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Abstract. The last years there is an increasing interest for query pro-
cessing techniques that take into consideration the dominance relation-
ship between objects to select the most promising ones, based on user
preferences. Skyline and top-k dominating queries are examples of such
techniques. A skyline query computes the objects that are not dominated,
whereas a top-k dominating query returns the k objects with the high-
est domination score. To enable query optimization, it is important to
estimate the expected number of skyline objects as well as the maximum
domination value of an object. In this paper, we provide an estimation
for the maximum domination value for data sets with statistical indepen-
dence between their attributes. We provide three different methodologies
for estimating and calculating the maximum domination value, and we test
their performance and accuracy. Among the proposed estimation methods,
our method Estimation with Roots outperforms all others and returns the
most accurate results.

1 Introduction

Top-k and skyline queries are two alternatives to pose preferences in query pro-
cessing. In a top-k query a ranking function is required to associate a score to
each object. The answer to the query is the set of k objects with the best score.
A skyline query does not require a ranking function, and the result is based on
preferences (minimization or maximization) posed in each attribute. The result is
composed of all objects that are not dominated. For the rest of the work we deal
with multidimensional points, where each dimension corresponds to an attribute.
Formally, a multidimensional point pi = (xi1 , xi2 , ..., xid

) ∈ D dominates another
point pj = (xj1 , xj2 , ..., xjd

) ∈ D (pi ≺ pj) when:

∀a ∈ {1, ..., d} : xia ≤ xja ∧ ∃b ∈ {1, ..., d} : xib
< xjb

where d is the number of dimensions. A top-k dominating query may be seen as a
combination of a top-k and a skyline query. More specifically, a top-k dominating
query returns the k objects with the highest domination scores. The domination
value of an object p, denoted as dom(p), equals the number of objects that p
dominates [12,13].
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Fig. 1. The hotel data set.

The maximum domination value is the number of objects dominated by the
top-1 (best) object. More formally, let us assign to each item t of the data set D
a score, m(t), which equals the number of items that t dominates:

m(t) = |{q ∈ D : q ≺ t}|

Then, if p is the object with the maximum domination value we have:

p = arg max
t
{m(t), t ∈ D}

An example is illustrated in Figure 1. A tourist wants to select the best hotel
according to the attributes distance to the beach and price per night. The domi-
nation values of all hotels A, B,C, D, E, F,G, H, I, J are 0, 1, 0, 0, 2, 0, 4, 6, 2,
3 respectively, thus the hotel with the max domination value is H. This hotel is
the best possible selection, whereas the next two best choices are hotels G and J .

In this work, we focus on estimating the maximum domination value in a multi-
dimensional data under the uniformity and independence assumptions. Estimating
the maximum domination value contributes in: (i) optimizing top-k dominating
and skyline algorithms, (ii) estimating the cost of top-k dominating and sky-
line queries, (iii) developing pruning strategies for these queries and algorithms.
Moreover, we show that the maximum domination value is closely related to the
cardinality of the skyline set.

The rest of the article is organized as follows. Section 2 briefly describes related
work in the area. Section 3 studies in detail different estimation methods, whereas
Section 4 contains performance evaluation results. Finally, Section 5 concludes the
work.
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2 Related Work

As we will show in the sequel, the maximum domination value is related to
the skyline cardinality which has been studied recently. There are two differ-
ent approaches for the skyline cardinality estimation problem: (i) the paramet-
ric methods, and (ii) the non-parametric methods. Parametric methods use only
main parameters of the data set, like its cardinality N and its dimensionality
d. Bentley et al. [1] established that the skyline cardinality is O((ln N)d−1).
Buchta [3] proved another asymptotic bound of the skyline cardinality, which
is: Θ

(
(ln N)d−1

(d−1)!

)
. Bentley et al. [1] and Godfrey [6, 7], under the assumptions of

attribute value independence and that all attributes in a dimension are unique
and totally ordered, established that the skyline cardinality can be estimated with
harmonics: ŝd,N = Hd−1,N . Godfrey [6, 7] established that for sufficient large N ,
ŝd,N = Hd−1,N ≈ (ln N)d−1

(d−1)! . Lu et al. [10] established specific parametric formulae
to estimate the skyline cardinality over uniformly and arbitrary distributed data,
keeping the independence assumption between dimensions.

Non-parametric methods use a sampling process in the data set to capture
its characteristics and estimate the skyline cardinality. Chaudhuri et al. [4] relax
the assumptions of statistical independence and attribute value uniqueness, and
they use uniform random sampling in order to address correlations in the data.
They assume that the skyline cardinality follows the rule: s = A logB N for some
constants A,B (which is an even more generalized formula of (ln N)d−1

(d−1)! ), and
using log sampling they calculate the A, B values. Therefore, this method can
be seen as a hybrid method (both parametric and non-parametric). Zhang et
al. [14] use a kernel-based non-parametric approach that it does not rely on any
assumptions about data set properties. Using sampling over the data set they
derive the appropriate kernels to efficiently estimate the skyline cardinality in
any kind of data distribution.

Both directions sometimes produce significant estimation errors. Moreover,
in non-parametric methods there is a tradeoff between the estimation accuracy
and the sampling preprocessing cost over the data. In this paper, we focus on
estimating the maximum domination value using only parametric methods. To
the best of our knowledge, this is the first work studying the estimation of the
maximum domination value and its relationship with the skyline cardinality.

3 Estimation Methods

In this section we present specific methods to estimate the maximum domination
value of a data set. We first explain how this maximum domination value is
strongly connected with the skyline cardinality of the data set. Next, we present
two estimation methods inspired from [6, 7, 10], and finally we propose a novel
method that is much simpler, more efficient and more accurate than its opponents.

For each presented estimation method, the main task is to produce a formula
that includes only the main data set parameters, which are: the number of items
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of the data set (cardinality N), and the number of the existing attributes (di-
mensionality d). In this respect, several properties and results are derived for the
maximum domination value and the item having this value. For the remaining
part of this study we adopt the following assumptions:

– All attribute values in a single dimension are distinct (domain assumption).
– The dimensions are statistically independent, i.e., there are no pair-wise or

group correlations nor anti-correlations (independence assumption).

Let pi, i ∈ {1, ..., N} be the N items of the data set, and (xi1 , xi2 ,..., xid
) their

corresponding attributes in the d selected dimensions. Under our assumptions, no
two items share a value over any dimension, thus the items can be totally ordered
on any dimension. Therefore, it is not necessary to consider the actual attribute
values of the items, but we can conceptually replace these values by their rank
position along any dimension. Thus, let (ri1 , ri2 ,..., rid

) be the corresponding
final distinct rank positions of item pi in the selected dimensions (where rij

∈
{1, ..., N}). Without loss of generality, we assume that over the attribute values
in a dimension minimum is best. Then, the item with rank position 1 will have
the smallest value on that dimension, whereas the item with rank position N will
have the largest one.

3.1 Maximum Domination Value and Skyline Cardinality

Here we study how the maximum domination value is related to the skyline car-
dinality of the data set. Figure 2 reveals this relationship. Let p be the item of
the data set with the maximum domination value. A first important property is
that p is definitely a skyline point. This was first proved in [2] for any monotone
ranking function over the data set, and also shown in [12, 13] for the top-1 item
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Fig. 2. Maximum domination value and skyline items.
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in top-k dominating queries. Moreover, p dominates most of the items lying in
the marked area. This area is called the domination area of p. No other point
dominates more items than p does. Let dom be the exact domination value of p,
which is the number of all items that lie in its domination area (i.e., the maximum
domination value of the data set). On the other hand, the skyline items are the
items that lie in the dotted line. Let s be the number of the skyline items (i.e.,
the skyline cardinality).

As p does not dominate any item contained in the skyline, its domination value
satisfies the relation:

dom ≤ N − s

Therefore, a simple overestimation of the maximum domination value is d̂om =
N − s, and can be computed when the skyline cardinality s is already known (or
it has been efficiently estimated d̂om = N − ŝ). The error rate of this estimation
depends only on the items that lie neither in the skyline nor in the domination
area of p, like item q for example. These items are called outliers. Moreover, as
the data set cardinality N increases, the number of outliers becomes significantly
smaller than N , and the estimation becomes more accurate. On the contrary, as
the data set dimensionality d increases, the number of outliers also increases, and
the estimation becomes less accurate.

3.2 Estimation with Harmonics

Here, we present an estimation approach using harmonic numbers and their
properties, inspired from [6, 7]. The analysis reveals the intrinsic similarities be-
tween the maximum domination value and the skyline cardinality, and shows that
d̂om = N − ŝ. Let domd,N be the random variable which measures the number of
items dominated by the top-1 item (the maximum domination value). We denote
as d̂omd,N the expected value of domd,N .

Theorem 1. In any data set under the domain and independence assumptions,
the expected value d̂omd,N satisfies the following recurrence:

d̂omd,N =
1
N

d̂omd−1,N + d̂omd,N−1

for d > 1, N > 0, where d̂om1,N = N − 1 and d̂omd,1 = 0.

Proof. If d = 1, then we have only one dimension and the item with rank position 1
is the top-1 item that dominates all other N−1 items. Thus it holds that d̂om1,N =
N − 1. If N = 1, then we have only one item and none item to dominate. Thus,
d̂omd,1 = 0. In case that d > 1 and N > 1, there is an item with rank position
1 on dimension 1. This item has the maximum domination value as it dominates
all other items on that dimension. The probability that this item will remain a
top-1 item is the probability that no other item has a greater domination value
in any other dimension (2, ..., d), given the independence assumption. However,
d̂omd−1,N is the maximum domination value out of these d−1 dimensions. Thus,
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as any item has equal probability to be placed in rank position 1 on dimension
1, we have 1

N d̂omd−1,N to be the probability that this item has the maximum
domination value. Since, the first ranked item on dimension 1 cannot be dominated
by any other item, the maximum domination value is determined by the remaining
N − 1 items which is estimated by d̂omd,N−1. Therefore, we have:

d̂omd,N =
1
N

d̂omd−1,N + d̂omd,N−1ut

The recurrence for d̂omd,N is strongly related to the harmonic numbers:

– The harmonic of a positive integer n is defined as: Hn =
∑n

i=1
1
i .

– The k-th order harmonic [11] of a positive integer n for integers k > 0 is defined
as: Hk,n =

∑n
i=1

Hk−1,i

i , where H0,n = 1, ∀n > 0 and Hk,0 = 0, ∀k > 0. Note
also that: H1,n = Hn,∀n > 0.

In order to retrieve the fundamental relation of d̂omd,N with the harmonic
numbers, we compute d̂om2,N and using mathematical induction we derive the
final formula. For the d̂om2,N value we have:

d̂om2,N =
1
N

d̂om1,N + d̂om2,N−1 =
N − 1

N
+ d̂om2,N−1 =

=
N − 1

N
+

1
N − 1

d̂om1,N−1 + d̂om2,N−2 =
N − 1

N
+

N − 2
N − 1

+ ... +
1
2

=

= 1− 1
N

+ 1− 1
N − 1

+ ... + 1− 1
2

= N − 1−
N∑

i=2

1
i

=

= N − 1−
(

N∑

i=1

1
i
− 1

)
= N −HN

Now, let us assume that the following equation holds for a specific k, (i.e.,
d̂omk,N = N −Hk−1,N ). We will prove that the previous equation holds also for
the next natural number k + 1. We have:

d̂omk+1,N =
1
N

d̂omk,N + d̂omk+1,N−1 =

=
1
N

d̂omk,N +
1

N − 1
d̂omk,N−1 +

1
N − 2

d̂omk,N−2 + ... =

=
N∑

i=1

1
i
d̂omk,i =

N∑

i=1

1
i

(i−Hk−1,i) =

=
N∑

i=1

(
1− Hk−1,i

i

)
= N −

N∑

i=1

Hk−1,i

i
= N −Hk,N

6



Therefore, for any d > 1, N > 0 it holds that:

d̂omd,N = N −Hd−1,N (1)

Equation 1 generates some important properties for the maximum domination
value:

– d̂omd,N is strongly related to the skyline cardinality of the data set. As shown
in [6, 7], if ŝd,N is the expected value of the skyline cardinality, then it holds
that:

ŝd,N = Hd−1,N

Therefore, we have:
d̂omd,N = N − ŝd,N (2)

In particular, d̂omd,N and ŝd,N share the same recurrence equation of Theorem
1 but with different initial conditions.

– as proved in [11], it holds that limd−→∞Hd,N = N . Therefore, we have:

lim
d−→∞

d̂omd,N = N − lim
d−→∞

Hd−1,N ⇔ lim
d−→∞

d̂omd,N = 0 (3)

Equation 3 is a validation of the fact that as the dimensionality d increases,
the maximum domination value (and consequently all the following domina-
tion values) decreases until reaching zero. In particular, the dimensionality d
beyond which all domination values become equal to zero, is a small number.
We call that dimension the eliminating dimension, and denote it as d0.

In the sequel, we focus in the computation of d̂omd,N . Since it holds that
d̂omd,N = N − Hd−1,N , the main task is the efficient computation of the har-
monic term Hd−1,N . There are three different methods to follow for this task:

Recursive Calculation: The calculation of Hd−1,N can be achieved by running
a recursive algorithm that follows the direct definition formula:

Hk,n =
n∑

i=1

Hk−1,i

i

where H0,n = 1 and k > 0. We can also use a look up table at run-time, however,
these recurrence computations are expensive. The algorithmic time complexity
is exponential: O(Nd−1). As shown later in the experimental results section, the
calculation time is not acceptable even for small dimensionality values .

Bound Approximation: This method was proposed in [6, 7] and is based on
asymptotic bounds of Hk,N . Bentley et al. [1] established that: ŝd,N is O((ln N)d−1).
Bentley et al. [1] and Godfrey [6, 7] established that: ŝd,N = Hd−1,N , thus:

Hd−1,N is O((ln N)d−1)
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Buchta [3] and Godfrey [6, 7] improved this asymptotic bound as follows:

Hd−1,N ≈ Θ

(
(lnN)d−1

(d− 1)!

)

Therefore, we can instantly estimate d̂omd,N using the following formula:

d̂omd,N ≈ N −Θ

(
(lnN)d−1

(d− 1)!

)

or equivalently (for an appropriate real number λ):

d̂omd,N ≈ N − λ

(
(lnN)d−1

(d− 1)!

)
(4)

This is not a concrete estimation and generates a significant error rate. Moreover,
by varying the dimensionality range it will be shown that this estimation is not
even a monotone function and changes its monotonicity after halving the elimi-
nating dimension (i.e., for any d > d0

2 ). Therefore, it provides wrong theoretical
results.

Generating Functions Approximation: This method was also proposed in
[6,7] and is based on Knuth’s generalization via generating functions [8,9], which
established that:

Hk,N =
∑

c1,c2,...,ck

k∏

i=1

Hci

i,N

ici · ci!
, c1, c2, ..., ck ≥ 0 ∧ c1 +2c2 + ...+ kck = k (5)

where Hi,N is the i-th hyper-harmonic of N and is defined as:

Hi,N =
N∑

j=1

1
ji

(H1,N = H1,N = HN )

Note that c1, c2, ..., ck are positive (or zero) integer numbers, whereas the num-
ber of terms of the sum in Equation 5 stems from all possible combinations of
c1, c2, ..., ck that satisfy the equation c1 +2c2 + ...+ kck = k. This number is ℘(k)
and expresses the number of all possible ways to partition k as a sum of positive
integers. Therefore, Hk,N can be expressed as a polynomial of ℘(k) terms which
contain the first k hyper-harmonics Hi,N , (i = 1, ..., k). For example:

H2,N =
1
2
H2

1,N +
1
2
H2,N

H3,N =
1
6
H3

1,N +
1
2
H1,NH2,N +

1
3
H3,N

This approximation of Hk,N is remarkably accurate. In particular, with this
method we reach almost exactly the theoretical values of Hk,N when computed
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with the recursive approach. This will be also evaluated in the experimental re-
sults section. For any given dimension d, the time cost to compute the d required
hyper-harmonics is O(dN). Then, having the previous formulae, we can immediate
calculate Hd,N . The only requirement is to generate the appropriate formula for
the dimension d with the ℘(d) terms. Godfrey [6, 7] mentioned that this number
of terms (℘(d)) grows quickly, and, thus, it is not viable to compute the required
formula this way, and suggests not using this approximation for large values of d.
However, motivated by the accuracy of this approximation of Hk,N , we developed
a dynamic-programming algorithm that efficiently produces these equations. Due
to lack of space we do not elaborate further.

Therefore, we can almost instantly estimate d̂omd,N with hyper-harmonics
using the previous approximation formula:

d̂omd,N ≈ N −
∑

c1,c2,...,cd−1

d−1∏

i=1

Hci

i,N

ici · ci!
(6)

by taking special care to all possible floating point overflow values, and by using
the derived equations which recorded through the automation.

3.3 Estimation with Multiple Summations

In this section we present an estimation approach using a specific formula with
multiple summations inspired from the study of [10]. For compatibility reasons
we will keep all previous notations and variables.

Y. Lu et al. [10] introduced an estimation approach of the skyline cardinality
that relaxes the domain assumption of our basic model. The statistical indepen-
dence assumption still remains, but now the data can have duplicate attribute
values. Their study is based in probabilistic methods, and it uses the value cardi-
nality of each dimension. Their first main result is the following:

ŝd,N = N ·
c1∑

t1=1

c2∑
t2=1

...

cd∑
td=1

(
d∏

i=1

1
ci

)
1−

d∏

j=1

tj
cj




N−1

(7)

where N ≥ 1, d ≥ 1, and cj is the value cardinality of the j-th dimension.
They also generalized this result in case of having the probability functions

fj(x) of the data over each dimension, but always keeping the independence as-
sumption:

ŝd,N = N ·
c1∑

t1=1

c2∑
t2=1

...

cd∑
td=1

f1(t1)f2(t2)...fd(td)


1−

d∏

j=1

tj∑
x=1

fj(x)




N−1

(8)

However, in both cases, the computational complexity is O(c1 ·c2 ·...·cd), which
is not acceptable even if in few dimensions the value cardinality is high (close to
N). They also tried to relax this complexity cost by introducing high and low
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cardinality criteria, but this cost remains high, and this is why their experimental
results are restricted to small dimensionality and cardinality variations (d = 1, 2, 3
and N ≤ 1000). We will see in our experimental results that even if we have
high cardinality in 3 dimensions and up to 1000 items the estimation time is not
acceptable.

Although the method of [10] works efficiently only in small cardinalities and
dimensionalities, it would be very interesting to apply this method in our model
and study its accuracy. Therefore, under the domain assumption of our model,
all value cardinalities cj will be equal to N and Equation 7 gives:

ŝd,N = N ·
N∑

t1=1

N∑
t2=1

...

N∑
td=1

(
1

Nd

)(
1− t1t2...td

Nd

)N−1

or equivalently:

ŝd,N =
1

Nd−1
·

N∑
t1=1

N∑
t2=1

...

N∑
td=1

(
1− t1t2...td

Nd

)N−1

Thus, using the property of the estimated maximum domination value of Equation
2, the final estimation formula is:

d̂omd,N ≈ N − 1
Nd−1

·
N∑

t1=1

N∑
t2=1

...

N∑
td=1

(
1− t1t2...td

Nd

)N−1

(9)

which has an exponential computational complexity (O(Nd)).
In our experimental results we will see that Equation 9 returns values re-

markably close to the harmonic Hd−1,N values. In addition, by increasing N , the
returned values converge to Hd−1,N , thus it must be related somehow with the
k-th order harmonics. This strong relation remains unproven. Finally, as the two
methods return almost the same estimations, their accuracy is similar.

3.4 Estimation with Roots

In this section we present a novel estimation approach using a simple formula,
which provides more accurate estimation results.

Let p be the item with the maximum domination value, and (rp1 , rp2 , ..., rpd
)

be its corresponding final rank positions in the total ordering along any dimension.
Let also a be the maximum rank position of p through all dimensions (i.e., a =
max{rp1 , rp2 , ..., rpd

}). Then, a splits the total ordering of the items in two parts
as in Figure 3: (i) the (a)-area, and (ii) the (N − a)-area.

Now, any item q that all its rank positions lie in the (a)-area, will be an outlier
or a skyline item. Note that the opposite does not hold, thus not any skyline or
outlier item lie in the (a)-area. The probability Pa that an item lies in the (a)-area
is:

Pa = P (pi lies in the (a)− area) =
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Fig. 3. Total ordering of items by rank positions

= P (ri1 ≤ a ∧ ri2 ≤ a ∧ ... ∧ rid
≤ a)

Now, due to the independence assumption we have:

Pa = P (ri1 ≤ a) · P (ri2 ≤ a) · ... · P (rim
≤ a) =

a

N
· a

N
· ... · a

N
=

ad

Nd
=

( a

N

)d

Moreover, any item r that all its rank positions lie in the (N − a)-area, will
definitely be dominated by p. Thus r lies in the domination area of p. Note that
the opposite does not hold, thus not any item of the domination area of p, lies also
in the (N − a)-area). The probability PN−a that an item lies in the (N − a)-area
is:

PN−a = P (pi lies in the (N − a)− area) =

= P (ri1 > a ∧ ri2 > a ∧ ... ∧ rid
> a)

Due to the independence assumption we have:

PN−a = P (ri1 > a) · ... ·P (rid
> a) =

N − a

N
· ... · N − a

N
=

(N − a)d

Nd
=

(
1− a

N

)d

Therefore, the number of items lying in the (a)-area (Ca), and in the (N −a)-
area (CN−a) will be:

Ca = bN · Pac = bN
( a

N

)d

c and CN−a = bN · PN−ac = bN
(
1− a

N

)d

c

respectively.
However, as it holds that all items lying in the (N −a)-area are dominated by

p, we have dom(p) ≥ CN−a, or equivalently:

dom(p) ≥ bN · PN−ac ⇔ dom(p) ≥ bN
(
1− a

N

)d

c (10)

which describes a tight lower bound for the domination value of p.
Additionally, as p definitely lies in the (a)-area, at least one item must be

inside that area, thus it must hold that Ca ≥ 1, or equivalently:

bN · Pac ≥ 1 ⇔ bN
( a

N

)d

c ≥ 1 (11)
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To efficiently estimate the maximum domination value, we have to maximize
the lower bound of Inequality 10 under the a variable, respecting the condition
of Inequality 11 for the a variable. Therefore, let us define the function f(a) =
N

(
1− a

N

)d that expresses the lower bound values, where a ∈ [0, N ]. It has f(0) =
N, f(N) = 0 and the following relation derives:

f ′(a) = −d
(
1− a

N

)d−1

We have f ′(a) < 0,∀a ∈ (0, N), thus f is a monotone descending function in
[0,N ], and returns values also in [0,N ].

Moreover, the condition of Inequality 11 gives:
( a

N

)d

≥ 1
N
⇔ a

N
≥ d

√
1
N
⇔ a ≥ N

d

√
1
N

Thus, f must be restricted in [N d

√
1
N , N ]. Due to the descending monotonicity of

f , it takes its maximum value when amax = N d

√
1
N . Therefore, we have:

f(amax) = N
(
1− amax

N

)d

= N

(
1− d

√
1
N

)d

=
(

d
√

N − 1
)d

and the final estimation of the maximum domination value is:

d̂omd,N ≈
(

d
√

N − 1
)d

(12)

Generalization of the Root Method To get even more accurate estimations,
we can generalize the root method by allowing the a variable to take values slightly

smaller than N d

√
1
N . This left shift of the a variable breaks the condition of In-

equality 11, but allows the possibility of taking into account items that are not
lying in the (a), (N − a)-areas and are dominated by p increasing its domination
value. We further studied this estimation improvement making exhaustive exper-
imental tests with different a values, and we conclude that the estimation is very
accurate when:

ashifted = N d

√
1

N
√

N

Then f takes the value:

f(ashifted) = N
(
1− ashifted

N

)d

= N

(
1− d

√
1

N
√

N

)d

=
1√
N

(
d

√
N
√

N − 1
)d

This hidden square root factor enhances the estimation accuracy and provides
the most accurate results for the maximum domination value. Thus, the final
proposed estimation formula is:

d̂omd,N ≈ 1√
N

(
d

√
N
√

N − 1
)d

(13)
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4 Performance Evaluation

To test the estimation accuracy, we perform several experiments using indepen-
dent data sets of N = 100, 1K, 10K, 100K, 1M items and varying the dimen-
sionality d from 1 to values beyond the eliminating dimension d0. We record the
exact (average of 10 same type data sets) and the estimated maximum domi-
nation values. For brevity, we present only a small set of representative results,
which depict the most significant aspects. All experiments have been conducted
on a Pentium 4 with 3GHz Quad Core Extreme CPU, 4GB of RAM, using Win-
dows XP. All methods have been implemented in C++. Table 1 summarizes the
methods compared.

Notation Interpretation

RealAvg Real Averaged Values (No Estimation)
HarmRecc Estimation with Harmonics (Recursive Calculation)
HarmBound Estimation with Harmonics (Bound Approximation)
HarmGenF Estimation with Harmonics (Generating Functions Approximation)
CombSums Estimation with Multiple Summations
Roots Estimation with Roots (Simple)
RootsGen Estimation with Roots (Generalized with the square root)

Table 1. Summary of methods evaluated.

d RealAvg HarmRecc HarmBound HarmGenF CombSums Roots RootsGen
1 999.0 999.000 999.000 999.000 999.418 999.000 999.968
2 955.6 992.515 993.092 992.515 993.431 937.754 988.785
3 875.2 971.162 976.141 971.166 - 729.000 908.100
4 623.1 923.542 945.064 923.556 - 456.931 732.128
5 434.4 - 905.128 842.585 - 235.430 510.298
6 294.2 - 868.930 730.456 - 102.204 308.870
7 190.3 - 849.100 598.636 - 38.198 164.043
8 110.7 - 851.089 463.172 - 12.510 77.312
9 73.2 - 871.420 338.813 - 3.642 32.674
10 33.1 - 901.311 235.082 - 0.954 12.498
11 23.8 - 931.828 155.378 - 0.227 4.362
12 18.5 - 957.189 98.316 - 0.049 1.399
13 10.1 - 975.356 59.879 - 0.010 0.415
14 6.5 - 986.905 32.465 - 0.002 0.114
15 3.6 - 993.539 21.465 - 0.000 0.029
16 2.2 - 997.025 15.645 - 0.000 0.007
17 1.5 - 998.715 9.416 - 0.000 0.002
18 0.9 - 999.478 4.196 - 0.000 0.000
19 0.8 - 999.800 2.123 - 0.000 0.000
20 0.0 - 999.927 0.170 - 0.000 0.000

Table 2. Maximum domination value estimation for N = 1K

Figure 4 depicts the maximum domination value estimation results for all
estimation methods, varying the cardinality and the dimensionality of the data
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sets. Table 2 presents the detailed estimation values of the corresponding graph
for N=1K, for further inspection. We have not recorded the values where the
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computational time is more than 10 minutes. Figure 5 presents the estimation
error of the 4 methods that return values into the full range for N=1M, for
further inspection. Based on the previous results we observe the following:

– The HarmRecc method, due to the exponential computation complexity, re-
turns values in short time only for small dimensionality and cardinality values.
Moreover, after 3 dimensions the estimation error is significant.

– The HarmBound method returns estimation results instantly, but it is the
most inaccurate method for estimation.

– The HarmGenF method computes its results very efficiently. It produces al-
most exactly the theoretical values of Hk,N when computed recursively. There-
fore, it returns the same estimation results with the HarmRecc method. How-
ever, we observe that as we increase the cardinality of the data set, the estima-
tion error increases and becomes significant in almost all the dimensionality
range.

– The CombSums method fails to return values even in small dimensionality
and cardinality selections, due to its exponential computational complexity
(we can see only 4 values when N=100 and 2 values when N=1000). In
addition, the returned values are remarkably close to those of HarmGenF and
HarmRecc. By increasing the cardinality, the values converge to the harmonic
values of the previous methods, thus it must be related somehow with the k-th
order harmonics. However, again the estimation error increases and becomes
significant in the whole dimensionality range.

– The Roots method returns estimation results more efficiently than all the pre-
vious methods. By increasing the cardinality, the estimation becomes more
accurate, due to the fact that the number of the outliers becomes significantly
smaller than N . On the contrary, as the dimensionality increases, the num-
ber of outliers increases as well, and the estimation becomes less accurate.
However, when we further move into the dimensionality range and when we
approach the eliminating dimension, the estimation becomes again accurate.

– The RootsGen method is the most efficient way to get estimation results and
outperforms all previous methods. It manages to approximate the maximum
domination value with the smallest estimation error in the whole dimension-
ality and cardinality range.

5 Conclusions

This paper studies parametric methods for estimating the maximum domination
value in multi-dimensional data sets, under the assumption of statistical inde-
pendence between dimensions and the assumption that there are no duplicate
attribute values in a dimension. The experimental results confirm that our pro-
posed estimation method outperforms all other methods and achieves the highest
estimation accuracy. Future work may include: (i) further study of the eliminating
dimension d0, providing an estimation formula for its calculation, (ii) the study
the estimation of the skyline cardinality under the Roots method and its variants
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and (iii)the study of the maximum domination value estimation and the eliminat-
ing dimension in arbitrary data sets, by relaxing the assumptions of uniformity,
independence and distinct values that used in this work.
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