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Abstract. Nowadays, one of the main research issues of great interest
is the efficient tracking of mobile objects that enables the effective an-
swering of spatiotemporal queries. This line of research is relevant to a
number of modern applications spanning many contexts. In this paper,
we consider the organization of a moving object database by quadtree
based structures (structures obeying the Embedding Space Hierarchy).
In this context, we adapt an indexing method, called XBR trees, to sup-
port range queries about the history of trajectories of moving objects.
The XBR tree is a quadtree like external memory, balanced and compact
structure that follows regular decomposition. Apart from the presenta-
tion of the new method, we experimentally show that it outperforms
the only previous Embedding Space Hierarchy approach (based on PRM
quadtrees) for indexing moving objects.
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1 Introduction

In the past few years, the focus of the research in Geographic Information Sys-
tems (GISs) has drastically evolved from traditional data management issues
(such as modeling, indexing, querying) to new and exciting challenges raised
by the emergence of new technologies. Two of the major recent achievements of
these technologies, namely the World Wide Web and the development of accurate
positioning systems, have a strong impact on GISs. In particular, positioning sys-
tems constitute a very challenging area. The Global Positioning System (GPS)
and the new European Galileo satellite project (its launching has been decided
very recently, at the end of March 2002), are able to determine the position of a
moving object with a very high precision (e.g. a few centimeters).
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On the other hand, there undoubtedly exists a necessity for numerous appli-
cations related to moving objects. Technologies involving mobile computing have
appeared to show a great evolution, particularly in the last few years. Devices
such as mobile phones and Internet terminals have become ubiquitous.

There are also applications, which include vehicle navigation, tracking and
monitoring, where the positions of air, sea or land-based equipment, such as
airplanes, fishing boats and cars (e.g. taxis or ambulances) are of interest. An
example of such applications is the tracking of fighter planes in air-force combat
situations. Being able to correctly locate the planes (that move very fast) at a
present time and in the near future can be used to avoid enemy targets and
also guide the of fighter planes towards proper targets. Other real life examples
that involve objects with positions changing over time, are traffic control, fleet
management, fire or hurricane front monitor and weather forecast.

The topic of querying and indexing moving objects has been addressed by
several researchers. As far as the theoretical background is concerned, Sistla et al.
in [11] proposed a data model, called Moving Objects Spatio-Temporal (MOST)
model, for representing moving objects and a query language, called Future Tem-
poral Logic. Wolfson et al. [18] addressed the uncertainty issues, which determine
the frequency with which the database has to update the locations of the moving
objects, in order to provide an error bound.

Several papers have appeared that base the indexing of moving objects on
structures that belong in the family of R-trees [4]. For example, in [10] Saltenis
et al. proposed an R*-tree based access method (the TPR-tree) to index the
current and future locations of moving objects aiming at handling range queries.
Pfoser et al. [9] proposed the STR-tree as an R-tree based indexing scheme suit-
able for storing the history of moving objects and for trajectory-based queries.
Furthermore, the Historical R-tree was proposed by Nascimento et al. [8] as an
indexing method for spatiotemporal data and range queries. Finally, in [19], Zhu
et al. proposed octagon trees (OT-tree, O-tree) as extensions to the R*-tree to
index moving objects and handle range queries.

All these methods are based on the concept of Object Space Hierarchy (the
partitioning of regions depends on the data) that is followed by structures of
the R-tree family. In this paper, we focus on methods based on the concept
of Embedding Space Hierarchy (the partitioning of regions follows a regular
fashion) that is followed by structures of the quadtree family. To the authors
knowledge, the only paper that addresses the problem of indexing moving points
by such a method is presented in [12]. In the present paper, a new such technique
is presented and compared to the method of [12].

These structures allow processing of range time and space queries (e.g. which
objects will appear in a specific area within a given time interval), or to predict
the future position of an object, or to follow the history of the movement of an
object.

An alternative perspective to tackle the issue of moving objects is the use
of transformations to index their trajectories. In [6] Kollios et al. used the dual
transformation with a view to improve the performance during range queries.



Similarly, Chon et al [3], proposed the SV-model as an alternative method of
transformation. The use of moving objects can also be applied in multimedia
environments. For example, Tzouramanis et al. in [14-16] presented several spa-
tiotemporal access methods (i.e. the OLQ-trees Overlapping Linear Quadtrees
and the MVLQ-tress Multiversion Linear Quadtrees) for storing and retrieving
evolving raster images.

In [5], Hadjieleftheriou et al., suggested the Partially Persistent (PPR-tree)
as a method for indexing and querying the history of moving objects with chang-
ing extend (e.g. shrinking). Furthermore, the object movement was described by
polynomial and not by linear functions and the queries examined were range
ones. Finally, other researchers proposed the use of techniques rooted in compu-
tational geometry (for example, in [1] external Range Trees are presented and
use for indexing moving points).

The indexing scheme that we propose here, the External Balanced Regular
trees (XBR trees), is based on quadtrees, and more specifically on hierarchical
and regular subdivision of space. The key ideas behind its design were originally
presented in [17] for managing spatial objects, in general. In this paper, we use
XBR-trees in the context of spatiotemporal databases. More specifically, we use
XBR-trees to index the trajectories of moving objetcs and to answer spatio-
temporal queries about these objects. In addition to the material appearing
in [17], in this paper, we present a modified algorithm for splitting internal
nodes of XBR-trees to deal with extreme conditions and we also describe the
steps of the deletion process in XBR-trees.

We experimentally compare the resulting method (that could be used as the
physical layer of a Moving Objects Database) with the only analogous (quadtree
based) method that is based on the PMR quadtree and was presented in [12] by
Tayeb et al. An important difference between two techniques is that the indexing
part of the PMR resides in main memory use, whereas the indexing part of XBR
trees is a multiway disk-based tree. However, the experiments conducted in the
present paper cannot be compared directly with the ones presented in [12], since
they are performed under completely different conditions and assumptions (in
[12] only the present status of moving objects is maintained, while in this paper
the trajectory of each object through time is kept).

The XBR trees constitute a family of new secondary memory structures,
which are suitable for storing and indexing multi-dimensional points and line
segments. In 2 dimensions, the resulting structure is an External Balanced
Quadtree, in 3 dimensions an External Balances Octtree, and in higher dimen-
sions an External Balanced Hyper Quadtree. The main characteristic of all these
structures is that they subdivide space (in an hierarchical and regular fashion)
into disjoint regions. These spatial access methods are fully dynamic, while in-
sertions are not complicated to program as they affect a single tree path only.
Moreover, XBR trees are variable resolution structures. That is, the number of
space subdivisions is not predefined, making these structures suitable for very
large amounts of data. Due to the balanced nature of these structures and the
disjointness of the resulting regions, searches and other queries in these trees



are processed very efficiently. The interested reader will find a short qualita-
tive comparison of XBR-trees with other well known structures, such as R-trees,
R+trees, hB-trees and GBD trees, in [17]

The rest of the paper is organized as follows. Section 2 describes the assump-
tions made with respect to the movement of the objects, Section 3 gives a detailed
description of the new structure and a short description of PMR quadtrees. Sec-
tion 4 exposes the experimental results as far as query performance of the two
trees is concerned. Finally, Section 5 presents briefly the conclusions and further
research directions.

2 DMonitoring of Moving Objects

We assume that time is discrete and that the location and velocity of each object
is updated only at predefined time points that divide time in a number of time
intervals. For each time interval of the past (up to the current time point), a
line segment that expresses the movement of the object during this interval is
maintained. For the interval starting at the current time point, a line segment
that express the initial location and velocity of the object is maintained. All
these line segments make up a polyline that expresses the trajectory of the
object from the starting time point to the point that follows the current time
point. Especially, the last line segment expresses not the actual trajectory, but
the expected trajectory from the current time point to the next one.

When time advances to the next time point, each object notifies the sys-
tem of its actual location and velocity. With this data, the last line segment of
the polyline is updated (meaning that, in general, the last line segment must
be deleted and reinserted to reflect the actual data) and a new segment that
expresses the expected trajectory from the new current time point to the next
one is inserted. The resulting line segments are stored in the (XBR, or PMR)
tree leaves and information guiding the search to the leaves is stored in internal
nodes.

This scheme aims at efficiently supporting range queries regarding the history
of the objects movement. For example, to answer the query ‘Find all the objects
that were positioned inside a particular area during a specific time interval’, we
traverse the tree from the root, visiting only the nodes which may contain object
trajectories satisfying the query. This is done by comparing the area coordinates
specified by the query to the coordinates specifying each node.

Although, it is possible to handle X and Y coordinates of each object (along
with time) at the same structure (with tree versions that can handle 3-dimen-
sional data), following the approach of [12] we handle X and Y coordinates
independently. This means that we keep one 2-dimensional tree for X coordinate
along with time and another 2-dimensional tree for Y coordinate along with time.
We answer a query using each of the trees and then combine the subanswers.
Accordingly, at each time point we update both trees.



3 XBR and PMR

3.1 The XBR tree

The XBR tree consists of two kinds of nodes: the leaves that occupy disk pages
containing the actual data, namely the line segments, and the internal nodes,
also occupying disk pages, which provide a multiway indexing method.

Despite the fact that XBR tree is an indexing method capable of being de-
fined for various dimensions, for the sake of brevity, in the sequel we assume two
dimensions. For 2 dimensions the hierarchical decomposition of space is the same
as the quadtrees. More specifically, the space is subdivided in 4 equal subquad-
rants, any of which may be further subdivided recursively in 4 subquadrants.

Internal Nodes Each internal node in the XBR tree consists of a non-pre-
defined number of pairs of the form <address, pointer>. The number of these
pairs is non-predefined because the addresses being used are of variable size. An
address expresses a child node region and is paired with the pointer to this child
node. Apparently, both the size of an address and the total space occupied by
all pairs within a node must not exceed the node size.

More specifically, the address encoding method that we used works as follows.
For a binary integer x initially we form code « that consists of two parts. The
first has |log, ] Os and one 1, while the second is the number z — 2l°822) in
binary form, expressed with |log, | bits. The code that we finally use is ¢ that
encodes the number [log, x| + 1 with the first part of code v (with the two
parts of v concatenaded) and with the second part the same to that of code
(in binary form the number z — 211°%2#]). More details appear in [17].

The addresses being used constitute a representation of a specific subquad-
rant being produced by quadtree-like hierarchical subdivision of the current
space. Each address is formed by a number of directional digits each one repre-
senting a particular subquadrant. That is, NW, NE, SW and SE subquadrants of
a quadrant are distinguished by the directional digits 0, 1, 2 and 3, respectively.
For example, the address 1 represents the NE quadrant of the current space,
while the address 10 the NW subquadrant of the NE quadrant of the current
space.

One of the main novelties of this particular indexing scheme is the fact that
in reality the region of a child is the subquadrant determined by the address
in its pair minus the subquadrants corresponding to the previous pairs of the
internal node to which it belongs.

For example, Figure 1 depicts an internal node that points to two leaves.
While the left child region is the SW quadrant of the original space, the right
child region is the whole space minus the region of the first quadrant. Each *
symbol denotes the end of a variable size address. In particular, the address of
the left child is 2*, where the directional digit 2 corresponds to the SW quadrant
of the original space. Moreover, the right child address is * (i.e. no directional
digits exist in this address) and the region for this child is the whole space minus
the first child region. Each address refers to a minimal quadrant covering the



Fig.1. An XBR tree with one internal node and two leaves.

internal node. In this specific example, the minimal subquadrant is the whole
space, since the internal node under consideration is the root.

When a search or an insertion of a line segment is performed, descending the
tree from the root specifies the appropriate leaves and their regions. At the root,
the region that has to be checked is the whole space. When visiting an internal
node, we check in turn every contained pair. The first pair with a subquadrant
that contains the particular coordinates is chosen and its pointer to the next
level is followed. By examining this way the pairs in each node, the path being
followed determines the region under consideration by intersecting it with the
subquadrant of the chosen pair and subtracting the subquadrants of the pairs
appearing to the left of this pair.
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Fig.2. An XBR tree with two levels of internal nodes.

After an insertion in the left child, this child is split and the result is shown
in Figure 2. The child split has caused the split of the internal node too, and
this has led to the new root creation. If someone wants to detect a data element
marked with ‘x’ , he has to follow the following procedure. At first, he has to
visit the root and the pairs that it contains. As we can see, the address 2* that
belongs to the first pair, is the one whose respective subquadrant contains the
coordinates of ‘x’. Therefore, he has to follow the pointer of the first pair. In this
node, the address of the first pair, 2*, determines the SW subquadrant of the
SW quadrant of the whole space, which does not contain the coordinates of ‘x’
and the address of the second pair, *, determines the rest of the SW quadrant



of the whole space, which contains the coordinates of ‘x’. We follow the pointer
of this pair and reach the leaf containing ‘x’.

The multi-way nature of the XBR tree is not explicitly depicted by the two
examples presented previously. This is done in purpose, only for the sake of
brevity.

Leaf Nodes Each external node (leaf) in the XBR tree may contain a number
of line segments, which is limited by a predefined capacity C. When an insertion
causes the number of line segments of a particular leaf to exceed C, then the
leaf is spit following a hierarchical decomposition analogous to the quadtree
decomposition, until the resulting regions contain line segments that are less
than 2 x C and more than (1 — z) x C, where 0.5 < z < 1.

The constant = is chosen in order to affect the number of necessary subdi-
visions and the size of addresses that are created after the split. A choice of
a value close to 0.5 has proven to cause more subdivisions and larger sizes of
addresses. This is due to the fact that hardly ever does a partition split the leaf
in subregions that contain almost equal numbers of elements.

With such a value assigned to x, we can achieve a better guarantee as far as
the space occupancy of leaves is concerned. On the contrary, the PMR quadtree
partitions each leaf once and only once. Such a method requires overflow pages.
This is not the case for the XBR leaf however, which is guaranteed to contain
at most C line segments plus the number of directional digits needed to reach
this leaf. Furthermore, in PMR quadtrees there is no minimum occupancy of
leaf nodes.

If we consider that x is assigned the value 0.75, then after continuous inser-
tions of line segments in the NW corner of the right leaf region of Figure 2, the
region of this leaf splits in four. If from the subregions formed none contains less
than 3C'/4 and more than C'/4 line segments, then the subregion containing the
larger number of data elements is split in four. This procedure is repetitively
applied until there exists a region with less than 3C'/4 and more than C'/4 line
segments. Then the original leaf will split in two leaves: the subregion created
above will represent the region of the left of the two resulting leaves. The rest of
the original region is the new right leaf region. Following this policy, both leaves
created will be at least 1/4 full. This situation is depicted in Figure 3.

Splitting of Internal Nodes An internal node overflow causes a split in two
in a way that achieves a good balance between the space use in the two nodes.
In order to perform the split, first of all we construct a quadtree that has as
nodes the quadrants existing in the XBR internal node to be spit. This is shown
in Figure 4a. This node contains addresses that subdivide the node region. Each
address corresponds to a quadtree node represented by a square. By following
the path to this node, all intermediate quadtree nodes are marked as circles.
There also exists the possibility, that a square may be the ancestor of others
squares (for example, the square of address 0* is a parent for the squares of
addresses 00*, 01* and 02*). The address * specifies the quadtree root.



Fig. 3. The XBR tree after splitting the rightmost leaf of the tree in Figure 2.

To each node, we assign the number of squares that will be freed, when
we eliminate the subtree rooted at this node. A bottom-up procedure rapidly
calculates this number. In Figure 4c each external square is assigned the value
1: the squares of 100*, 101*, 00*, 01* and 02* are all assigned the value 1. Each
internal square is assigned the sum of values of its children plus 1. For example,
the square of 0* is assigned the value 4=1+1+1+1. Finally, a circle is assigned
the sum of values of its children only. For example, the second root child is
assigned 2, since it has only one child (another circle) with value 2. Next we
traverse the tree in order to find a node, apart from the root, which is a square
and is assigned the largest number of squares in the tree.

DEPTH
00*,01*,02*,0*,100*,101* * 0
(a)
100|101
00 | 01 1
02 |0
2
00* 01* 02* e

3

100*101*
D) (c)
0%, 1%, 2% * 100%,101* *
(d) (e)

Fig. 4. Splitting of an internal XBR tree node.



For example, in the tree of Figure 4c, the node assigned with the largest
number of squares, is the leftmost root child with address ‘0’ and number of
squares equal to 4. The sought subtree is rooted at this node. The resulting two
nodes are depicted in Figure 4d and 4e. Apparently, in the father node of the
original internal node, the entry 0*, which corresponds to the minimal quadblock
of the left of the resulting nodes, should be inserted.

Deletion Deletion is used while updating the location and velocity of each
object at each time point. That is, the last line segment of the trajectory of each
moving object is updated at the end of each time interval (in general, it must
be deleted and reinserted to reflect the actual data) and a new line segment,
expressing the expected trajectory from the new current to the next time point,
is inserted.

Since a line segment may cross the regions of several XBR-tree leaf nodes,
it has to be removed from all these leaf nodes. Following a procedure similar to
the insertion of a line segment, at each internal node (starting from the root)
we sequentialy examine the <address, pointer> pairs and recursively visit child
nodes with regions that are crossed by the line segment. This way, we determine
all the leaves that are crossed by the line segment (the line segment must be
deleted from each of these leaves).

If a leaf node from which we remove the line segment underflows (if it contains
less than (1 — x) x C' line segments), then a merge occurs. First, the <address,
pointer> pair corresponding to this leaf that resides in its parent internal node is
deleted. Then, the rest line segments of the leaf node are added to the rightmost
child of the parent internal node (the righmost brother of the leaf node). If this
child overflows, then it is split (as described in the “Leaf Nodes” part of the
current subsection) and the split may propage to higher levels (hosting internal
nodes).

Since internal nodes do not have a minimum occupancy theshold, the merge
process is not applied to internal nodes. A more sophisticated deletion process
that considers alternative merging of an underflowed leaf node with other brother
leaves, except for its rightmost brother and merging of internal nodes is currently
under development.

3.2 The PMR tree

The PMR tree [12] is an indexing scheme based on quadtrees, capable of index-
ing line segments. The internal part of the tree consists of an ordinary region
quadtree (degree four tree) residing in main memory. The leaf nodes of this
quadtree point to the bucket pages that hold the actual line segments and reside
on disk (Table 1). Each line segment is stored in every bucket whose quadrant
(region) it crosses. A line segment can cross a region of a bucket either fully or
partially. The PMR tree was proposed as an access method where the index is
kept in main memory, whereas the indexed data, namely the line segments, are
stored in secondary storage.



| |XBR—trees |PMR—trees |
RAM|Pointer to Root Internal Nodes

Disk |Internal Nodes External Nodes
and External Nodes

Table 1. RAM and Disc usage for XBR-trees and PMR-trees.

Insertion in the PMR tree A line segment is inserted in a PMR, tree by
being registered in the buckets that correspond to the quadrants that it crosses.
During that procedure the capacity of each bucket that is intersected by the
line segment is checked in order to verify whether that insertion causes it to
exceed the predefined bucket capacity. If the bucket capacity is exceeded, then
the bucket is split once and only once into four equal quadrants (if the bucket has
already been split, then a chain of overflow buckets is maintained). Therefore,
the bucket capacity is a split threshold. When a bucket is split, four new buckets
are created, each one corresponding to a single subquadrant of the quadrant of
the original bucket. After this procedure is performed, the old parent bucket
is no longer in use. On the contrary, the quadtree pointer (in main memory)
that used to point to that bucket now points to a new quadtree node with four
pointers that point to the four newly created buckets.

Deletion in the PMR tree A line segment is deleted from a PMR quadtree by
being removed from all the buckets that correspond to quadrants that it crosses.
During this procedure, the capacity of the bucket and its siblings are checked
in order to discover if the deletion causes the total number of lines segments in
them to be less than a split threshold. If the split threshold is greater than the
capacity of the bucket and its siblings, then they merge and the merge procedure
is then repeated to the parent quadtree node.

4 Experimentation

For the tree implementations and the experiments execution we used a Pentium
1600-MhZ with 1024K memory. The page size used was 4k, which resulted in a
leaf node containing 204 lines. After experimentation, we came to the conclusion
that the use of a buffer of 100K with least-recently-used page replacement, has
shown better performance in comparison to other choices. Therefore, except
these 100 disk pages, the entire index comprising both the internal and the
external nodes, reside on disk.

For the experiments execution, we considered 1000 time units, being sepa-
rated into 100 equal time intervals, each one of 10 time units. We conducted
several experiments with a varying number of moving objects IV, and a different
size for the range query, which is successively set to 0.1, 0.01, 0.001 of the total
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space into consideration. At time unit 0, we randomly generate a velocity and
an initial location for each object. We assume that during each time interval
the object velocity and location are constant. At the interval end though, these
numbers are updated for each object. This procedure is repetitively applied until
the end of the time horizon being considered is reached.

The queries performed are range queries and during an experimental execu-
tion they are repeated after 10 constant time intervals. During the experiments
execution we count the I/O cost for the queries, the cost for the pages that are
not found in the buffer and are read from the disk, the execution time cost, the
average number of repetitions of each line and the number of nodes that reside
on disk for the XBR tree and the number of nodes that reside either in disk or
in memory for the PMR tree.

Since both the XBR tree and the PMR tree, belong to the quadtree families,
each line segment inserted in them is not kept in a single but in more than one
leaves. Therefore counting and comparing the number of the appearances of a
line segment in the two trees is considered to be noteworthy.
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Fig. 5. Disk Accesses for queries with range 0.1 (top left), 0.01 (top right) and 0.001
(bottom).

The first three experiments presented in Figure 5 study the number of disk
accesses. Namely, we counted the number of disk accesses that were required
for both trees during the execution of the range queries. In each experiment
the parameters are the number of objects and the size of the range query. The

11



objects vary from 100 to 800, whereas the query size takes values 0.1, 0.01 and
0.001.

Figure 5 top left illustrates the number of disk accesses for range queries
performed for a query size equal to 0.1 of the whole space under consideration.
In this figure, the XBR tree requires significantly fewer disk accesses than the
PMR tree. Figure 5 top right depicts the number of disk accesses for queries size
equal to 0.01. As in the previous experiment, the number of disk accesses made
by the XBR tree are again significantly fewer than those made by the PMR tree.
Figure 5 bottom presents the number of disk accesses for the 0.001 query sizes.
In this case, the PMR tree requires fewer disk accesses during the execution
of the range queries. However, its difference from the XBR tree is very small
(notice the scale on the y-axis). This reverse behavior is easily explained. For
a very small query size, a small number of leaves is accessed. In the XBR tree
(unlike the PMR tree), the internal nodes that are used to reach the leaves, also
reside on disk and contribute to the number of disk accesses. This is the penalty
the XBR tree has to pay, in order to be capable to handle very large amounts of
data (unlike the semi-RAM based PMR quadtree). As it will be shown later in
this section, in the experiments that study execution time cost, even under this
situation, the XBR tree outperforms the PMR quadtree.
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Fig. 6. Number of Nodes (left) and Medium Number of Repetitions Per Line (right).

The next two experiments presented in Figure 6, study the number of nodes
required for both trees and the average number of appearances for the lines
inserted. In each experiment, the parameters are the number of objects under
consideration, which varies from 100 to 800.

Figure 6 left shows (in thousands) the number of nodes required by the two
trees. During the experiment evolution, the PMR tree grew and was made up
of nodes that resided either on disk, or in main memory. By definition, all the
XBR tree nodes reside in the disk. The nodes in the former case were by far
more than the ones in the latter case. This means that the XBR tree (due to its
multiway nature) has a smaller height than the PMR tree, which will help the
tree to answer the queries more effectively.

Since both the PMR tree and the XBR tree are quadtrees (and subdivide
space in a predefined manner), it follows that the lines inserted in them are
not kept in a single leaf. Each line segment may intersect and be inserted in
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several leaves, a fact that can delay the query processing. The average number
of appearances per line inserted is presented in Figure 6 right. The parameter
in this experiment is the number of objects, which again varies from 100 to 800.
In this experiment, the XBR tree again stored each line segment in fewer leaves
than the PMR tree.

To sum up the results from the experiments in Figure 6, we come out that the
XBR tree is a more compact tree, with smaller height, occupying fewer nodes
than the PMR tree. Furthermore, the lines inserted in the XBR tree are not
repeated as many times as in the PMR case. The second result, namely that the
inserted lines are repeated more times in the PMR tree is a logical conclusion
drawn from the fact that the PMR has more nodes. This means that the lines
inserted in the tree have to be repeated in more nodes.
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Fig. 7. Elapsed time for queries with range 0.1 (top left), range 0.01 (top right) and
range 0.001 (bottom).

The next three experiments study the time elapsed during each query exe-
cution (execution time cost). For each tree, we performed 10 queries, each one
during a constant time interval. The parameters in these experiments are the
number of the query from 1 to 10, the query range that takes values 0.1, 0.01
and 0.001 and the number of objects, which takes values 500, 700 and 500. Since
in each experiment there are 10 queries performed, in each figure there are 10
numbers corresponding to the elapsed time.

In Figure 7 top left the experiment was conducted with 500 moving objects
and query size equal to 0.1. In this figure, the execution time for the XBR tree
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is significantly less than the time for the PMR tree. Another observation, as far
as the experiment is concerned, is that the time spent for the PMR tree shows
an instant great increase during the queries from 5 to 8. This instability in the
PMR tree shows that there is no guarantee for the time needed, which can be
either small or bigger. In Figure 7 top right 700 moving objects are considered in
combination with 0.01 queries. As in the previous experiment, the time needed
by the XBR tree in this figure is significantly less. Furthermore, the time spent
by the PMR tree still appears to show a great instant increase during the queries
from 4 to 8. Finally, in Figure 7 bottom there are 500 moving objects and 0.001
range queries. In this case, again, the XBR tree consumes significantly less time
than the PMR tree for all the range queries conducted. Note that this happens
contrary to the higher number of disk accesses needed by the XBR tree (Figure
5 bottom). In other words, although for 0.001 range queries the PRM quadtree
slightly outperfoms the XBR tree in disk accesses, overall (in execution time)
the XBR tree significantly outperforms the PMR quadtree.

55 Number of disk accesses for queries with range 0.1
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Fig. 8. Node Accesses.

As a final experiment, in Figure 8 we counted the number of disk accesses
that were required for the XBR tree. The parameter in this experiment is the
number of moving objects, which varies from 1000 to 5000, whereas the query
range into consideration is 0.1 of the whole space. The reader may ask why we
have not presented results for the PMR quadtree also. The answer is that, for
these cardinalities of moving objects, the execution needed to gather such results
for the PMR quadtree was excessive.

5 Conclusions and Future Work

Considering the great application demands for monitoring of mobile objects, to
be able to efficiently locate and answer queries related to the position of these
objects in time is very important. More specifically, modern applications, such as
Mobile Computing and Geographic Information Systems, make the development
of research within this field inevitable.

In this paper, we proposed a method, XBR trees, that follows the Embed-
ding Space Hierarchy and can efficiently keep track of the moving objects his-
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tory and answer spatiotemporal range queries. According to the experimenta-
tion presented, this scheme is indeed efficient. In all experiments conducted, the
XBR tree outperforms the PMR quadtree (the only Embedding Space Hierarchy
method up to now that has been proposed for monitoring moving objects). Even
in the case of very small query ranges, where the PRM quadtree slightly outper-
formed the XBR tree in disk accesses, overall (in execution time) the XBR tree
significantly outperformed the PMR quadtree.

The queries answered during experimentation were statiotemporal range que-
ries that tracked the history of the motion of the moving objects. One possible
future extension to this investigation is the implementation and experimentation
with other types of spatiotemporal queries. Such types may include

— mnearest neighbor queries (e.g. ‘indicate the nearest neighbor of an object at
each position of its trajectory’, a query of great importance), or

— spatiotemporal joins, namely queries that deal with moving objects combined
with moving regions (e.g. ‘Find all airplanes that intersect clouds while they
move’).

Future research may also include

— experimenting with 3-dimensional versions of the quad-based trees (to com-
bine time and the two coordinates X and Y in a single indexing structure),

— employing alternative buffering methods to improve tree performance, or

— comparing the XBR tree indexing method with other spatiotemporal trees
(especially ones following the Object Space Hierarchy, like R-tree based
structures), so that we can come up with more general conclusions about
the winner structure for moving objects management.
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