
Finding Generalized Path Patterns
for Web Log Data Mining ?

Alex Nanopoulos and Yannis Manolopoulos

Data Engineering Lab,
Department of Informatics, Aristotle University

54006 Thessaloniki, Greece
{alex,manolopo}@delab.csd.auth.gr

Abstract. Conducting data mining on logs of web servers involves the
determination of frequently occurring access sequences. We examine the
problem of finding traversal patterns from web logs by considering the
fact that irrelevant accesses to web documents may be interleaved within
access patterns due to navigational purposes. We define a general type of
pattern that takes into account this fact and also, we present a level-wise
algorithm for the determination of these patterns, which is based on the
underlying structure of the web site. The performance of the algorithm
and its sensitivity to several parameters is examined experimentally with
synthetic data.

1 Introduction

Log data which are collected by web servers contain information about user
accesses to the web documents of the site. The size of logs increases rapidly
due to two reasons: the rate that data are collected and the growth of the web
sites themselves. The analysis of these large volumes of log data demands the
employment of data mining methods.

Recently, several methods have been proposed for mining web log data [10,
14,16]. Following the paradigm of mining association rules [1], mined patterns
are considered to be frequently occurring access sequences. An example of this
kind of pattern is a sequence 〈D1, . . . , Dn〉 of visited documents in a web site. If
such a sequence appears frequently enough, then it indicates a pattern which can
be useful for designing purposes of the web site (advertising), users motivation
with dynamic web documents, system performance analysis, etc.

The transformation of web log files to a data format similar to basket data is
discussed in [9]. Each user session is split into several transactions, requiring that
all accesses inside each transaction are close in time. Then, existing algorithms
for mining association rules (e.g. Apriori) are used over the derived transactions.
In [7], a more sophisticated transformation (algorithm MF) is proposed which
identifies inside a transaction all maximal forward sequences, i.e. all sequences
comprising accesses which have not been made by a backward movement. In
? Work supported by a national PABE project.

J. Štuller et al. (Eds.): ADBIS-DASFAA 2000, LNCS 1884, pp. 215–228, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

216 A. Nanopoulos and Y. Manolopoulos

the same paper, a variation of mining association rules with hash filtering and
transaction trimming is proposed (algorithm Full Scan–FS). Also, by exploiting
main memory, another algorithm is proposed (Selective Scan – SS), which is able
to skip several database scans and count candidates belonging to many phases,
within the same database scan. Finally, a different approach is followed in [5].
More specifically, one database scan is performed and the number of occurrences
of each pair of accesses is determined, i.e. for each pair of web documents A
and B the number of times pair AB occurred is counted. Then, the notion of
composite association rule is defined which is based on the frequencies counted at
the previous step. Two algorithms are proposed (Modified DFS and Incremental
Step) for finding composite association rules.

Although all previous approaches mine patterns from access information con-
tained in a log file, these patterns differ significantly. For the first approach, the
patterns are standard association rules which are mined with existing algorithms.
These rules do not take into account the web site structure. Thus, this approach
may overevaluate associations, which do not correspond to the actual way of
accessing the site. The method of maximal references finds frequently occurring
sequences of consecutive accesses. As will be presented in more detail in Section
2.2, this approach is sensitive to noise, since patterns which are corrupted by
noisy accesses, loose the property of consecutiveness. The composite-association
rules method counts the frequencies of sequences of length two and, based on
these frequencies, estimates the remaining ones of larger sequences, without ve-
rifying the estimates with the database contents. This approach is based on the
assumption that the probability of an access depends only on the previous access
(first-order markov property), which does not hold in all cases.

In this paper, we give a definition of traversal pattern, adopting the meaning
given in [7], but we do not pose the constraint that accesses should be conse-
cutive inside the patterns during the frequency counting procedure. These diffe-
rences from the existing approach require the development of a new algorithm
for finding such traversal patterns. We present an algorithm for generating and
counting the support of candidate patterns that is level-wise, as the Apriori-like
methods, which takes into account the underlying web site structure. Although
the general structure of the proposed algorithm is Apriori-like, the data struc-
tures and the procedures for support counting and candidate generation differ
significantly and these operations are performed efficiently by considering the
site structure. The performance of the algorithm is examined experimentally,
using synthetic data.

The rest of this paper is organized as follows. Section 2 gives background
information and a brief overview of algorithms Full Scan and Selective Scan [7].
The problem statement is given in Section 3. Section 4 presents the level-wise
algorithm, whereas Section 5 contains the performance results of the algorithm.
Finally, Section 6 gives the conclusions and directions of future work.

Finding Generalized Path Patterns for Web Log Data Mining 217

2 Background

2.1 Definitions

A web site can be abstractly viewed as a set of web documents connected with
hypertext links. The site can be represented by a simple unweighted directed
graph, which is a finite set of vertices and arcs. A vertex corresponds to a docu-
ment and an arc to a link. Each arc joins an ordered pair of vertices. The graph
contains no loops (i.e. arcs joining a vertex with itself), no parallel arcs (i.e. arcs
joining the same ordered pair of vertices), whereas no weight (e.g. distance, cost,
etc.) is associated with any arc. Since traversal patterns contain information ab-
out user access, no quantitative (e.g. weights) or duplicate (e.g. loops, parallel
arcs) information has to be considered 1. An example of a simple, directed graph
is illustrated in Figure 1.

A

C

D

E

B

Fig. 1. A directed graph.

A traversal in the site is a sequence of consecutive arcs, i.e. links, that can be
represented with the sequence of the terminating vertices of each arc. The length
of the traversal is defined by the number of contained vertices. The traversals
are contained in the log file. Each entry in the log is of the form (userID, s,
d), which denotes the user identification number, the starting position s and
the destination position d. Although the actual representation of a log may be
different, since it contains additional information, for the purpose of mining
traversal patterns, the log can be abstractly viewed as described previously. The
beginning of a new traversal is marked with a triplet (userID, null, d). All pairs
corresponding to the same user identification number are grouped together to
form a traversal.

In many cases, duplicate arcs or vertices inside the traversal do not contain
useful information, like backward movements [7]. This type of traversal where
each arc and vertex is distinct, is called a path. In the example of Figure 1,
〈A, B, D, C〉 is a path, whereas 〈B, D, E, B, C〉 is not.
1 In case the graph structure is not simple, a simple graph can be derived by omitting

loops, multiple edges and weights

218 A. Nanopoulos and Y. Manolopoulos

Definition 1 Any subsequence of consecutive vertices in a path is also a path
and is called a section. A section is contained in the corresponding path. If P
represents a path 〈p1, . . . , pn〉, then S = 〈s1, . . . , sm〉 is a section of P , if there
exist a k ≥ 0 such that pj+k = sj for all 1 ≤ j ≤ m. 2

In the example of Figure 1, 〈A, B, D〉 is a section of path 〈A, B, D, C〉. The
criterion of section containment requires that the vertices (and the corresponding
arcs) are consecutive in the path. If this is not required then we define a subpath.

Definition 2 Given a path P = 〈p1, . . . , pn〉 in a graph G, we call subpath of
P , the sequence SP = 〈sp1, . . . , spm〉 for which:

– ∀ spi ∈ SP ⇒ spi ∈ P
– spi = pk and spj = pl and i < j ⇒ k < l,∀i < j 2

In other words, the vertices (and arcs) of the subpath belong also to the corre-
sponding path and the order of their appearance in the path is preserved in the
subpath. Additionally, the subpath itself is a path in the corresponding graph.
In the example of Figure 1, 〈A, B, C〉 is a subpath of 〈A, B, D, C〉. The following
lemma shows that the notion of subpath is a generalization of that of section.

Lemma 1 If P = 〈p1, . . . , pn〉 is a path and S = 〈s1, . . . , sm〉 a section of P,
then S is also a subpath of P.

Proof. Since P is a path, S is also a path. Also, since S is a section of P ,
then it holds that: ∀ si ∈ S ⇒ si ∈ P . Finally, there exist a k ≥ 0 such
that: pj+k = sj for all 1 ≤ j ≤ m. If sj = pj+k and sj+1 = pj+k+1, then for
j < j + 1⇒ j + k < j + k + 1, which is true for all 1 ≤ j ≤ m. 2

Next, we present some quantitative conclusions regarding the number of sub-
paths. The proofs can be found in [12].

Lemma 2 A path P = 〈p1, . . . , pn〉 of length n has at least n − k + 1 and at
most (n

k) subpaths of length k. 2

Corollary 1 A path P = 〈p1, . . . , pn〉 of length n has at least two and at most
n subpaths of length n− 1. 2

Corollary 2 A path P = 〈p1, . . . , pn〉 of length n has exactly two sections of
length n− 1. 2

2.2 Overview of Maximal Reference Sequences

In algorithm MF [7], a preprocessing of the log file is performed to extract maxi-
mal forward references. First, each user session is identified. A session is further
decomposed into a number of transactions, 2 which are the paths resulting after
2 In the sequel, terms transaction and path are used interchangeably.

Finding Generalized Path Patterns for Web Log Data Mining 219

discarding all backward movements. After this step, a modified algorithm for
mining large itemsets is used. This algorithm is called Full Scan and resembles
DHP [13], an Apriori-like algorithm which uses hash-pruning and transaction
trimming. Also, algorithm Selective Scan is proposed, which exploits the availa-
ble main memory and merges several phases of the Apriori-like algorithm.

Algorithms Full Scan and Selective Scan do not find the supports of arbitrary
sets of vertices, as the standard algorithms for association rules do, but they take
into account the ordering of vertices inside the transactions. These algorithms
determine all large reference sequences, i.e. all sections (see Definition 2) of the
graph contained in a sufficient number of transactions. Recall that a candidate S
is contained as section in a path (transaction) P , if S is a section of P , i.e. pj+k =
sj for some k ≥ 0. For the candidate generation, a candidate S = 〈s1, . . . , sk+1〉
of length k +1 is generated by joining S′ = 〈s1, . . . , sk〉 and S′′ = 〈s2, . . . , sk+1〉,
if both these sections of S with length k were found large. With respect to
Corollary 2, S has only two sections of length k, i.e. S′ and S′′. In [7] it is not
explained if any candidate pruning takes place, like in Apriori and DHP where
every subset is tested if it is large. Since S′ and S′′ are the only sections of S,
any other combination of k vertices of S, even if it is a path in the graph, will
not be supported by the same transactions which support S. If a transaction
P contained S and a combination of k vertices S′′′ from S, then S′′′ would be
contained as a section by S, which contradicts with Corollary 2. Therefore, no
further candidate pruning can take place.

A

B

D

C

E

F G

Fig. 2. A transaction corrupted by irrelevant accesses during navigation.

The resulting patterns are all large maximal reference sequences, i.e. all pa-
ths with the maximum possible length, contained as sections in a number of
transactions which is larger than minSupport. Compared to standard associa-
tion rules, maximal reference sequences are traversal patterns. However, pat-
terns may be corrupted by noisy accesses which are random accesses, not parts
of a pattern, which are done during user navigation. Thus, inside a user tra-
versal, patterns are interleaved with noise. Figure 2, illustrates a transaction
T = 〈A, E, B, C, F, G, D〉. If P = 〈A, B, C, D〉 is the pattern (maximal refe-
rence sequence), then P is not a section of T and thus, it is not supported
by transaction T . If many transactions are corrupted, then pattern P will not
have adequate support and will be missed. Therefore, irrelevant accesses for na-
vigational purposes have an impact on the support of the patterns and their
determination.

220 A. Nanopoulos and Y. Manolopoulos

3 Mining Access Patterns Based on Subpath Definition

3.1 Problem Statement

Given a collection of transactions which are paths in a web site represented by
a graph, all paths contained as subpaths by a fraction of transactions which is
larger than minSupport are found. Following the notation of standard associa-
tion rules, this fraction is called support and all such paths are called large. As
described in Section 2.1, in the sequel we use the terms of vertex and arc in-
stead of web document and hypertext link. Finally, as a post-processing step, the
large paths of maximal length can be determined. Since this is a straightforward
operation, it will not be considered any further.

The database consists of paths in the given graph which can be derived
from the log file using algorithm MF [7]. A candidate path P is supported by
a transaction T , if P is a subpath of T . Thus, vertices corresponding to noisy
accesses in T do not affect the support of P . In the example of Figure 2, pattern
P = 〈A, B, C, D〉 is a subpath of transaction T = 〈A, E, B, C, F, G, D〉 although
it is not its section. Recall that P is a path in the graph and the ordering of
vertices in T is preserved. Following Lemma 1, the set of all large paths with
the subpath-containment criterion is a superset of all large references sequences
with the section-containment criterion. Figure 3 illustrates an example with a
database of five path transactions from the graph of Figure 1 with minSupport
equal to two.

Database
ID Path
1 〈A, B, C〉
2 〈B, D, E, C, A〉
3 〈C, A, B〉
4 〈D, C, A〉
5 〈B, C, A〉

C1

Candidate Sup.
〈A〉 5
〈B〉 4
〈C〉 5
〈D〉 2
〈E〉 1

L1

Candidate Sup.
〈A〉 5
〈B〉 4
〈C〉 5
〈D〉 2

C2

Candidate Sup.
〈A, B〉 2
〈A, C〉 1
〈B, C〉 3
〈B, D〉 1
〈C, A〉 4
〈D, C〉 2

L2

Candidate Sup.
〈A, B〉 2
〈B, C〉 3
〈C, A〉 4
〈D, C〉 2

C3

Candidate Sup.
〈A, B, C〉 1
〈B, C, A〉 2
〈C, A, B〉 1
〈D, C, A〉 2

L3

Candidate Sup.
〈B, C, A〉 2
〈D, C, A〉 2

Fig. 3. Example of large path generation.

The differences in mining large paths compared to mining standard associa-
tion rules and reference sequences, require the development of a new algorithm
which has to be based on the graph structure and take into account the notion
of subpath containment.

Finding Generalized Path Patterns for Web Log Data Mining 221

3.2 Pruning with the Support Criterion

Apriori pruning criterion [1] requires that a set of items I = {i1, . . . , in} is
large only if every subset of I of length n − 1 is also large. In case of a path
S = 〈s1, . . . , sn〉, pruning can be performed based on the following lemma:

Lemma 3 A path S = 〈s1, . . . , sn〉 is large only if every subpath S′ of S, with
length n− 1 is also large.

Proof. See [12]. 2

With respect to Corollary 1, a path of length n has at least two and at most n
subpaths of length n− 1. Notice that in case of mining large reference sequences
[7], only the two sections of the path are considered (see Corollary 2). For the
determination of large paths, only the subpaths have to be tested, whose number
may be less than (n

n − 1) = n, as it is the case for itemsets. Therefore, not any
other combination of vertices, besides the subpaths, should be tested.

4 Determination of Large Paths

The determination of large paths can be performed in a level-wise manner, as
in the Apriori algorithm [1]. The general structure of the algorithm is given
bellow. The minimum required support is denoted as minSupport. Ck denotes
all candidates of length k, Lk the set of all large paths of length k, D the database
and G the graph.

Algorithm 1: Level-wise determination of large paths over a graph G
1) C1 ← the set of all paths of length 1
2) k = 1
3) while (Ck 6= ∅) {
4) for each path p ∈ D {
5) S = {s|s ∈ Ck, s is subpath of p}
6) for each s ∈ S, s.count++
7) }
8) Lk = {s|s ∈ Ck, s.count ≥ minSupport }
9) Ck+1 ← genCandidates(Lk, G)
10) k++
11) }

Although the general structure of the level-wise algorithm is similar to Apri-
ori, its components for

a. candidate support counting (steps 5 and 6), and
b. the generation of the candidates of the next phase (step 9)

differ significantly since the problem of determining large paths, as stated in
Section 3.1, presents several differences compared to the one of finding large

222 A. Nanopoulos and Y. Manolopoulos

itemsets. First, candidates have to be paths in the graph and not arbitrary com-
bination of vertices. Thus, the procedure of candidate generation (step 9) has to
form only valid candidates. It also has to perform apriori pruning with respect
to Lemma 3. For support counting (steps 6 and 7), the subpath containment
has to be performed with respect to Definition 2. These differences require an
algorithm which takes into account the graph structure. Additionally, although
existing data structures like the hash-tree and hash-table can be used for de-
termining large paths, as in [1,7], we use a trie data structure for counting the
supports and for storing the large paths. The procedure of generating candidate
paths for the next phase of the algorithm is performed with an efficient recur-
sion manner over the trie. It is necessary to notice that all improvements to the
Apriori algorithm, as in [13], are also applicable to Algorithm 1. Therefore, they
are not used in order to make the differences more clear.

4.1 Data Structures

First, we need to store the graph in a main memory data structure. Although
several approaches for the representation of graphs in secondary storage have
been reported [8,11], however, we assume that the graph size is such that the
graph can fit in main memory. The reason is that for the typical example of a
web site, the total number of graph vertices is less than a few thousands. The
graph is represented with its adjacency lists, which hold a list with all vertices
connected with an arc starting from graph vertex v, for each v. This list is
denoted as N+(v) and is called the positive neighborhood of v 3. The adjacency
list representation is more appropriate for less dense graphs, i.e. graphs with not
many arcs.

The candidate paths are held in a trie, an approach which is also followed in
[6,15] for itemsets. An important difference is that the fanout (i.e. the number
of branches from a trie node) in the case of paths is much smaller, compared
to the case of itemsets where any combination of items forms an itemset. This
way, the trie occupies less space. Large paths remain in the trie to advocate the
procedure of candidate generation.

4.2 Support Counting

The support counting for candidate paths (steps 5 and 6 in algorithm) is the
most computationally intensive part of Algorithm 1. At the k-th database scan,
the support of candidates of length k is counted. For each transaction P with
length n that is read from the database, all possible subpaths of length k have
to be determined (if P ’s length is less than k, it is ignored). P is decomposed
into all its (n

k) possible combinations of vertices (see Lemma 2) and each one
is searched. For those which exist in the trie, i.e. they are subpaths of P , their
3 The negative neighborhood N−(v) consist of all vertices w for which there is a vertex

from w to v.

Finding Generalized Path Patterns for Web Log Data Mining 223

support is increased by one. For example, if path P = 〈A, B, C, D〉 and k = 3,
then 〈A, B, C〉, 〈B, C, D〉, 〈A, B, D〉 and 〈A, C, D〉 are searched.

Since, in general, P has less than (n
k) subpaths, an unsuccessful search is

performed for each combination which is not a subpath. In the previous exam-
ple, 〈A, B, C〉 and 〈B, C, D〉 are definitely subpaths (see Corollary 1), while the
remaining two may not be subpaths. In the worst case, the complexity of each un-
successful search is O(k). Thus, the total cost in the worst case is O(k · [(n

k)−2]).
The search for those combination of vertices, which are not subpaths, could be
avoided only if for any combination of k vertices, it can be known that there
exist a path in the graph connecting these vertices. Algorithms which find the
closure of the graph can recognize if there exist a path connecting only two verti-
ces. Since the determination of the path existence would perform a search in the
graph with cost O(k) at the worst case, the total cost would again been equal
to O(k · [(n

k)− 2]).
As mentioned earlier, the advantage of the trie over the hash-tree, is that,

since candidates in hash-tree are only at leafs, at best k and at worst k + k ·m
comparisons are required for looking up a candidate, where m is the number of
candidates stored in a leaf of the hash-tree [1]. On the other hand, in case of a
trie, this operation requires k comparisons at the worst case. Apparently, hash-
tree requires less memory but, as explained, by storing only paths instead of
all arbitrary vertex combinations, memory requirements for the trie are reduced
significantly.

4.3 Candidate Generation

After having scanned the database, all large candidates of this phase have to be
determined (step 8) and all candidates for the next phase have to be generated
(step 9). In Apriori [1], these two steps are performed separately. First, all large
candidates Lk at phase k are determined and stored in a hash table. Then, a
join Lk 1 Lk is performed, using the hash table, for the generation of candidates
of phase k + 1. For each candidate of length k + 1, which belongs to the result
of Lk 1 Lk, all its k subsets of length k are searched whether they belong to Lk

(using again the hash table).
Joining Lk 1 Lk is done with respect to the first k − 1 items of the itemset.

For example, if k = 3 and two itemsets I1 = {1, 2, 3} and I2 = {1, 2, 4} are large,
then they are joined to form a possible candidate C = {1, 2, 3, 4}. If I1 or I2
does not exist, then C will not be a candidate since not all its subsets are large
(I1 or I2 are not large). Therefore, joining is performed for avoiding generating
candidates which will be pruned by the apriori-pruning criterion. As it is easy
to show, it is equivalent as if joining on any fixed k − 1 items was done, instead
of the first k − 1 ones.

In case of path candidates, their generation cannot be based on joining
Lk 1 Lk, on a fixed combination of k − 1 vertices, because each candidate
path C has a different number of large subpaths. For example, the first k − 1
vertices (as in Apriori) may not be present in any other subpath besides the

224 A. Nanopoulos and Y. Manolopoulos

one of the two sections of C (see Corollaries 1 and 2). Moreover, this joining
in Apriori is performed to reduce the number of examined possible candidates,
since any item can be appended to a candidate of length k to produce a possible
candidate of length k + 1. On the other hand, for candidate paths, only the
extensions from the vertices in the positive neighborhood of the last vertex are
considered, whose number is much less compared to the case of itemsets.

Therefore, for the generation of candidates of the next phase for Algorithm 1,
a different approach is followed and steps 8 and 9 are performed together. By
visiting all trie leaves, if a candidate L = 〈`1, . . . `k〉 is large, then the adjacency
list of N+(`k) (last vertex) is retrieved. For each vertex v in the adjacency list,
which does not belong to path L and subpath L′ = 〈`2, . . . , `k, v〉 is large, a
possible candidate C = 〈`1, . . . , `k, v〉 of length k + 1 is formed by appending v
at the end of L. Then, all subpaths of C of length k, besides L′, are searched
in the trie and if all are large, then C is considered to be a candidate of length
k + 1 by adding a branch in the trie from vertex `k to vertex v. The following
algorithm describes the candidate generation procedure.

Procedure: genCandidates(Lk, G)
//Lk is the set of large paths of length k and G is the graph
for each large leaf L = 〈`1, . . . , `k〉 of trie {

N+(`k) = {v | there is an arc `k → v in G}
for each v ∈ N+(`k) {

if (v not already in L) and L′ = 〈`2, . . . , `k, v〉 is large {
C = 〈`1, . . . , `k, v〉
if (∀ subpath S 6= L′ of C ⇒ S ∈ Lk)

insert C in the trie by extending `k with a branch to v
}

}
}
Correctness. See [12]. 2

All k − 2 possible subpaths S 6= L′ of length k of a candidate C have to be
searched in the trie structure to verify if they are large. During an unsuccessful
search of a possible subpath S, it has to be determined if it is not in the trie be-
cause it is not large or because it is not a valid subpath. Thus, if S = 〈s1, . . . , sk〉
and vertex si is not present, then it has to be tested if there is an arc si−1 → si

in the graph. If not, then S is not a valid subpath and is ignored. Otherwise, S
does not exist, because vertex si−1 was not expanded in a previous phase since
subpath 〈s1, . . . , si−1〉 was not large therefore, S is also not large and thus, C is
pruned.

With regards to the efficiency of the procedure genCandidates we notice the
following. For testing if the subpaths of a candidate are large, there is no need to
create a separate hash table (as in case of Apriori) because large candidates are
already present in the trie. Testing if a vertex from the adjacency list is already
present in the candidate path is done by using a temporary bitmap, which is
maintained during the visit of the trie leaves. This way, testing containment is

Finding Generalized Path Patterns for Web Log Data Mining 225

done in O(1). The way trie leaves are expanded by using the adjacency list of
their terminating vertex justifies the selection of the graph representation with
its adjacency lists. Finally, the trie grows dynamically with simple leaf extensions
and there is no need to create a hash-tree from the beginning, as in Apriori.

5 Performance Results

This section contains the results of the experimental evaluation of Algorithm 1
using synthetic data. The experiments were run in a workstation with one Pen-
tium III processor 450 MHz, 256 MB RAM, under Windows NT 4.0.

5.1 Synthetic Data Generator

First, the site structure has to be generated. Two significant parameters are the
total number N of web documents and the maximum number F of hypertext
links inside a document. Following the results of [3,4], each web document has
a size (in KB) which follows a mixed distribution: Lognormal, for sizes less
than 133 KB and Pareto for larger ones. This way, as presented in [4], 93%
of the documents are html documents and the remaining ones are large binary
objects (images, sounds, etc). For each document, its fanout, i.e. the number
of its hypertext links, is determined following a uniform distribution between 1
and F . Documents with sizes larger than 133 KB do not have links because we
assume they correspond to large binary objects.

Table 1. Symbols representing parameters of synthetic data.

Symbol Definition
N number of vertices
F maximum fanout
L average pattern length
P total number of patterns
C corruption level

Large paths are chosen from a collection of P paths which represent the
patterns. The length of each path pattern is determined by a Poisson distribution
with average length L. For the formation of each transaction, representing a
user traversal, one of the P path patterns is chosen with uniform distribution.
The corruption of patterns is represented with the corruption level C, which is
the number of vertices from the path pattern which will be substituted. This
number follows a Poisson distribution with average value C. Table 1 presents
all the symbols used in the following. Datasets are characterized by the values
for parameters L, F and D. For example, L5F3D100K denotes a dataset with
average path pattern length 5, maximum fanout 3 and 100,000 transactions.
More details for the synthetic data generator can be found in [12].

226 A. Nanopoulos and Y. Manolopoulos

5.2 Results

First, we examined the scale-up properties of Algorithm 1 with respect to the
number of database path transactions. Figure 4a illustrates the execution times
for databases with 1 × 106, 2.5 × 106 and 5 × 106 transactions. For this expe-
riment, the average pattern length L = 7, the number of patterns P = 1, 000,
the maximum fanout F = 15, and the corruption level C = 25%. Thus, these
sets can be denoted as L7F15D1M , L7F15D2.5M and L7F15D5M . Results
are represented for three characteristic values of minSupport. As it can be noti-
ced from Figure 4a, Algorithm 1 presents a linear scale-up with respect to the
database size.

Also, we examined the scale-up properties of Algorithm 1 with respect to the
site size, i.e. the number of the graph vertices. We used P = 1, 000, L = 7 and
D = 100, 000 transactions. The maximum fanout F = 15, since for large graphs
we would like that they are not very sparse, whereas C = 25%. The dataset is
denoted as L7F15D100K and Figure 4b illustrates the results for three number
of vertices: 1000, 2500 and 5000, again for the same three minSupport values.
As it can be seen, the execution times increases with respect to the number of
vertices since there are more candidates to be examined.

50

100

150

200

250

300

350

400

450

500

1000 2500 5000

tim
e

(s
ec

)

number of transaction paths (in ’000s)

P=1,000, L=7, F=15, D=100,000

minSupport=0.25
minSupport=0.15
minSupport=0.05

2

4

6

8

10

12

14

1000 2500 5000

tim
e

(s
ec

)

number of vertices

P=1,000, L=7, F=15, D=100,000

minSupport=0.25
minSupport=0.15
minSupport=0.05

Fig. 4. Scale-up results w.r.t.: a. number of transactions, b. number of web documents
(graph vertices).

Then, we examined the properties of Algorithm 1 with respect to the pattern
length. For this experiment, P = 1000 patterns, N = 1000 vertices, D = 100, 000
transactions, the maximum fanout F = 15 and the corruption level C = 25%.
Figure 5a illustrates the results for three average pattern lengths: 5, 10 and 15.
As shown, the execution time increases for larger lengths, especially for lower
minSupport values, since more phases and thus, database scans are required.

Finally, we tested the impact of the corruption level. Recall that this para-
meter represents the expected number of vertices within a pattern which are
corrupted with other vertices (i.e. not part of the pattern). Figure 5b illustrates
the number of large paths founded in the result with respect to three values of
corruption level: 0.1%, 0.25% and 0.4%. The dataset was L7F15D100K with

Finding Generalized Path Patterns for Web Log Data Mining 227

P = 1000 patterns. As it is expected, the number of large paths reduces with
respect to the corruption level because patterns are changed. However, the re-
duction is not remarkable since pattern identification is not affected significantly
by the corruption.

0

5

10

15

20

25

30

35

40

5 10 15

tim
e

(s
ec

)

average pattern length

P=1,000, N=1,000, F=15, D=100,000

minSupport=0.25
minSupport=0.15
minSupport=0.05

0

2000

4000

6000

8000

10000

12000

14000

16000

0.1 0.25 0.4

nu
m

be
r

of
 r

es
ul

t p
at

te
rn

s

Corruption factor

P=1000, L=7, N=1000, F=15, D=100,000

minSupport=0.25
minSupport=0.15
minSupport=0.05

Fig. 5. a. Execution time w.r.t. average pattern length. b. Number of large paths w.r.t.
the corruption level.

6 Conclusions

We examined the problem of determining traversal patterns from web logs. These
patterns take into account the fact that irrelevant accesses, made for navigational
purposes, may be interleaved with accesses which are not part of the pattern.
We presented a level-wise algorithm for counting the support of these patterns.
This algorithm differs from the existing Apriori-like algorithms because it has
to take into account the graph structure which represents the web site. The
performance of the algorithms is tested experimentally with synthetic data which
are produced following several results on recent web statistics.

The quality of the patterns can only be tested within the framework of a
specific application. In the future, we plan to test the proposed patterns for the
purpose of web prefetching, i.e. the prediction of forthcoming web document
requests of a user. For such an application, the impact of noise, as defined in
this paper, will be tested more precisely.

Acknowledgments. We would like to acknowledge the effort of Mr. Dimitrios
Katsaros on the development of the synthetic data generator.

References

1. R. Agrawal and R. Srikant: “Fast Algorithms for Mining Association Rules”, Pro-
ceedings Very Large Data Bases Conference (VLDB’94), pp.487-499, 1994.

2. R. Agrawal and R. Srikant: “Mining Sequential Patterns”, Proceedings Internatio-
nal Conference on Data Engineering (ICDE’95), pp.3-14, 1995.

228 A. Nanopoulos and Y. Manolopoulos

3. M. Arlitt and C. Williamson. “Internet Web Servers: Workload Characterization
and Performance”, IEEE/ACM Transactions on Networking, Vol.5, No.5, 1997.

4. P. Barford and M. Crovell: “Generating Representative Web Workloads for Net-
work and Server Performance Evaluation”, Proceedings ACM Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS’98), pp.151-160,
1998.

5. J. Borges and M. Levene: “Mining Association Rules in Hypertext Databases”, Pro-
ceedings Conference on Knowledge Discovery and Data Mining (KDD’98), pp.149-
153, 1998.

6. S. Brin, R. Motwani, J. Ullman and S. Tsur: “Dynamic Itemset Counting and Im-
plication Rules for Market Basket Data”, Proceedings ACM SIGMOD Conference
(SIGMOD’97), pp.255-264, 1997.

7. M.S. Chen, J.S. Park and P.S. Yu: “Efficient Data Mining for Path Traversal
Patterns”, IEEE Transactions on Knowledge and Data Engineering, Vol.10, No.2,
pp.209-221, 1998.

8. Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff and J.S. Vitter:
“External-Memory Graph Algorithms”, Proceedings Symposium on Discrete Algo-
rithms (SODA’95), pp.139-149, 1995.

9. R. Cooley, B. Mobasher and J. Srivastava: “Data Preparation for Mining World
Wide Web Browsing Patterns”, Knowledge and Information Systems, Vol.1, No.1,
pp.5-32, 1999.

10. K. Joshi, A. Joshi, Y. Yesha and R. Krishnapuram: “Warehousing and Mining
Web Logs”, Proceedings Workshop on Web Information and Data Management,
pp.63-68, 1999.

11. M. Nodine, M. Goodrich and J.S. Vitter: “Blocking for External Graph Searching”,
Proceedings ACM PODS Conference (PODS’93), pp.222-232, 1993.

12. A. Nanopoulos and Y. Manolopoulos: “Finding Generalized Path Patterns for
Web Log Data Mining”, Technical report, Aristotle University, http://delab.csd.
auth.gr/publications.html, 2000.

13. J.S. Park, M.S. Chen and P.S. Yu: “Using a Hash-based Method with Transaction
Trimming for Mining Association Rules”, IEEE Transactions on Knowledge and
Data Engineering, Vol.9, No.5, pp.813-825, 1997.

14. J. Pei, J. Han, B. Mortazavi-Asl and H. Zhu: “Mining Access Patterns Efficiently
from Web Logs”, Proceedings Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD’00), 2000.

15. Y. Xiao and M. Dunham: “Considering Main Memory in Mining Association Ru-
les”, Proceedings Conference on Data Warehousing and Knowledge Discovery (Da-
WaK’99), pp.209-218, 1999.

16. O. Zaiane, M. Xin and J. Han: “Discovering Web Access Patterns and Trends
by Applying OLAP and Data Mining Technology on Web Logs”, Proceedings on
Advances in Digital Libraries (ADL’98), pp.19-29, 1998.

	Introduction
	Background
	Definitions
	Overview of Maximal Reference Sequences

	Mining Access Patterns Based on Subpath Definition
	Problem Statement
	Pruning with the Support Criterion

	Determination of Large Paths
	Data Structures
	Support Counting
	Candidate Generation

	Performance Results
	Synthetic Data Generator
	Results

	Conclusions

