sections of
the “11” type. The latter implies that both words in the local vo-
cabulary are present in the corresponding logical block of text. For
this special case, linked records will have a structure similar to that
of the leaves, i.e. thesignature sectionis not registered.

3 Analysis

Quite similarly to SC-SF, the textbase is divided into logical blocks,
each containingD distinct vocabulary terms. Evidently, the given

(V, D) configuration may record up to

(
V
D

)
distinct logical

blocks, or “messages”. For simplicity, let the textbase comprise
of all messages encoded by the (V ,D) scheme, each message taken
once. One more assumption may now be made which does not af-
fect the general case for S-Index;V is taken to be an integer power
of M , the fanout of the tree structure:

V = Mn

One may now proceed and calculate the size of the population of
linked records under each and every tree node. The result com-
prises a first indication on the performance of S-Index. Evidently,
the first assumption in the previous paragraph is made in order to
simplify this calculation. For the special case considered, the S-
Index nodes are populated with linked records in a symmetric fash-
ion, i.e. the number of records registered under each node depends
only on the corresponding tree level. In other words, each S-Index
level–i is characterized byNi, the number of linked records regis-
tered under a typical node at the specific level of the S-Index struc-
ture. The issue is better explained by means of an example.

Example
Consider the binary tree structure shown in Figure 2. The root

is at leveli=0, whereas the leaves are at leveli=3. The structure
is populated with linked records registering block signature sub-
sections from a textbase utilizing a vocabulary ofV =8 terms. Each
logical block of text containsD=3 vocabulary terms. In accordance

with the previous, the textbase consists of

(
8
3

)
= 56 messages,

each message taken once. Each block signature involves three 1s
set in the [0,..,7] range of binary bit positions.

By construction, there will be no records appended at level–
0. This is because the one and only node at level–0 has a local
vocabulary of size 8. Signature (sub)sections are appended to a
node for as long as the number of 1s contained exceeds half the
size of the local vocabulary:

N0 = 0

Each of the two nodes at level–1 has a local vocabulary of size
4. Apparently, records are appended to nodesB andC for signature
sub-sections which register three 1s. Thus, for each node at level–1:

N1 =

(
4
3

)
= 4

For the typical node at level–2, sayD: the (local) vocabulary
being of size 2, it registers signature sub-sections with two 1s. For
the case considered, there exists a third 1 which may lie anywhere
in the subtree originating at nodeE, or anywhere in the subtree
originating at nodeC. Let the latter be labelled as theE- andC-
subtree sets of registered records. Each linked record registered
under nodeD is meant to be combined with the members of theE-
andC- sets of registered records to produce valid block signature
patterns:(

2
2

){(
2
1

)(
4
0

)
+

(
2
0

)(
4
1

)}

However, the first product term of the inner summation in the
above should be ruled out as it never occurs in the specific S-Index
signature sub-sections placement algorithm. Had the third 1 been
placed anywhere in the vocabulary which is local to nodeE, then
there would be three 1s in the vocabulary which is local to nodeB.
The latter implies that the signature sub-section would have been
appended to nodeB and would not have stepped down one level to
nodeD. Thus, for the typical node at level–2:

N2 =

(
2
2

)(
2
0

)(
4
1

)
= 4

Quite analogously, the vocabulary local to a typical node at
level 3 (sayH) is of size 1. The one (trivial) bit signature sub-
section combines itself with all possible ways of allocating the re-
maining two 1s anywhere within theI-, E- andC- subtrees. How-
ever, subject to the constraint that valid block signature instances

206



are only the ones which have not had their signature sub-sections
be appended at higher tree levels, the number of linked records ap-
pended to the typical level–3 node will be:

N3 =

(
1
1

){(
1
0

)(
2
1

)(
4
1

)
+

(
1
0

)(
2
0

)(
4
2

)}

= 14

2

Summarizing, for the special type of textbase considered and
for a typical node at level–i in the (binary) S-Index structure:

• Signature sub-sections appended to the node’s linked list of
records involve numbers of 1s exceeding half the size of the
local vocabulary (Vi) up to and includingmin(D, Vi), where
D is the blocking factor.

• Symbolizing byq the number of 1s in the signature sub-
section of a record appended to the linked list of records be-
longing to the typical node at level–i: whenq is less thanD,
the remainingD−q 1s distribute themselves in subtrees orig-
inating at level–i, level–(i–1),..., up to and including level–1.
This way, valid block signatures are produced, subject to one
constraint: for each level–s which lies higher than level–i,
the sum of all the numbers of 1s distributed in nodes at level–
s and lower in the tree structure does not exceed half the size
of the vocabulary local to the typical node at level–(s–1).

For the typical node at level–i and the linked record which reg-
istersq 1s in its signature sub-section, the two constraints men-
tioned in the previous are stated as follows:

C1 : (k1 + ... + ki = D − q)

C2 : (q + ki + ... + ki−λ < M · Vi−λ

2
+ 1)

whereλ ∈ [0, .., i − 1], and thekj (for 1 ≤ j ≤ i) parameters
relate to numbers of 1s present in sub-trees originating at thej-th
level.

The previous are integrated into the expression which calculates
Ni for the general (V ,D,M ) case:

Ni =

min(D,Vi)∑
q=b Vi

2 +1c

(
Vi

q

)
×

×
min(D−q,(M−1)Vj−q)∑

kj = 0,
j ∈ [1, ..., i],

C1,
C2

(
(M − 1) V1

k1

)
· · ·

(
(M − 1) Vi

ki

)
(1)

Having calculatedNi, it becomes possible to proceed and cal-
culate:

1. the storage (in bits),SSI utilized by the lower S-Index struc-
ture, and

2. the number,RSI , of lower S-Index records accessed during
the processing of a single word query.

By comparingSSI to the corresponding ERSF and PE values, a
first indication on the secondary storage utilized by S-Index may be
obtained. Similarly,RSI comprises a first indication on the query
processing efficiency of the S-Index, assuming one I/O operation
per record retrieved.

The next two sections focus on the details of calculatingSSI

andRSI for the example textbase considered, i.e. the one outlined
in the beginning of the current section.

4 Storage Utilization

The upper part of S-Index, i.e. its backbone tree structure, intro-
duces storage overhead similar to the one introduced by the back-
bone tree structure of the Inverted Index. Both are much smaller
in size than the storage utilized by the lower S-Index and Inverted
Index structures. In this respect, the calculations which follow con-
sider the storage utilized by the linked records of the S-Index struc-
ture and by the leaf nodes of the Inverted Index structure.

For the example textbase considered,

(
V
D

)
distinct mes-

sages imply a

⌈
log2

(
V
D

)⌉
bits long block signature pattern,

under perfect encoding. Of the same size will be the block’s binary
address. Thus, the storage (in bits) utilized by PE will be:

SPE =

(
V
D

)
× 2 ×

⌈
log2

(
V
D

)⌉

ERSF differs from PE in that each block signature pattern isV
bits long. The corresponding expression for storage utilization (in
bits) will be:

SERSF =

(
V
D

)
×

(
V +

⌈
log2

(
V
D

)⌉)

In the fully Inverted Index environment, the probability for a
vocabulary term to be contained in aD-term (logical) block of text
equals:

Pw =
D

V

As a result,D
V

×
(

V
D

)
records will populate the linked list

of each and every one of theV vocabulary terms used. Each linked

record will register a

⌈
log2

(
V
D

)⌉
block address, plus a 4-byte

pointer. The total storage (in bits) utilized will be:

SII = D ×
(

V
D

)
×

(
32 +

⌈
log2

(
V
D

)⌉)

In the case of S-Index, one needs to first calculate the height
of the tree structure. Assuming a fanout valueM , for the (V ,D)
configuration, the leaf nodes will be at tree levelk = dlogMV e.
For example, for a binary tree structure involving aV =16 terms
vocabulary, the leaves of the S-Index structure are at levelk =
dlog216e = 4. The root of the tree is assumed to always be at level
zero.

For the intermediate level,m, of the S-Index structure, there
will be a total ofMm nodes to it. Utilizing Equation (1), for the ex-
ample textbase considered, each node involvesNm linked records.
With the exception of the root and the two lower levels, a typical
linked record at levelm registers ad V

Mm e bits long signature pat-

tern, a 4-byte pointer and alog2

⌈(
V
D

)⌉
bits long address.

In accordance with the assumption made earlier, the lower part
of each S-Index level is stored into a separate physical file. This
implies that the 4-byte pointer overhead may be saved for the root
level. Also, it is by construction that signature sub-sections ap-
pended to nodes in the lower two levels contain all 1s. They may
also be skipped, i.e. they need not be registered. Thus, the total
storage overhead (in bits),SSI , for S-Index is given by:

207



SSI = N0 ×
(

V +

⌈
log2

(
V
D

)⌉)
+

+

k−2∑
i=1

Ni ×
(⌈

V

M i

⌉
+

⌈
log2

(
V
D

)⌉
+ 32

)

+
(

Nk−1

2
+ Nk

)
× V ×

(⌈
log2

(
V
D

)⌉
+ 32

)

5 Cardinality of Inspected Index Records Set

An indication on the query processing efficiency, under each one
of the indexing schemes considered, may be obtained by consid-
ering the total number of index records inspected for the typical
query. It is noted that none of structures involves information loss.
This means that each index record selected points to a block of text
known to qualify for the query in question.

For simplicity, single term queries are considered. The more
general case involves Boolean constructs which break down into
single term query sub-tasks.

ERSF and PE are both sequential index structures, i.e. the total
number of block signatures need to be retrieved and inspected for
each single term query. The total number of index records inspected
under either method,RERSF/PE, is given by:

RERSF/PE =

(
V
D

)

In the Inverted Index scheme, the entire population of linked
records, registered under the vocabulary term in question, is in-
spected:

RII =
D

V

(
V
D

)

In the case of S-Index, for each single term query processed,
one path of nodes is traversed from the root to the leaves of the
tree structure. Each linked record which resides along this path is
retrieved and inspected for possible qualification of the correspond-
ing textual block. Thus:

RSI =

k−2∑
m=0

Nm

whereNm is calculated from Equation (1) andk = dlogMV e.
In the calculation ofRSI , it is noted that linked records at levels

(k–1) andk need not be inspected. Their signature sub-sections are
known to contain all 1s, i.e. the corresponding blocks of text are
known to contain the vocabulary term in question.

6 Calculation Results

Figures 4 and 5 present calculation results obtained for the storage
utilization and the number of index records inspected under each
one of the indexing schemes considered. The testbed used was a
textbase with vocabulary sizeV =64 and variable blocking factor
D. In each case, the textbase was taken to consist of all possible
messages encoded by the (V, D) configuration, each message taken
once. Three types of S-Index fanout values were considered:M=2,
4 and 8.

As stated previously, PE is the most efficient signature file
scheme with regard to storage utilization. So, the Inverted Index

0

5

10

15

20

25

30

10 15 20 25 30

St
or

ag
e 

U
til

iz
at

io
n 

(n
or

m
al

iz
ed

 to
 th

e 
PE

 v
al

ue
)

Blocking Factor (D)

Inverted Index
S-Index (M=8)
S-Index (M=4)
S-Index (M=2)

Perfect Encoding

Figure 4: Storage utilization efficiency curves for the indexing
structures considered (V =64).

and S-Index curves in Figure 4 are normalized to the correspond-
ing PE value. The PE line intersects the vertical axis at the (nor-
malized) “1” value. For example, forD=20 the Inverted Index was
measured to introduce a storage overhead which is nearly 15 times
larger than the storage utilized by the PE index.

The S-Index variation withM=2 (i.e. a binary tree) is seen to
outperform theM=4 andM=8 ones. As expected, S-Index turns
into an Inverted Index for smallD values.

Considering what has been stated in Section 2, for the case
whereD > V

2
(i.e. D > 32 for Figure 4), S-Index turns into

ERSF: the only node which points to linked records in the lower
S-Index part is the root. This explains the sudden “drop” of the
S-Index curves in Figure 4: all the linked records are stored in a
single sequential file, leading to considerable storage savings. This
fact may also be taken to suggest that the storage utilization effi-
ciency of S-Index will be improved by allocating a separate file to
each tree node.

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

R
ec

or
ds

 R
et

ri
ev

ed
 (n

or
m

al
iz

ed
 to

 th
e 

E
R

SF
 v

al
ue

)

Blocking Factor (D)

ERSF
S-Index (M=2)
S-Index (M=4)
S-Index (M=8)
Inverted Index

Figure 5: Index records retrieved for the structures considered
(V =64).

For the example textbase considered, the upper S-Index part
may safely be assumed to always reside in main memory. Similarly,
the backbone tree structure of the Inverted Index is also assumed to
reside in main memory.

As stated in the previous, it is possible to calculate the number

208



of (lower part) S-Index records retrieved for inspection by a single
word query. Quite similarly to Figure 4, Figure 5 plots the num-
ber of records inspected under the S-Index and the Inverted Index
schemes, normalized to the corresponding ERSF value.

Commenting on Figure 5, S-Index is seen once more to turn
into an Inverted Index for smallD values and into ERSF for
D > V

2
. Quite notably, S-Index achieves retrieval efficiency values

which, forD < 32, lie close to the Inverted Index ones. For exam-
ple, S-Index and the Inverted Index retrieve nearly one third of the
records retrieved by ERSF whenD=20 (Figure 5). The Inverted In-
dex is guaranteed to retrieve only records corresponding to real text
blocks containing the query term in question. Thus, forD=20, S-
Index avoids retrieving two thirds of the records retrieved by ERSF.
For M=2, such a gain comes at the cost of having S-Index utilize
nearly two thirds of the storage utilized by the Inverted Index (Fig-
ure 4).

Summarizing on Figures 4 and 5, for as long as the upper S-
Index part resides in main memory, the binary tree (M=2) variation
is seen to perform better than theM=4 andM=8 ones.

7 Conclusion

A hybrid indexing scheme (S-Index) has been introduced which,
for certain (V, D) textbase configurations, combines the advantages
of the Inverted Index and the Signature File structures. The scheme
has been shown to turn into an Inverted Index whenD � V , and
into an ERSF structure forD > V

2
.

Once a variable blocking factorD scheme is adopted, S-Index
may be tuned into indexing selected textbase sections (i.e. sections
containing words appearing frequently in user queries) in the form
of an Inverted Index, while the bulk of the remaining text is encoded
in the form of a Signature File.

In the immediate future, we intend to

• consider S-Index with a variable blocking factor (D), and

• take into consideration practical aspects of real textbases,
like the Zipfian distribution of words, and incorporate this
into the mapping of words on numbers in the [1,...,V ] range.
By this, it is expected that the storage utilization efficiency
of the method will be improved.

Last but not least, it is noted that during the single word query
processing stage, only one node is considered at each level of the
S-Index structure. Also, nodes at different levels may be processed
independently from each other. In this respect, S-Index allows for
further investigation in the context of distributed processing.

References

[1] Deppisch U.: “S-Tree: A Dynamic Balanced Signature Index
for Office Retrieval”,Proceedings of the ACM SIGIR Confer-
ence, pp.77-87, 1986.

[2] Dervos D., Linardis P. and Manolopoulos Y.: “Perfect En-
coding: a Signature Method for Text Retrieval”,Proceedings,
International Workshop on Advances in Databases and In-
formation Systems (ADBIS), pp.176-182, September 10-13,
1996.

[3] Faloutsos C.: “Access Methods for Text”,ACM Computing
Surveys, Vol.17, No.1, pp.49-74, 1985.

[4] Fox E.A., Chen Q.F. and Heath L.S.: “A Faster Algorithm for
Constructing Minimal Perfect Hash Functions”,15th ACM
SIGIR Conference Proceedings, pp. 266-273, 1992.

[5] Harman D., Fox E., Baeza-Yates R.A. and Lee W.: “Inverted
Files”, in Information Retrieval: Data Structures and Algo-
rithms, Frakes W. and Baeza-Yates R. (Eds.), Prentice Hall,
pp.28-43, 1992.

[6] Jagadish H., Faloutsos C.: “Hybrid Index Organizations for
Text Databases”,Proceedings of the Extending Database
Technology Conference (EDBT), pp. 310-327, March 1992.

209


