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Abstract. Research in spatio-temporal databases has largely focused on
extensions of access methods for the proper handling of time changing
spatial information. In this paper, we present the Multiversion Linear
Quadtree (MVLQ), a spatio-temporal access method based on Multiver-
sion B-trees (MVBT) [2], embedding ideas from Linear Region Quadtrees
[4]. More specifically, instead of storing independent numerical data ha-
ving a different transaction-time each, for every consecutive image we
store a group of codewords that share the same transaction-time, whereas
each codeword represents a spatial subregion. Thus, the new structure
may be used as an index mechanism for storing and accessing evolving
raster images. We also conducted a thorough experimentation using se-
quences of real and synthetic raster images. In particular, we examined
the time performance of temporal window queries, and provide results
for a variety of parameter settings.

1 Introduction

Spatial Databases (SDBs) represent, store and manipulate spatial data, such as
points, lines, surfaces, volumes and hyper-volumes in multi-dimensional space.
Numerous applications require efficient retrieval of spatial objects: geographical
information systems (GIS), image and multimedia databases, urban planning,
computer-aided design (CAD), rule indexing in expert database systems, etc.
The traditional indexing methods are not suitable to store spatial data because
of their inability to implement a total ordering of objects in space and preserve
proximity, at the same time. References [5,10] are extensive surveys with detailed
methodology and algorithms of a plethora of techniques for spatial data.

On the other hand, Temporal Databases (TDBs) support the maintenance of
time-varying data and specialized queries on them. Conventional databases are
not suitable to handle continuously changing data, since they can store only one
version of data, the one applicable at present time. Therefore, whenever a piece
of data is not valid any longer, it is either deleted or updated, at the physical
level.
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Two concepts of time are usually considered in TDBs, valid and transaction
time. According to [6], valid time is the time during which a fact is true in the
real world. Transaction time is the time during which a piece of data is recorded
in a relation. Each of these two notions of time is comprised by a start time point
and an end time point or, equivalently, an interval [StartTime, EndTime) and
has specific properties associated with it. A TDB handling valid time only is
called valid or historical. When it handles transaction time only, it is then called
transaction or rollback. When handling both of these notions of time at once it
is called bi-temporal. A number of access methods for temporal data have been
proposed up to now. Some of these methods achieve acceptable performance in
real-life applications [12].

Until recently the fields of temporal and spatial databases remained two se-
parate worlds. However, modern applications (GIS, time-sequence analysis and
forecasting, animation etc.) demand the efficient manipulation of spatial infor-
mation that change over time. Spatio-temporal Databases (STDBs) are spatial
databases in which data objects may change their spatial locations and/or their
shapes at different time intervals. In these databases, special implementation
techniques should be developed for efficient storage and access of spatial ob-
jects, their geometric representations and their time-varying characteristics. Re-
ference [1] is an excellent survey on the advances made during the last years, in
spatio-temporal database research.

The fundamental objective of the proposed study is to present an efficient
spatio-temporal access method (STAM) for storing and accessing evolving raster
images (regional data). Efficiency is considered in terms of space requirements
and time performance during query processing. The new indexing structure that
is based on transaction time is called Multiversion Linear Quadtree (MVLQ).

The motivation for devising this new spatio-temporal access method is the
Multiversion B-tree (MVBT) [2], however the proposed method differs for a num-
ber of reasons. Instead of storing independent numerical data having a different
transaction-time each, for every consecutive image MVLQ stores a group of co-
dewords that share the same transaction-time, whereas each codeword represents
a spatial subregion. As a consequence, the algorithms of insertion, deletion and
update processes in MVLQ are significantly different from the corresponding al-
gorithms in MVBT. This is due to fact that after a batch operation with many
insertions, deletes and updates of data records at a specific transaction-time, we
may have significant different policies in node splitting and merging.

MVLQ has analogous functionality to another significantly different struc-
ture proposed by the authors, Overlapping Linear Quadtrees (OLQs) [14,15,17].
Both structures have the same origin, Linear Region Quadtree (LRQ) [4]. Howe-
ver, MVLQ stores the codewords present in LRQs in a modified MVBT, while
OLQs apply the technique of overlapping in a sequence of LRQs. The purpose
of this article is to present the MVLQ along with an initial experimental study
of the time performance of temporal window queries, and provide results for a
variety of parameter settings. We conducted a thorough experimentation using
sequences of real and synthetic raster images. A comparison with OLQs is a
research activity in progress.
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The rest of the paper is organized as follows. Section 2 provides a description
of the new structure. Section 3 discusses query processing in MVLQ. Section 4
presents experimental results regarding space requirements and query perfor-
mance. Finally, Section 5 concludes the paper introducing, also, ideas for further
research.

2 The New Structure

2.1 Framework and Assumptions

In our discussion of STDBs we assume that a sequence of evolving raster images
is stored in the database. Each of these images is represented as a 2n × 2n array
of pixels ordered by rows, where n is a positive integer. If the pixel colors are
black and white only, the image is said to be a binary one, where 1 stands for
black and 0 for white color. Each image has a unique timestamp1 Ti, where i=1,
2, ..., N , and N is the total number of images. This temporal attribute expresses
transaction time.

A transaction time STAM implicitly associates a time interval to each record
representing a spatial object. When a new record is inserted at time T1, this
time interval is set equal to [T1, ∗) 2. A “real world” deletion at time point T2
is implemented as a logical deletion by changing the EndTime timestamp of the
time interval from * to T2.

2.2 Quadtrees and Linear Quadtrees for Regional Data

The region Quadtree is based on the successive decomposition of two-dimensional
binary raster images into four quadrants of 2n−1 × 2n−1 pixels. If a part of an
image is not covered entirely by black or white, it is recursively subdivided into
four subquadrants, until each subquadblock is entirely unicolor. An example of
binary raster image arrays of pixels and their corresponding region Quadtrees
appears in Fig. 1.

The region Quadtree is a main memory structure. However, the represented
image may be very large and its Quadtree can not be stored in main memory. In
such a case, information about the leaves that correspond to black quadblocks
of the image array, can be inserted into a B+-tree producing, thus, a pointer-
less version of the Quadtree. The latter method is called Linear region Quadtree
(Linear Quadtree in the sequel, [4,10]).

Each black Quadtree node is represented by a pair of numbers (C, L). The
first number C is termed a locational code and denotes the correct path to this
node, traversing the Quadtree from its root till the appropriate leaf. Each one of
the n digits of C can be 0,1,2 or 3 corresponding to quadrants NW, NE, SW and
1 “A timestamp is a time value associated with some object, e.g. an attribute value

or a tuple” [6]
2 The symbol ‘*’ refers to now which is a special value in TDBs. Its usage means that

the respective object will be valid until some time point far in the future, that is not
known beforehand.
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Fig. 1. Two similar binary 23 × 23 raster images (left) and their corresponding region
Quadtrees (middle) and Linear region Quadtrees (right).

SE, respectively. The second number L of the pair is the Quadtree level where
the node is located.

This linear representation of the Quadtree nodes, is called FD (Fixed length
- Depth) linear implementation. The interested reader can find two other linear
implementations in the literature: FL (Fixed Length) and VL (Variable Length)
(see [11] for details). For reasons that are explained in [14], the choice of the
linear representation for the black Quadtree nodes was the FD (Fixed length -
Depth) implementation. The right part of Fig. 1 presents two different Linear
Quadtrees that can be obtained from the corresponding Quadtrees in the middle
of the same figure. For simplicity, only the FD locational codes (quadcodes in the
sequel) of the black nodes appear in the Linear Quadtrees, whereas the levels of
the nodes are not shown.

2.3 Multiversion Linear Quadtree

If a sequence of N images has to be stored in a Linear Quadtree, each image la-
beled with a unique timestamp Ti (for i=1, 2, ..., N), then updates will overwrite
old versions and only the last inserted image will be retained. In applications
where spatial queries refer to the past, all the successive versions of the struc-
ture need to be accessible. MVLQ converts the ephemeral Linear Quadtree to a
persistent data structure [3], where past states are also maintained.

MVLQ couples time intervals with spatial objects in each node. Data records
residing in leaves contain records of the form < (C, L), T > where (C, L) is the
FD code of a black node of the region Quadtree and T represents the time interval
when this black node appears in the image sequence. Nonleaf nodes contain
entries of the form < C ′, T ′, P tr >, where Ptr is a pointer to a descendent node,
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C ′ is the smallest C recorded in that descendent node and T ′ is the time interval
that expresses the lifespan of the latter node.

In each MVLQ node, we added a new field, called “StartT ime”, to hold
the time instant when it was created. This field is used during the modification
processes and will be examined further, later. Moreover, in each leaf we added
one more extra field called “EndTime”, to register the transaction time when
a specific leaf changes and becomes historical. The structure of the MVLQ is
accompanied by two additional main memory sub-structures:

– the root* table: it is built on top of MVLQ. MVLQ hosts a number of version
trees and has a number of roots in such a way that each root stands for a
time/version interval T ′′=[Ti, Tj), where i, j ∈ {1, 2, ..., N} and i < j. Each
record in the root* table represents a root of MVLQ and obeys the form
< T ′′, P tr′ >, where T ′′ is the lifespan of that root and Ptr′ is a pointer to
its physical disk address.

– the Depth First-expression (DF-expression, [7]) of the last inserted image:
its usage is to keep track of all the black quadblocks of the last inserted
image, and to be able to know at no I/O cost, the black quadrants that
are identical between this image and the one that will appear next. Thus,
given a new image, we do know beforehand which exactly are the FD code
insertions, deletions and updates. The DF-expression is a compacted array
that represents an image in the preorder traversal of its Quadtree.

As we claimed earlier the basis for the new access method is the MVBT. Ho-
wever, its algorithms of insertion, deletion and update processes are significantly
different from the corresponding algorithms in the MVBT.

Insertion
If during a quadcode insertion, at time point Ti, the target leaf is already full, a
node overflow occurs. Depending on the StartTime field of the leaf, the structural
change may be triggered in two ways.

– If StartT ime=Ti then a key split occurs and the leaf splits. Assuming that b
is the node capacity, after the key split the first db/2e entries of the original
node are kept in this node and the rest are moved to a new leaf.

– Otherwise, if StartT ime < Ti, a copy of the original leaf must first be allo-
cated, since it is not acceptable to change past states of the spatio-temporal
structure. In this case, we remove all non-present (past) versions of quad-
codes from the copy node. This operation is called version split [2] and the
number of present versions of quadcodes after the version split must be in
the range from (1+e)d to (k–e)d, where k is a constant integer, d=b/k and
e > 0. If a version split leads to less than (1+e)d quadcodes, then a merge
is attempted with a sibling or a copy of that sibling containing only its pre-
sent versions of quadcodes (the choice depends on the StartTime field of the
sibling). If a version split leads to more than (k–e)d quadcodes in a node,
then a key split is performed.
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Deletion
Given a “real world” deletion of a quadcode at time point Tj , its implementation
depends on the StartTime field of the corresponding leaf.

– If StartT ime=Tj then the appropriate entry of the form < C, L, T > is
removed from the leaf. After this physical deletion, the leaf is checked whether
it holds enough entries. If the number of entries is above d, then the deletion
is completed. If the latter number is below that threshold, then the node
underflow is handled as in the classical B+-tree, with one difference that if a
sibling exists (preferably the right one) then we have to check its StartTime
field before proceeding to a merge or a key redistribution.

– Otherwise, if StartT ime < Tj then the quadcode deletion is handled as a
logical deletion, by updating the temporal information T of the appropriate
entry from T=[Ti, ∗) to T=[Ti, Tj), where Ti is the insertion time of that
quadcode. If an entry is logically deleted in a leaf with exactly d present
quadcode versions, then a version underflow [2] occurs that causes a version
split of the node, copying the present versions of its quadcodes into a new
node. Evidently, the number of present versions of quadcodes after the ver-
sion split is below (1+e)d and a merge is attempted with a sibling or a copy
of that sibling.

Update
Updating (i.e. changing the value of the level L of) an FD code leaf entry at
time point Tj is implemented by (i) the logical deletion of the entry and (ii) the
insertion of a new version of that entry; this new version of the entry has the
same quadcode C but a new level value L′.

Example
Consider the two consecutive images (with respect to their timestamps T1=1
and T2=2) on the left of Fig. 1. The MVLQ structure after the insertion of
the first image is given in Fig. 2a. At the MVLQ leaves, the level L of each
quadcode should also be stored but for simplicity only the FD-locational codes
appear. The structure consists of three nodes: a root R and two leaves A and B.
The node capacity b equals 4 and the parameters k, d and e equal 2, 2 and 0.5,
respectively. The second version of the structure is constructed based on the first
one, by inserting the FD code < 002, 0 > (in the form < C, L >), the deletion of
< 102, 0 >, the insertion of < 103, 0 > and the deletion of FD codes < 120, 1 >
and < 333, 0 >.

Figure 2b shows the intermediate result of the insertion of FD code
< 002, 0 >, the deletion of < 102, 0 > and the insertion of FD code < 103, 0 >.
When we attempt to insert the quadcode 103 in the leaf A of Fig. 2b, the leaf
overflows and a new leaf C is created after a version split. All present versions
of quadcodes of leaf A are copied into leaf C and the parent R is updated for
the structural change. Leaf C holds now more than (k–e)d=3 entries and a key
split is performed producing a new leaf D. Again, the parent R is updated.

The final status of MVLQ after the insertion of the second image is illustrated
in Fig. 2c. The quadcode 120 is deleted from leaf D of Fig. 2b and a node
underflow occurs (the number of entries is above d), which is resolved by merging
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Fig. 2. (a) The MVLQ structure after the insertion of the first image, (b) a preliminary
result during the insertion of the second image, and (c) the final result after the insertion
of the second image.

this node with its right sibling B or a copy of it, containing only its present
versions of quadcodes. After finding out that the StartTime field of leaf B is
smaller than T2, a version split on that leaf is performed, which is followed by
a merge of the new (but temporary) leaf E and leaf D, in leaf D. The process
terminates after the physical deletion of quadcode 333 from leaf D. The final
number of entries in leaf D equals d. Both versions of MVLQ (Fig. 2a and
Fig. 2c) have the same root R, although in general, more than one roots may
exist.

Generally, we face the insertion of a new image in two stages. The first
stage is to sort the quadcodes of the new image and compare this sequence
against the set of quadcodes of the last inserted image, using the binary table
of its DF-expression. Thus, there is no I/O cost for black quadrants that are
identical between the two successive images. During the next stage we use of the
root* table to locate the root that corresponds to the last inserted image. Then,
following ideas of the approach of [8], we build the new tree version by performing
all the quadcode insertions, updates and deletions in a batched manner, instead
of performing them one at a time. (We did not follow this approach in the
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example of Fig. 2 for simplicity reasons). It is obvious that after a batch operation
with insertions, deletions and updates at a specific time point, we may have
conceptual node splittings and mergings. Thus, a specific leaf may split in more
than two nodes and in a similar manner, more than two sibling leaves may merge
during FD code deletions.

3 Spatio-Temporal Window Query Processing

The MVLQ structure is based on transaction time and is an extension of MVBT
and Linear Quadtree for spatio-temporal data. It supports all the well-known
spatial queries for quadtree-based spatial databases (spatial joins, nearest neig-
hbor queries, similarity and spatial selection queries, etc.) without taking into
account the notion of time. However, the major feature of the new STAM, is that
it can efficiently handle all the special types of spatio-temporal window queries
for quadtree-based databases, described in detail in [15,17].

Window queries have a primary importance since they are the basis of a
number of operations that can be executed in a STDB. Given a k × k window
and a sequence of N binary images stored in a STDB, each one associated with
an unique timestamp Ti (where i=1, 2, ..., N), we considered the satisfaction of
the following queries by the use of MVLQ:

– The Strict Containment Window Query
– The Border Intersect Window Query
– The General Border Intersect Window Query
– The Cover Window Query
– The Fuzzy Cover Window Query

Definitions and algorithms for the processing of the above queries were described
in [15,17] and can be applied to MVLQ with slight modifications. For brevity,
the description of these modifications is not included in this report.

In order to improve spatio-temporal query processing on raster images, we
added four “horizontal” pointers in every MVLQ leaf. The use of these pointers
was first introduced in [13] and later it was adapted to spatiotemporal data
in [14]. This way there is no need to top-down traverse consecutive tree instances
to search for the history of a specific FD code and excessive page accesses are
avoided. The names of these pointers are: B-pointer, BC-pointer, F-pointer and
FC-pointer. Their roles and functions are described in [14].

Alternative naive approaches for answering the above spatio-temporal queries
are easy to devise. The respective algorithms would perform a suitable range
search for every MVLQ version that corresponds to the given time interval as if
each one of them was separately stored in an LRQ, starting from the respective
MVLQ roots. These alternative approaches would not take into account the
horizontal pointers resulting in significantly worse I/O performance.
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4 Experiments

4.1 Preliminaries

The MVLQ structure was implemented in C++ and all the experiments were
performed by using the following parameter values. Assuming that the page size
is 1K, the size of a time interval is 8 bytes, the size of an FD locational code
as well as the size of a pointer are 4 bytes each, and the size of the level of
an FD code is 1 byte, we conclude that the internal nodes of the MVLQ can
accommodate 60 < C ′, T ′, P tr > entries, whereas leaves contain 75 records of
the format < (C, L), T >. For a given node capacity b, it is useful for the time
complexity to choose a large d, whereas k should be as small as possible [2]. To
guarantee a good space utilization it is also useful to choose a large e. It has
been proved that the maximum value of e is equal to e=1–1/d, whereas for the
parameter k, the following inequality should hold [2]:

k ≥ 2 + 3e − 1
d

(1)

Thus, for a leaf (internal) node capacity equal to b=75 (b′=60), the values used
in experimentation for the above parameters were: d=15 (d′=12), k=5, and
e=0.933 (e′=0.916).

The evolving images were synthetic and real raster binary images of sizes:
512×512 and 1024×1024 pixels. For the experiments with synthetic (real) ima-
ges, the number of evolving images was N=2 (N=26). The size of the DF-
expression, for a 512×512 image is 85.3 Kbytes, whereas for a 1024×1024 image
it is 341.3 Kbytes in the worst case. Therefore, in any case it is small enough to
be stored in main memory. For every insertion of a new image (for converting it
from raster to linear FD representation) in the MVLQ, we used the algorithm
OPTIMAL BUILD described in [10].

We performed an extensive experimentation with respect to the storage per-
formance. For brevity, we do not include any such results. However, the interested
reader may find additional details and results in [16].

4.2 Query Processing

Each sophisticated algorithm for the five spatio-temporal window queries was
executed several times for different window sizes and in a random window po-
sition every time. Besides, the respective naive algorithms were executed by
performing independent searches through multiple MVLQ roots. In each run,
we kept track of the average number of disk reads needed to perform the query
per time point. For a more effective comparison of the two different algorithmic
approaches, we excluded from the measurement the number of disk reads spent
for the very first image of the sequence of the N images. The reason is that
both algorithms would perform the same range search in the corresponding tree
instance, starting from its root and, thus, accessing the same number of disk
pages. We are interested only in the I/O cost profit we can succeed by the use
of the horizontal pointers.
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Fig. 3. The I/O efficiency of the Strict Containment (upper left) of the Cover (upper
right) and Fuzzy Cover Window Query (lower middle).

Experiments with Synthetic Data Sets

Every experiment was repeated 10 times using a pair of similar images. In the
beginning, the first image was created with a specific black/white analogy and
an aggregation coefficient agg() that was increased at various amounts. The
quantity agg() has been defined in [9] and expresses the coherence of regions of
homogeneous colors in an image. Starting from a random image and using the
algorithm presented in [9], an image with exactly the same black/white analogy
and higher aggregation (more realistic, including larger regions covered entirely
by black or white) can be created. After the insertion of the first image, the
second image was created by randomly changing the color of a given percentage
(2%) of the pixels of the first image. Finally, the FD codes of that image were
compared with those of the previous image and inserted in the MVLQ. Note
that the random changing of single pixels is an extreme method of producing
evolving images and the results derived by this policy should be seen as very
pessimistic. In practice, much higher performance gains are expected. Windows
of sizes ranging from 4×4 to 128×128 pixels were queried 10 times each against
the structure produced. Thus, every algorithm was executed 10×10 times.

The performance of the sophisticated and the naive algorithms is illustrated
in Fig. 3. The upper left (upper right) part shows the I/O cost of the Strict
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Containment (Cover) Window Query as a function of the aggregation coefficient
(of the window size) for 50% black images (70% black images and aggregation
coefficient equal to 0.7). The lower middle part shows the I/O cost of the Fuzzy
Cover Window Query for 80% threshold and 70% black images, as a function
of the aggregation coefficient. The linear decrease of the I/O cost for the naive
algorithms of the Strict and Fuzzy Cover Window Queries is explained by the fact
that images with larger aggregation form larger and solid black spatial regions
(“islands”) and thus the corresponding Linear Quadtree holds less number of
FD codes. An interesting remark is that the use of horizontal pointers leads to a
remarkably high and stable I/O performance for all the spatio-temporal window
queries examined.

Experiments with Real Data Sets

In the sequel, we provide the results of some experiments based on real raster
images, which were meteorological views of California, and may be acquired via
anonymous FTP from ftp://s2k-ftp.cs.berkeley.edu/pub/sequoia/bench-
mark/raster/. These images correspond to three different categories of spectral
channels: visible, reflected infrared, and emitted (thermal) infrared. Originally,
each 8-bit image pixel represented a value in a scale of 256 tones of gray. We
transformed each image to a binary one, by choosing a threshold accordingly, so
as to achieve a black analogy ranging between 20% and 80%. The total number
of evolving binary images was N=26 in every channel, and, therefore, the time
point values varied from T1=1 to TN=26.

Figure 4 depicts three successive images of the visible spectrum. Table 1
shows that from the comparison of the 26 consecutive images of the visible
spectral channel, the average percentage of pixels changing value from each image
to the following one is from 12.5% to 21.2%, depending on the average percentage
of the black/white analogy. Thus, many differences appear from image to image
(Fig. 4 confirms also this fact) and it could be argued that the specific images
are not the most suitable data to test the performance of MVLQ and the results
produced should be seen as very pessimistic.

It is self-evident that the larger the image difference in percentage of pixels,
the worse the query time performance of the sophisticated algorithmic approa-

Fig. 4. Three successive 60% black images.
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Table 1. Values of different parameters came up from the experimentation with the
26 consecutive images of the visible spectral channel.

Average values in N=26 images
Black analogy 20% 40% 60% 80%
Difference 16.22% 21.22% 18.77% 12.49%
Aggr. coefficient 89.70% 92.38% 95.55% 98.18%

ches. However, the query performance results we obtained with these real images
were encouraging in such a worst case environment.

Windows of sizes ranging from 4×4 to 256×256 pixels were queried 50 times
each against the structure produced. It is important to highlight that we are only
interested in the I/O cost profit we achieve by the use of horizontal pointers for
the images 2 to 26.

The upper left (upper right) part of Fig. 5 depicts the time performance of
the Strict Containment (Fuzzy Cover) Window Query as a function of black
analogy (and threshold 80%), for two different window sizes. The lower middle
part presents a general performance comparison of the I/O cost of the sophisti-
cated algorithms for the four different window queries and window size 128×128.
Again, a general remark from the diagrams, is that the use of horizontal poin-
ters leads to significantly higher I/O efficiency for all the spatio-temporal window
queries examined.

5 Conclusions

In the present paper, we proposed a new spatio-temporal structure: Multi-
Version Linear Quadtree. This access method is based on transaction time and
can be used as an index mechanism for consecutive raster images. Five effi-
cient algorithms for processing temporal window queries were also adapted to
an image database organized with MVLQ. It was demonstrated that this struc-
ture can be used in spatio-temporal databases to support query processing of
evolving images. More specifically, we studied algorithms for processing the fol-
lowing spatio-temporal queries: Strict Containment, Border Intersect, General
Border Intersect, Cover and Fuzzy Cover Window Queries. Besides, we presen-
ted experiments performed for studying the I/O efficiency of these algorithms.
The latter experiments were based on real and synthetic sequences of evolving
images. In general, our experiments showed clearly that, thanks to the “horizon-
tal” pointers in the MVNQ leaves, our algorithms are very efficient in terms of
disk activity.

In the future, we plan to compare the space and time performance of MVLQ
to those of OLQs. We also plan to develop algorithms for other new spatio-
temporal queries that take advantage of MVLQ, OLQs and other Quadtree-based
STAMs and study their behavior. Moreover, we plan to investigate the possibility
of analyzing the performance of such algorithms. Also, it is considered important
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Fig. 5. The I/O efficiency of the Strict Containment (upper left), the Fuzzy Cover
Window Query (upper right) and performance comparison of four different window
queries (lower middle) as a function of the black/white analogy of the evolving images.

to examine the performance of MVLQ and OLQs in the context of various spatio-
temporal operations, such as spatio-temporal joins, as well as spatio-temporal
nearest neighbor queries [18].
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