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Abstract. Classification based on k-nearest neighbors (kNN classification) is
one of the most widely used classification methods. The number k of nearest
neighbors used for achieving a high precision in classification is given in advance
and is highly dependent on the data set used. If the size of data set is large, the
sequential or binary search of NNs is inapplicable due to the increased compu-
tational costs. Therefore, indexing schemes are frequently used to speed-up the
classification process. If the required number of nearest neighbors is high, the use
of an index may not be adequate to achieve high performance. In this paper, we
demonstrate that the execution of the nearest neighbor search algorithm can be
interrupted if some criteria are satisfied. This way, a decision can be made with-
out the computation of all k nearest neighbors of a new object. Three different
heuristics are studied towards enhancing the nearest neighbor algorithm with
an early-break capability. These heuristics aim at: (i) reducing computation and
I/O costs as much as possible, and (ii) maintaining classification precision at a
high level. Experimental results based on real-life data sets illustrate the appli-
cability of the proposed method in achieving better performance than existing
methods.

Keywords: kNN classification, multidimensional data, heuristics.

1 Introduction

Classification is the data mining task [10] which constructs a model, denoted as clas-
sifier, for the mapping of data to a set of predefined and non-overlapping classes. The
performance of a classifier can be judged according to criteria such as its accuracy,
scalability, robustness, and interpretability. A key factor that influences research on
classification in the data mining community (and differentiates it from classical tech-
niques from other fields) is the emphasis on scalability, that is, the classifier must work
on large data volumes, without the need for experts to extract appropriate samples
for modeling. This fact poses the requirement for closer coupling of classification tech-
niques with database techniques. In this paper we are interested in developing novel
classification algorithms that are accurate and scalable, which moreover can be easily
integrated to existing database systems.

Existing classifiers are divided into two categories [12], eager and lazy. In contrast to
an eager classifier (e.g., decision tree), a lazy classifier [1] builds no general model until a
new sample arrives. A k-nearest neighbor (kNN) classifier [7] is a typical example of the
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latter category. It works by searching the training set for the k nearest neighbors of the
new sample and assigns to it the most common class among its k nearest neighbors. In
general, a kNN classifier has satisfactory noise-rejection properties. Other advantages
of a kNN classifier are: (i) it is analytically tractable, (ii) for k = 1 and unlimited
samples the error rate is never worse than twice the Bayes’ rate, (iii) it is simple to
implement, and (iv) it can be easily integrated into database systems and exploit access
methods that the latter provide in the form of indexes.

Due to the aforementioned characteristics, kNN classifiers are very popular and
find many applications. With a naive implementation, however, the kNN classification
algorithm needs to compute all distances between training data and a testing datum,
and needs additional computation to get k nearest neighbors. This negatively impacts
the scalability of the algorithm. For this reason, recent research [5] has proposed the use
of high-dimensional access methods and techniques for fast computation of similarity
joins, which are available in existing database systems, to reduce the cost of searching
from linear to logarithmic. Nevertheless, the cost of searching the k nearest neighbors,
even with a specialized access method, still increases significantly with increasing values
of k.

For a given test datum, depending on which training data comprise its neighbor-
hood, we may need a small or a large k value to determine its class. In other words,
in some cases, a small k value may suffice for the classification, whereas in other cases
we may need to examine larger neighborhoods. Therefore, the appropriate k value may
vary significantly. This introduces a trade-off: By posing a global and adequately high
value for k, we attain good accuracy, but we pay high computational cost, since as
described, the complexity of nearest neighbor searching increases for higher k values.
Higher computational cost reduces the scalability to large data sets. In contrast, by
keeping a small k value, we get low computational cost, but this may result to lower
accuracy. What is, thus, required is an algorithm that will combine good accuracy and
low computational cost, by locally adapting the required value of k. In this work, we
propose a novel framework for a kNN classification algorithm that fulfills the aforemen-
tioned property. We also examine techniques that help us for finding the appropriate
k value in each case. Our contributions are summarized as follows:

– We propose a novel classification algorithm based on a non-fixed number of near-
est neighbors, which is less time consuming than the known k-NN classification,
without sacrificing precision.

– Three heuristics are proposed that aim at the early-break of the k-NN classification
algorithm. This way, significant savings in computational time and I/O can be
achieved.

– We apply the proposed classification scheme to large data sets, where indexing is
required needed. A number of performance evaluation tests are conducted towards
investigating the computational time, the I/O time and the precision achieved by
the proposed scheme.

The rest of our work is organized as follows. The next section briefly describes re-
lated work in the area and summarized our contributions. Section 3 studies in detail
the proposed early-break heuristics, and presents the modified k-NN classification al-
gorithm. Performance evaluation results based on two real-life data sets are given in
Section 4. Finally, Section 5 concludes out work and briefly discusses future work in
the area.
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2 Related Work

Due to its simplicity and good performance, kNN classification has been studied thor-
oughly [7]. Several variations were developed [2], like the distance-weighted kNN, which
puts emphasis on nearer neighbors, and the locally-weighted averaging, which uses ker-
nel width to controls the size of neighborhood that has large effect. All such approaches
propose adaptive schemes to improve the accuracy of kNN classification in the case
where not all attributes are similar in their relevance to the classification task. In our
research we are interested in improving the scalability of kNN classification.

Also, kNN classification has been combined with other methods and, instead of
predicting a class with simple voting, prediction is done by another machine learner
(e.g., neural-network) [3]. Such techniques can be considered complementary to our
work. For this reason, to keep comparison clear, we did not examine such approaches.

Böhm and Krebs [5] proposed an algorithm to compute the k-nearest neighbor join
using the multipage index (MuX), a specialized index structure for the similarity join.
Their algorithm can be applied to the problem of kNN classification and can increase
its scalability. However, it is based on a fixed number of k, which (as described in
Introduction) if it is not tuned appropriately, it can negatively impact the performance
of classification.

3 Adaptive Classification

3.1 The Basic Incremental k-NN Algorithm

An algorithm for incremental computation of nearest neighbors using the R-tree family
[9, 4] has been proposed in [11]. The most important property of this method is that
the nearest neighbors are determined in their order of their distance from the query
object. This enables the discovery of the (k +1)-th nearest neighbor if we have already
determine the previous k, in contrast to the algorithm proposed in [13] (and enhanced
in [6]) which requires a fixed value of k.

The incremental nearest neighbors search algorithm maintains a priority queue. The
entries of the queue are Minimum Bounding Rectangles (MBRs) and objects which will
be examined by the algorithm and are sorted according to their distance from the query
point. An object will be examined when it reaches the top of the queue. The algorithm
begins by inserting the root elements of the R-tree in the priority queue. Then, it
selects the first entry and inserts its children. This procedure is repeated until the first
data object reaches the top of the queue. This object is the first nearest neighbor.
Figure 1 depicts the Incr-kNN algorithm with some modifications, towards adapting
the algorithm for classification purposes. Therefore, each object of the test set is a
query point and each object of the training set, contains an additional attribute which
indicates the class where the object belongs to. The R-tree is built using the objects
of the training set.

The aim of our work is to perform classification by using a smaller number of
nearest neighbors than k if this is possible. This will reduce computational costs and
I/O time. However, we do not want to harm precision (at least not significantly). Such
an early-break scheme can be applied since Incr-kNN determines the nearest neighbors
in increasing distance order from the query point. The modifications performed to the
original incremental k-NN algorithm are summarized as follows:
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Algorithm Incr-kNN (QueryPoint q, Integer k)
1. PriorityQueue.enqueue(roots children)
2. NNCounter = 0
3. while PriorityQueue is not empty and NNCounter ≤ k do
4. element = PriorityQueue.dequeue()
5. if element is an object or its MBR then
6. if element is the MBR of Object and PriorityQueue is not empty

and objectDist(q, Object) > PriorityQueue.top then
7. PriorityQueue.enqueue(Object, ObjectDist(q, Object))
8. else
9. Report element as the next nearest object (save the class of the object)
10. NNCounter++
11. if early-break conditions are satisfied then
12. Classify the new object q in the class where the most nearest neighbors

belong to and break the while loop. q is classified using
NNCounter nearest neighbors

13. endif
14. endif
15. else if element is a leaf node then
16. for each entry (Object, MBR) in element do
17. PriorityQueue.enqueue (Object, dist(q, Object))
18. endfor
19. else /*non-leaf node*/
20. for each entry e in element do
21. PriorityQueue.enqueue(e, dist(q, e))
22. endfor
23. endif
24. end while
25. if no early-break has been performed then // use k nearest neighbors
26. Find the major class (class where the most nearest neighbors belong to)
27. Classify the new object q to the major class
28. endif

Fig. 1. Outline of Incr-kNN algorithm with early break capability.

– We have modified line 3 of the algorithm. The algorithm accepts a maximum value
of k and is executed until either k nearest neighbors are found (no early break) or
the heuristics criteria are satisfied (early break). Specifically, we added the condition
NNCounter ≤ k in while command (line 3).

– We have added the lines 10,11,12 and 13. In this point, the algorithm retrieves a
nearest neighbor and checks for early break. Namely, the while loop of the algorithm
breaks if the criteria defined by the heuristic that we use are satisfied. So, the new
item is classified using NNCounter nearest neighbors, where NNCounter < k.
Lines 11, 12 and 13 are replaced according to the selected heuristic.

– We have added the lines 25, 26, 27 and 28. These lines perform classification taking
into account k nearest neighbors. This code is executed only when the heuristic did
not manage to perform an early-break.

4



3.2 Early-Break Heuristics

In this section, we present three heuristics that interrupt the computation of nearest
neighbors when some criteria are satisfied. The classification performance (precision
and execution cost) depends on the adjustments of the various heuristics parameters.
The parameter MinnNN is common to all heuristics and defines the minimum num-
ber of nearest neighbors which must be used for classification. After the retrieval of
MinnNN nearest neighbors, the check for early-break is performed. The reason for
the use of MinNN is that a classification decision is preferable when it is based on
a minimum number of nearest neighbors, otherwise precision will be probably poor.
These criteria depend on which proposed heuristic is used. The code of each heuristic
replaces lines 11 and 12 of the Incr-kNN algorithm depicted in Figure 1.

Simple Heuristic (SH) The first proposed heuristic is very simple. According to this
simple heuristic, the early-break is performed when the percentage of nearest neighbors
that vote the major class is greater than a predefined threshold. We call this threshold
PMaj.

For example, suppose that we have a data set where the best precision is achieved
using 100 nearest neighbors. Also, suppose that we define that PMaj = 0.9 and
MinNN=7. The Incr-kNN is interrupted when 90% of NNs vote a specific class. If
this percentage is achieved when the algorithm examines the tenth NN (9 out of 10
NNs vote a specific class), then we avoid the cost of searching the rest 90 nearest neigh-
bors. Using the Incr-kNN algorithm, we ensure that the first ten neighbors which have
been examined, are the nearest.

Furthermore, if the simple heuristic fails to interrupt the algorithm because PMaj is
not achieved, it will retry an early-break after finding the next TStep nearest neighbors.

Independent Class Heuristic (ICH) The second early-break heuristic is the In-
dependent Class Heuristic (ICH). This heuristic does not use the PMaj parameter.
The early-break of Incr-kNN is based on the superiority of the major class. Superiority
is determined by the difference between the sum of votes of the major class and the
sum of votes of all the other classes. The parameter IndFactor (Independency Factor)
defines the superiority level of the major class that must be met in order to perform an
early-break. More formally, in order to apply an early-break, the following condition
must be satisfied:

SV MC > IndFactor ·
n∑

i=1

SV Ci − SV MC (1)

where SV MC is the sum of votes of major class, n is the number of classes and SV Ci

is the sum of votes of class i.
For example, suppose that our data set contains objects of five classes, we have

set IndFactor to 1 and the algorithm has determined 100 NNs. Incr-kNN will be
interrupted if 51 NNs vote a specific class and the rest 49 NNs vote the other classes. If
the value of IndFactor is set to 2, then the early-break is performed when the major
class has more than 66 votes.

Studying the Independent Class Heuristic, we conclude that the value of the IndFactor
parameter should be adjusted by taking into account the number of classes and the
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class distribution of data set. In the case of a normal distribution, we accept the follow-
ing rule: when the number of classes is low, IndFactor should be set to a high value.
On the other hand, when there are many classes, IndFactor should be set to a lower
value.

In ICH, parameter TStep is used in the same way as in the SH heuristic. Specifically,
when there is a failure in interruption, the early-break check is again activated after
determining the next TStep nearest neighbors.

M-times Major Class Heuristic (MMCH) The last heuristic that we present is
termed M-Times Major Class Heuristic (MMCH). The basic idea is to stop the Incr-
kNN when M consecutive nearest neighbors, which vote the major class, are found.
In other words, the while-loop of Incr-kNN algorithm terminates when the following
sequence of nearest neighbors appears:

NNx+1, NNx+2, ..., NNx+M ∈ MajorClass (2)

However, this sequence is not enough to for an early-break. In addition, the PMaj
parameter is used in the same way as in the SH heuristic. Therefore, MMCH heuristic
breaks the while loop when the percentage of nearest neighbors that vote the major
class is greater than PMaj and there is a sequence of M nearest neighbors that belong
to the major class. We note that MMCH does not require the TStep parameter.

4 Performance Evaluation

In this section, we present the experimental results on two real-life data sets. All exper-
iments have been conducted on an AMD Athlon 3000+ machine (2000 MHz), with 512
MB of main memory, running Windows XP Pro. The R*-tree, the incremental kNN
algorithm, and the classification heuristics have been implemented in C++.

4.1 Data Sets

The first data set is the Pages Blocks Classification (PBC) data set and contains 5,473
items. Each item is described by 10 attributes and one class attribute. We have used
the first five attributes of the data set and the class attribute. We reduced the number
of attributes considering that the most dimensions we use, the worst performance the
family of R-trees has. Each item of the data set belongs to one of the five classes.
Furthermore, we have divided the data set into two subsets. The first subset contains
4,322 items used for training and the second contains the rest 1,150 items used for
testing purposes.

The traditional kNN classification method achieves the best possible precision when
k = 9. However, this value was very low and so the proposed heuristics can not reveal
their full potential. Therefore, we have added noise in the data set in order to make
the use of a higher k value necessary. Particularly, for each item of the train set, we
modified the value of the class attribute with probability 0.7 (the most noise is added,
the highest value of k is needed to achieve the best classification precision). This fact
forced the algorithm to use a higher k value. This way, we constructed a data set where
the best k value is 48. This means that the highest precision value is achieved when 48
nearest neighbors contribute to the voting process. This is illustrated in Figure 2(a),
which depicts the precision value accomplished by modifying k between 1 and 48.
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Fig. 2. Precision vs k, I/O vs k and precision vs I/O for PBC data set.
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Fig. 3. Precision vs k, I/O vs k and precision vs I/O for LRI data set.

As expected, the higher the value of k, the higher the number of I/O operations.
This phenomenon is illustrated by Figure 2(b). We note that if we had used a lower
value for k (k ¡ 48), we would have avoided a significant number of I/Os and therefore
the search procedure would be less time-consuming. For example, if we set k = 30, then
we avoid 5.84 I/Os for the classification of one item of the test set without significant
impact on precision. Figure 2(c) combines the two previous graphs. Particularly, this
figure shows how many I/Os the algorithm requires in order to accomplish a specific
precision value.

The second data set is the Letter Image Recognition Data set [8], which contains
20,000 items. We have used 15,000 items for training and 5,000 items for testing. Each
item is described by 17 attributes (one of them is the class attribute) and represents an
image of a capital letter of the English alphabet. Therefore, the data set has 26 classes
(one for each letter). The data set objective is to identify the capital letter represented
by the items of the test set using a classification method.

As in the case of the PBC data set, we have reduced the number of dimensions
(attributes). In this case, dimensionality reduction has been performed by using Prin-
cipal Component Analysis (PCA) on the 67% of the original data. The final number
of dimensions have been set to 5 (plus the class attribute).

Figure 3 illustrates the data set behavior. Specifically, Figure 3(a) shows the preci-
sion achieved for k ranging between 1 and 28. We notice that the best precision (77%)
is achieved when k = 28. Figure 3(b) presents the impact of k on the number of I/Os.
Almost 43 I/O operations are required to classify an item of the test set for k = 28.
Finally, Figure 3(c) combines the two previous graphs illustrating the relation between
precision and the number of I/O operations. By observing these figures, we conclude
that if we had used a lower k value, then we could have achieved better execution time
by keeping precision at high levels.
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4.2 Determining Parameters Values

Each heuristic uses a number of parameters. These parameters must be adjusted so
that the best performance is achieved (or the best balance between precision and exe-
cution time). In this section, we present a series of experiments which demonstrates the
behavior of the heuristics for different values of the parameters. We keep the best val-
ues (e.g. the parameters that manage to balance execution time and precision) for each
heuristic and use these values in a subsequent section where heuristics are compared.

Pages Blocks Classification Data Set Initially, we are going to analyze the MinNN
parameter. It is a parameter that all heuristics use. Recall that MinNN is the min-
imum number of NNs that should be used for classification. After determining these
NNs, the heuristics are activated. Figure 4 show how the heuristics performance (pre-
cision and I/O) is affected by modifying the value of MinNN . The values of the other
parameters have as follows: TStep = 4, IndFactor = 1, PMaj = 0.6, MTimes = 4,
k = 48.

����

����

����

����

����

����

����

� 	 � 
 � � � �� �� �� �� �	 ��

����������	
�

�



�
��
��
�

�
���������
��
� ��
��������
��
�

����������������������
��
�  !!������
"
���
#�

��

��

��

��

��

��

��

��

��

��

��

� 	 � 
 � � � �� �� �� �� �	 ��
����������	
�

��
�

�
���������
��
� ��
��������
��
�

����������������������
��
�  !!������
"
���
#�

����� �����

Fig. 4. Impact of MinNN for PBC data set.

By observing the results it is evident that precision is least affected when the MMCH
heuristic is used. Therefore, for this heuristic, we set MinNN = 4, which is the value
that provides the best balance between I/O and precision. In contrast, the precision of
the other two heuristics is significantly affected by the increase of MinNN . We decide
to define MinNN = 11 for the Independency Class Heuristic and MinNN = 7 for
the Simple Heuristic. Our decision is justified by the precision and I/O measurements
provided for these parameters values.

We continue our experiments by finding the best value for IndFactor. Recall that
this parameter is used only in ICH heuristic. We modify IndepFactor from 0.4 to 4
and calculate the precision achieved. Figure 5 illustrates that the best balance between
precision and I/O is achieved when IndFactor = 1. The values of the other parameters
are as follows: MinNN = 11, TStep = 4, k = 48.

Next we study the impact of the parameter MTimes, which is used only by the
MMCH heuristic. As it is depicted in Figure 6 for MTimes = 3, the precision level
will be high enough and the number of I/O operations is relatively low. So we keep
this value as the best possible for this parameter. The values of the other parameters
have as follows: MinNN = 4, PMaj = 0.6, k = 48.
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Fig. 5. Impact of IndFactor on the performance of ICH heuristic for PBC data set.
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Fig. 6. Impact of MTimes on the performance of MMCH heuristic for PBC data set.

Next, we study the impact of TStep parameter on the performance of SC and ICH,
since MMCH does not use this parameter. Figure 7 depicts the results. The values of
the rest of the parameters have as follows: MinNN = 6, IndFactor = 1, PMaj = 0.6,
MTimes = 3, k = 48. Both SH and ICH heuristics achieve the best precision when
TStep = 4. In fact, SH achieves the same precision for TStep = 3 or TStep = 4, but
less I/Os are required when TStep = 4. Since MMCH and kNN classification are not
affected by TStep, their graphs are parallel to the TStep axis. Finally, it is worth to
note that although MMCH needs significantly less I/Os than kNN classification, the
precision that MMCH achieves is the same as that of kNN classification.

Letter Image Recognition Data Set Next, we repeat the same experiments using
the LIR data set. The impact of MinNN is given in Figure 8. It is evident that all
heuristics achieve higher precision than kNN classification. By studying Figure 8 we
determine that the best MinNN values for the three heuristics are: MinNN = 7 for
SH, MinNN = 12 for ICH and MinNN = 4 for MMCH. These values achieve the
best balance between precision and I/O processes. The values of the other parameters
have as follows: TStep = 2, IndFactor = 1, PMaj = 0.6, MTimes = 3, k = 28.

Figure 9 depicts the results for the impact of IndFactor. We see that IndFactor =
1 is the best value since the ICH heuristic achieve the best possible precision value and
at the same time saves almost ten I/O operations per query. The values of the other
parameters are as follows: MinNN = 12, TStep = 5, k = 28.

Next, we consider parameter MTimes, which is used only by the MMCH heuristic.
We define MTimes = 3, which results in 13 I/O savings for each query and achieves
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Fig. 7. Impact of TStep parameter for PBC data set.
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Fig. 8. Impact of MinNN for LIR data set.
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Fig. 9. Impact of IndFactor on the performance of ICH heuristic for LIR data set.

the best possible precision value. The results are illustrated in Figure 10. The values
of the other parameters have as follows: MinNN = 4, PMaj = 0.6, k = 28.

Finally, in Figure 11 we give the impact of TStep. We set TStep = 4 for SH and
TStep = 5 for ICH, since these values give adequate precision and execution time. The
values of the rest of the parameters have as follows: MinNN = 4, IndFactor = 1,
PMaj = 0.6, MTimes = 3, k = 28.
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Fig. 10. Impact of MTimes on the performance of MMCH heuristic for LIR data set.
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Fig. 11. Impact of TStep parameter for LIR data set.

4.3 Comparison of Heuristics

In this section we study how the heuristics compare to each other and to the traditional
kNN classification, by setting the parameters to the best values for each heuristic, as
they have been determined in the previous section.

Pages Blocks Classification Data Set Figure 12 depicts the performance results vs
PMaj. When PMaj = 0.6, precision is about the same for all heuristics and very close
to that achieved by traditional kNN classification. However, our heuristics require sig-
nificant less I/O for achieving this precision. When this precision value is accomplished
there is no reason to find more nearest neighbors and therefore valuable computational
savings are achieved.

According to our results, ICH achieves a precision value of 0.947 (kNN’s precision
is 0.9495) while it saves about 6.88 I/Os for the classification of one item. Particularly,
when we use ICH, we find 31.29 nearest neighbors on average instead of 48. Similarly,
when PMaj = 0.6, SH achieves precision equal to 0.948 (very close to that of kNN)
by performing an early-break when 38.5 NNs on average have been found (almost 10
less than kNN requires). Therefore, SH saves about 4.385 I/Os per each item of the
test set. Finally, the same precision value (0.948) is achieved by MMCH. However, this
heuristic saves less number of I/Os than SH. Specifically, MMCH spends 3.875 I/O less
than kNN because it finds 39.767 NNs on average.

Figures 13 and 14 summarize the results of this experiment using bar charts which
have been produced by setting PMaj = 0.6 and maintain the same values for the other
parameters. Figure 13 shows that the precision achieved by the heuristics is very close
to that of kNN, whereas the number of required I/Os is significant less than that of
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Fig. 12. Precision and number of I/Os.
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Fig. 13. Precision and number of I/Os for PMaj = 0.6
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Fig. 14. Required number of nearest neighbors for PMaj = 0.6.

kNN. Figure 14 presents the number of nearest neighbors retrieved on average by each
method.

We can not directly answer the question which heuristic is the best. The answer de-
pends on which measure is more critical (precision or execution time). If a compromise
must be made, Figure 12 will help. We notice that ICH shows the best performance
because it achieves a precision that is very close to the precision of kNN posing the
minimum number of I/Os. To declare a winner between SH and MMCH we notice that
when PMaj > 0.6 the heuristics achieves almost the same precision, but MMCH poses
more I/Os than SH.

As we have already mentioned, we try to find the parameters values that provide a
compromise between precision and execution time. However, if one of these measures
is more important than the other, the parameters can be adjusted to reflect this pref-
erence. Suppose that execution time is more critical than precision (when for example
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a quick-and-dirty scheme should be applied due to application requirements). If we se
PMaj = 0.5, then 23.245 I/Os per query will be required (instead of 33.32 required
by kNN) by finding 25.72 NNs instead of 48. However, this means that precision will
be significantly smaller than that of kNN (we saw that when PMaj = 0.6, the differ-
ence between the precision of SH and kNN is minor). Similar results are obtained for
MMCH when PMaj = 0.5. On the other hand, if precision is more critical than time,
we can adjust the heuristics parameters towards taking this criticality into account. In
this case, it is possible that the heuristics achieve better precision than kNN, with exe-
cution time overhead. In any case, early-break heuristics always require less execution
time than kNN.

By considering the impact of MinNN shown in Figure 4, it is evident that MMCH
can achieve a slightly better precision than kNN. Specifically, if we set MinNN =
8, PMaj = 0.6 and MTimes = 3, then MMCH achieves a precision value equal to
0.950435, whereas 30.793 I/Os are required (while kNN requires 33.3174 I/Os per query
and achieves a precision of 0.94956). The early-break heuristic is able to avoid 2.5244
I/O per query, whereas at the same time achieves better precision when k is adjusted
to ensure the best precision value. Although the number of saved I/Os may seems
small, note that this savings are performed per classified item. Since the PBC test set
contains 1,150 items, we realize that the overall number of saved I/Os is 2903, which
is significant.

Similar considerations apply to the other two heuristics. For example, ICH can
outperform the precision of kNN when IndyFactor = 1.2, TStep = 4, and MinNN
= 11 (see Figure 5). However, because of the increase of IndFactor from 1 to 1.2, the
I/O requirements are increased from 26.44 to 29.75. Finally, if we set MinNN = 11
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Fig. 15. Precision and number of I/Os (MinNN = 11).
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Fig. 16. Required number of nearest neighbors (MinNN = 11).
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instead of 7, SH also outperforms the precision of kNN (see Figure 4). These results
are illustrated in Figures 15 and 16.

Letter Image Recognition Data Set We close this section by presenting the com-
parison results using the LIR data set. Similar conclusions can be drawn as in the case
of the PBC data set. The results are given in Figures 17, 18 and 19.
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Fig. 17. Precision and number of I/Os vs PMaj.
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Fig. 18. Precision and number of I/Os for PMaj = 0.8.
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Fig. 19. Precision and number of I/Os for PMaj = 0.6.
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We note that when we PMaj > 0.5 (see Figure 17), the three heuristics accomplish
better precision than kNN and manage to reduce execution time. More specifically, SH
achieves a precision of 0.7825 with 32.53 I/Os on average for PMaj = 0.8, whereas
kNN a precision of 0.77 spending 42.81 I/Os (see Figure 18). Also, if we set PMaj =
0.6, SH achieves a precision of 0.78 spending 26.7775 I/Os on average (see Figure 19).

ICH, which is not affected by the PMaj parameter, achieves a precision of 0.775
spending 33.52745 I/Os on average. Finally, MMCH achieves the best balance be-
tween precision and execution time we set PMaj = 0.6. Particularly, the heuristic
accomplishes a precision of 0.7775 and spends 30.6525 I/Os on average (see Figure
18). Comparing the three heuristics using the Letter Image Recognition data set, we
conclude that the simple heuristic has the best performance since it achieves the best
possible precision spending the least possible number of I/Os.

5 Conclusions
In this paper, an adaptive kNN classification algorithm has been proposed, which does
not require a fixed value for the required number of nearest neighbors. This is achieved
by incorporating an early-break heuristic into the incremental k-nearest neighbor algo-
rithm. Three early-break heuristics have been proposed and studied, which use different
conditions to enforce an early-break. Performance evaluation results based on two real-
life data sets have shown that significant performance improvement may be achieved,
whereas at the same time precision is not reduced significantly (in some cases pre-
cision is even better than that of kNN classification). We plan to extend our work
towards: (i) incorporating more early-break heuristics and (ii) studying incremental
kNN classification by using subsets of dimensions instead of the whole dimensionality.
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