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Abstract

Multimedia applications are characterized by their strong timing requirements and constraints and thus multimedia data storage

is a critical issue in the overall system’s performance and functionality. This paper describes multimedia data representation models

that effectively guide data placement towards the improvement of the Quality of Presentation for the considered multimedia

applications. The performance of both constructive placement and iterative improvement placement algorithms is evaluated and

discussed. Emphasis is given on placement schemes which are based on the simulated annealing optimization algorithm. A placement

policy, based on a self-improving version of the simulated annealing (SISA) algorithm is applied and evaluated. Performance of the

placement policies is experimentally evaluated on a simulated tertiary storage subsystem. As proven by the experimentation, the

proposed approach shows considerable gain in terms of seek and service times. The improvements of the proposed SISA approach

are in the range of 40% when compared to random placement and at the range of 15–35% when compared to the typical simulated

annealing algorithm, depending a lot on the initial configuration and the neighborhood search.

� 2003 Published by Elsevier Inc.
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1. Introduction

Increasing popularity of multimedia applications has

been followed by corresponding increases in users

requirements. Multimedia data differ from conventional

text data since they are characterized by: (a) large size and

(b) timing requirements and constraints. Representation

models for multimedia data with respect to their spatio-
temporal requirements have been proposed and classified

in Bertino and Ferrari (1998), Kwon et al. (1999), Chung

(1979), Escobar-Molano et al. (1996), Ghandeharizadeh

(1996) and Hirzalla et al. (1995). More specifically, in

Bertino and Ferrari (1998) and Kwon et al. (1999) a

classification of the representation models, based on the

notion of time is presented and two categories have been

identified: the interval-based and the constraint-based

models. A number of different representation approaches

have been introduced in Bertino and Ferrari (1998),
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Kwon et al. (1999) and Chung (1979), and in this case the

models are classified into three different categories:Graph

Models, Petri-Net Models and Object-Oriented Models.

This classification mainly focuses on the conceptual data

representation and the model to be chosen depends on

the application requirements, the developer’s conceptual

view and the existing system features. Moreover, in

Escobar-Molano et al. (1996) and Ghandeharizadeh
(1996) video objects representation models are catego-

rized into Stream-Based Models and Structured Models

with respect to their physical requirements and from the

perspective of the DataBase Management System. Fur-

thermore, a new timeline model, which captures user’s

interactivity on a set of multimedia documents is pro-

posed in Hirzalla et al. (1995).

Current software development trends favor the
involvement of hypermedia documents in most of recent

large scale applications, i.e. a navigational type of access

and searching is introduced. The allocation of such hy-

permedia documents and their corresponding multimedia

objects (from the end user response time perspective) over

a communication network has been discussed in Ahmad

et al. (1999). In that context, the proposed model is
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related to multimedia objects allocation towards effective

browsing and navigation in distributed environments.

Indexing and declustering schemes for object-oriented or

interactive navigational queries are proposed in Chen

and Sinha (2000) and Han et al. (1999). Analysis and

comparisons of the proposed declustering schemes and
performance studies have indicated that navigational

based indexing and declustering can be beneficial for

the responsiveness and interactivity of the multimedia

applications.

Due to the large storage requirements of multimedia

data, tertiary storage subsystems are a quite appropriate

proposal for multimedia objects storage. Tertiary stor-

age level media are rather inexpensive and despite their
slow data transfer rates, they are used for large scale

storage mainly due to their huge space capacities. Recent

research efforts in tertiary storage has focused on

improving their performance towards high Quality of

Service (QoS) for multimedia applications. In Prabhakar

et al. (1996) the current state of the art in tertiary storage

systems is discussed, tertiary system types are classified

and extensive performance results are provided. Re-
search work in Chervenak (1994) and Christodoulakis

et al. (1997) evaluates storage hierarchies and the use-

fulness of current tertiary storage systems. In Hillyer and

Silberschatz (1996) a serpentine tape drive is studied

under model-driven simulation, while in Johnson and

Miller (1998) detailed measurements of several tape

drives and robotic storage libraries are presented, in

order to provide better understanding on the issues re-
lated to integrating tertiary storage into a complete

computer system. Issues related to data placement on the

tertiary storage subsystem have also been studied. More

specifically, in Christodoulakis et al. (1997) different data

placement policies on various tape technologies and tape

libraries have been implemented, while in Sesardi et al.

(1994) optimal arrangements of cartridges and file-par-

titioning schemes are examined under a carousel type
mass storage system. Furthermore, in Vakali and Ma-

nolopoulos (1998) data placement schemes are consid-

ered under three different models corresponding to three

mid-range magnetic tape systems, while in Vakali and

Terzi (2002) and Vakali et al. (2001) constructive and

iterative improvement placement algorithms have been

implemented for the placement of multimedia data on a

tape-based storage subsystem.
The data placement problem is an optimization

problem characterized by an objective cost function that

has to be optimized (i.e. minimized ormaximized depend-

ing on the application). Since optimal data placement is a

particularly complicated problem which cannot be

solved analytically, an algorithmic approach is necessary

in search of the optimal solution. A wide class of heu-

ristic algorithms for solving similar optimization prob-
lems is the class of random search algorithms. These

are stochastic processes, which perform biased random
walks in the space of the candidate solutions of a certain

problem. They use random choice as a tool but in such a

way that the search is guided towards a global optimal

solution. They are highly efficient methods, easily ap-

plied on any optimization problem and restriction-free

on the objective function (continuity, differentiation,
etc.). Such methods for combinatorial optimization are

described in Nahar et al. (1986). The most simple, yet

powerful, random search technique is the simulated

annealing (SA) algorithm. This method was initially

presented in Metropolis et al. (1953) and received its

name from the physical process called annealing which

brings a solid to a state of minimum energy. Moreover,

SA was proposed by Kirkpatrick et al. (1983) as a gen-
eral-purpose optimization technique, suitable for solving

many complex combinatorial problems. Since then, there

was a vast amount of research work for applications of

SA in various optimization problems (for example Hua

et al., 1994), as well as for theoretical approaches to

probabilistic mechanisms (see Aarts and van Laarhoven,

1989; Azencott, 1992).

This paper’s SA-based algorithms are customized for
our data placement problem, by adapting the approach

presented in Angelis et al. (2001) for the solution of an

optimization problem in statistical planning. The pres-

ent work is an extension of author’s previous research

efforts as presented in Vakali and Terzi (2002), Vakali

et al. (2001) and Angelis et al. (2001), and the paper’s

key contribution is summarized in the following points:

• The proposed multimedia data representation model

captures both the users navigation (within an applica-

tion) and the timing constraints (within each multi-

media object) towards efficient multimedia data

placement under a tertiary storage topology.

• The problem of data placement is dealt as an optimi-

zation problem, where an extension of the SA is

employed. In addition to iterative improvement
placement policies constructive placement algorithms

are also implemented for comparison purposes.

• A self-improving process of the simulated annealing

is introduced for determining multimedia data place-

ment within the tertiary storage subsystem.

• The impact of the initial placement and of the pertur-

bation function (i.e. the rules governing the search) in

the overall performance of the SA-based algorithms
are studied and the corresponding experimental re-

sults are discussed.

The structure of the remainder of the paper is orga-

nized as follows: in Section 2 the proposed representa-

tion model is introduced. The considered storage system

is presented in Section 3 and the criteria for multimedia

objects allocation are emphasized. Extensive discussions
on the placement policies are given in Section 4, with

particular emphasis on the simulated-annealing-based



Table 1

Most important parameters for multimedia data representation

Parameter Description

f Vector of access frequencies

fi Access frequency of node i
G Browsing graph

M Number of multimedia objects

MObji Multimedia object i
O Number of physical objects

nrix Number of object x playouts in node i
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techniques. The simulation model and its basic compo-

nents are analyzed in Section 5, while in Section 6

experimentation is described and results are presented.

Finally, future work topics are discussed in Section 7.

Notice that this work does not include an extensive

description of the data model and the intuition of the
algorithmic techniques behind it, since these are defined

and discussed in authors’ earlier work (Vakali and Terzi,

2002; Vakali et al., 2001; Angelis et al., 2001).
Fig. 1. The external browsing graph for a navigational multimedia

application.

P Transition matrix of the pij probabilities of
accessing node j from node i at a single step

PObji Physical object i
pop½x� Popularity of physical object x
2. Multimedia data representation

This part is a summary over the Graph-Tree multi-
media data representation structure that have been

proposed and used by the authors in their earlier works

(Vakali and Terzi, 2002, 2001a; Vakali et al., 2001)

dealing with the problem of effective multimedia data

placement on storage devices based on users’ behavior

when they navigate a multimedia application. There are

two main goals of the proposed representation model:

(1) to capture the users access patterns and (2) to ade-
quately convey information about the timing constraints

within the multimedia data that will prove to be

important for their hiccup-free presentation to the end

user. In order these two requirements to be fulfilled, a

two-level model is adopted. The external level describes

the users’ interaction with the multimedia application,

while the internal level is a tree-based timeline model

that describes the multimedia data itself. The most
important parameters for multimedia data representa-

tion are summarized in Table 1.

• External level: This level captures the user’s interac-

tions as employed in a navigational environment.

The main data structure to support this level is a

browsing graph for describing the multimedia objects

as visited by the user. The Browsing Graph is a direc-
ted graph G ¼ ðV ;EÞ where V ¼ f1; 2; . . . ;Mg is a set

of M nodes (corresponding to M multimedia objects)

and E is a set of directed edges, corresponding to

physical connection from one multimedia object

(MObj) to another (Fig. 1). 1

• Internal level: Each of the external level’s graph nodes

is further analyzed to its objects used to build the

multimedia objects. A tree-based structure, similar
to an index tree used for conventional database

indexing is used as the basis for our representation

model. The finest units that the nodes of this tree

can be broken into are the physical objects that cor-

respond to a specific format data type entity that also

corresponds to a physical storage unit. 2 An indica-
1 From now on we will use the terms multimedia object, node and

the notation MObj interchangeably.
2 The term physical object and the notation PObj will be used

interchangeably in the text.
tive example of this structure, called timeline tree, is

given in Fig. 2. As depicted in this figure, the pro-

posed tree structure involves two types of nodes:

� Multi-nodes: these are the internal nodes (repre-

sented by the rectangular shape) and they can be

further analyzed since they consist of more than

one physical objects need to be synchronized.
� Single-nodes: these are the leaf nodes (represented

by the circular shape) and they correspond to

physical objects that need to be played for a spe-

cific continuous time unit.

The proposed tree has the attributes of an index tree

structure and the key attribute that is used for insertion,

deletion and search operations is the starting play time
of the multimedia or the physical object that corre-

sponds to a multi or a single tree node. This time-based

approach makes the tree a timeline multimedia repre-

sentation model.
3. The storage approach

3.1. Criteria for multimedia objects allocation

Based on the adopted multimedia data representa-

tion, it is important to notice that at the external level,



Fig. 2. The timeline tree structure.
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we consider the so called multimedia nodes which are
the actual multimedia objects. Then, the proposed

browsing graph can be represented by a transition ma-

trix P associated with the graph G, a ðM 	MÞ matrix of

access or transition probabilities, where by Pði; jÞ ¼ pij,
ði; j 2 f1; 2; . . . ;MgÞ we denote the probability of

accessing node j from node i in a single step. In order to

capture the frequency of access of each node we define

the access frequency:

Definition 1. The frequency of access of the ithMObj can
be found in the ith element of the access frequency

vector f . The vector of access frequencies

f ¼ ðf1; . . . ; fMÞ for the M MObjs involved in a multi-

media application can be evaluated by

f ¼ lim
k!1

Pk

where P is the graph’s transition matrix.

Due to the multimedia objects high-capacity

requirements, these objects are further analyzed to their

(internal level) physical nodes which include the actual

physical objects (to be stored on a storage medium).

Therefore, an appropriate mapping between the (exter-

nal level) multimedia objects and the actual physical

locations, should be adopted. Each multimedia object

corresponds to a number of physical objects and thus
physical locations of the storage medium. These loca-

tions correspond to a number of KBs to MBs for each

physical object. This mapping (of multimedia to physi-

cal objects) will be employed here based on a popularity

criterion.
It should be noted that although Definition 1 pro-

vides the evaluation of the frequency of access (and

thus the popularity of a multimedia object), it gives no

explicit way of calculating the popularity of the phys-

ical objects that actually constitute our storage enti-

ties. This is done by the following definition, also stated
in Vakali and Terzi (2002, 2001a) and Vakali et al.

(2001).

Definition 2. The popularity of a physical object x, which
belongs to k nodes in the Graph-Tree representation

model, is defined by

pop½x� ¼
Xk
i¼1

fi 	 nrix

where fi is the frequency of access (Definition 1) of the

nodes containing x and nrix is the number of object x
playouts in node i.

The popularity criterion is adopted to guide physical

allocation in a way that the multimedia synchroniza-
tion requirements are also met. More specifically, since

the popularity metric involves the frequency of access

value (which refers to the popularity of the multimedia

object as a whole), it is expected that physical objects

(included in a multimedia object) will have popularity

values in a close range. Therefore they will be stored in

close or parallel locations of the underlying storage

topology.
Synchronization requirements will be met since if two

(or more) physical objects are synchronized, they will

have their fi and nrix values (of the popularity formula)

in close range. This is the case since they will be syn-

chronized when they participate in common multimedia

objects (fi values) and their real-time play back will in-

volve concurrent playouts (nrix values) per multimedia

object.
3.2. The storage topology

The proposed data placement algorithms will be

employed under a hierarchical (tertiary) storage sub-

system, which will be the storage medium for the arti-

ficial multimedia data workloads used in the

experimentation part.
Tertiary storage topologies are considered here since

they are appropriate in cases where large volumes of

data need to be stored (multimedia applications are

definitely such as case, due to their high data capacities

and requirements). As emphasized in Scheier (2003)

current technology advancements continue to extend the

usefulness of tape as the cost-effective primary mid-term

machine-readable archive medium. Moreover the recent
storage trends highlighted in Scheier (2003) (according
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to customers, analysts and vendors) point that the de-

mand for tape will increase, not diminish, because it’s

still the only high-capacity media portable and inex-

pensive enough for long-term, off-site archiving.

Additionally, tertiary storage medium has been

proposed for multimedia data storage in many earlier
research efforts such as Gemmel et al. (1995) and Tri-

antafillou and Papadakis (1997, 2001) mainly due to its

high-capacity/cost ratio. Indicative are the following

examples. The cost of tertiary storage memory that is

based on tapes is about $0.004 per MB on average

(according to Triantafillou and Papadakis, 2001). Of

course the cost varies based on the performance that is

required within a specific application. Higher perfor-
mance, guaranteed for example by the Ampex DST812

Automated Tape Library is more expensive than lower

performance gained with Ampex DST421 Automated

Tape Library that is a more affordable solution to-

wards mass storage. There is a variety of commercial

tertiary storage tape libraries such as the systems’

specifications found in the sites of Ampex, Quantum

and IBM.
Thus tertiary storage subsystems are rather appro-

priate for multimedia applications with high storage

requirements. On the other hand one may argue that

such a storage solution involves delays due to the data

elevation among the tertiary and the main memory

levels. In order to overcome this impediment we adopt

the approach used in Triantafillou and Papadakis (1997)

where the multimedia data playback is employed by
considering the upper levels as cache to the tertiary

storage. Thus, the popular physical objects are consid-

ered to reside in main memory for as long as needed and

the service starts by the main memory, whereas the rest

of the data stored in the tertiary storage will be elevated

next. Such an approach will most appropriately match

the multimedia application requirements with the stor-

age system performance. Under this approach the la-
tency time of the tertiary storage subsystems does not

cause any problem in the overall evaluation. Addition-

ally it should be noted that the methods proposed here

are rather generic and can be appropriately applied to

any kind of placement problem. The key point here is to

see the optimization aspect of the problem rather than

to strictly consider its specific application for tape

libraries.
A detailed presentation of the tertiary storage sub-

systems has already been provided by the authors in

Vakali and Terzi (2001b). Basically tertiary storage in-

cludes magnetic tapes, optical disk devices and some

more recent technologies like optical tapes and holo-

graphic storage and recent technological advances have

increased the interest of system designers in adopting the

usage of such systems. The Robotic Tape Libraries are
widely adopted tertiary storage subsystems that come in

various types and configurations. They hold large
number of cartridges that can be loaded by robot arms

into a collection of magnetic tape drives and they can be

classified into Large Libraries, Carousel Devices and

Stacker Devices depending on the number of tapes they

can hold and the mechanism used to load a tape into a

drive.
The tertiary storage tape library that has been con-

sidered for our simulation studies has one robot arm,

which is capable of moving between any tape stored in

the library and the tapes are assigned at drives.

Mainly there are two types of magnetic tapes that can

be included in magnetic libraries:

• Tapes that rewind to the PBOT: These are tapes that

always rewind to their beginning before being
ejected.

• Tapes that rewind to the nearest zone: These tapes en-
able tape rewinding to the nearest zone as opposed to

those require to be rewound to their physical begin-

ning before being ejected.

Tapes can be thought of as linear areas and each such

linear area is divided into a certain number of fixed-size
segments, which are the smallest accessible parts of the

tape. Sections consist of a number of consequent seg-

ments, while tracks consist of a number of consequent

sections. The number of segments that will be allocated

to a data object obviously depends on the object’s and

the segment’s size.

The two most common performance metrics, for our

simulation study are: the mean service time and the mean
seek time, required in order to evaluate the requests

servicing. These metrics are widely adopted within sim-

ulated tertiary storage subsystems and have been esti-

mated by using the following formulae:

Robot Arm Service Time ¼ Pick TimeþMove Time

þ Put Time

The time required by the robot during the service

period of a single request is determined by the time it

needs to pick the appropriate tape, to move towards the

tape drive and finally put the tape into the drive. The

drives, which are also assumed to be identical, perform

the following operations: seek, rewind, read, write, load

and eject. The seek and rewind operations for tapes are
modeled as constant startup times followed by a con-

stant transfer rate. Therefore, the tape access time is

defined by the times involved in the servicing main ac-

tions:

Drive service time ¼ Seek T þ Rewind T þ Transfer T

þ Load T þ Eject T

Therefore, the total access time for a tape operation

which includes a tape switch operation is defined as

follows:



Table 2

Constructive placement algorithms

Organ-pipe placement
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Total Service Time ¼ Robot Arm Service Time

þ Drive service time
Table 3

The basic function of constructive placement algorithms

Constructive placement

pool½1 . . .O�: Pool of O Physical Objects

pop½1 . . .O�: Popularity of O Physical Objects

notstored½ �: array-index to non-stored Physical Objects

PO½1 . . .O�  Sorted pool[ ] array in decreasing pop[ ] values

i 1

j 1

while (there are still Unallocated Physical Objects and Free Tape

Space)

STORE the ith PObj in ði mod T Þth tape at the first available

segment estimated by the Organ-Pipe or (camel) placement

if (the Physical Object is stored)

i iþ 1

else if (space is not enough)

STORE the ith Physical Object on the next tape with adequate

free space

if (the Physical Object is stored)

i iþ 1

else //there is no tape with enough space available

notstored½j�  i
j jþ 1

ı iþ 1

endif

endif

endwhile

1. Place the most popular PObj on the middle zone (Z=2) of the
tape

2. Allocate the next two popular PObjs on either side of the

middle zone

3. Repeat step (2) until all objects are placed

Camel placement

1. Divide the tape into two consecutive tapes consisting of (Z=2)
zones

2. Implement organ-pipe placement alternatively on the two

consecutive tapes

3. Repeat step (2) until all objects are placed.
4. Multimedia data placement algorithms

The problem of proposing effective placement of

multimedia data on a tertiary storage subsystem is

‘‘translated’’ to the problem of proposing a placement of

N physical objects onto T tapes (each tape has Z zones)

so that the imposed requests to be serviced in a way that

minimizes the data seek and transfer time. Therefore,

the data placement problem is an optimization problem.
Various approaches have been proposed towards this

research direction. In general, the data placement algo-

rithms fall in two main categories: Constructive place-
ment and Iterative Improvement placement.

For the constructive placement algorithms only a brief

description will be given here since a more detailed one is

presented in Vakali and Terzi (2002). The main charac-

teristic of the constructive placement algorithms is that
the data are placed on a location of the storage media

based on a certain criterion (popularity in our case)

without considering any other alternative placements,

possibly slight modifications of the current one that may

end up in better performance rates. The main construc-

tive placement algorithms are the Organ-pipe and Camel
placement algorithms (briefly described in Table 2).

Since our storage system does not consist of a single tape
but of a series of tapes the constructive placement algo-

rithms are slightly modified for the considered tape li-

brary configuration (as depicted in Table 3).

It should be noted that the physical objects placement

is guided by the popularity metric introduced in Section

2. The objects are placed in decreasing order of popu-

larity, in order to preserve the synchronization require-

ments as explained in Section 3.1.
4.1. The simulated annealing approach

In the sequel the basics (and the considered alterna-
tives) of the simulated annealing algorithm are described

briefly. Notice that SA is a well-known iterative opti-

mization technique and when considering it for the data

placement problem, it is applied during the system de-

sign process since such iterative improvement techniques

cannot be applied at real-time (due to their high time

overhead). Thus SA’s applicability is mostly employed

in simulation studies aiming in deciding about optimal
data placement (on an application-oriented basis). Once

the placement has been determined by the annealing

method, the data are placed on the storage media once

and according to the placement indicated by the anneal-

ing technique.
4.1.1. Preliminaries

Here, we describe the principles governing the typical

SA process, as suited for any optimization problem, and
next we discuss the adaptation of the method to the

specific data placement problem. More specifically, the

SA involves the following actions:

• Initialization: Consider an arbitrary finite set X, called

the solution space and an arbitrary function

C : X! R, called the cost function. Our aim is to find

a global minimum of C in X. Note that as the objec-

tive function represents cost, it is realistic to assume
that CðSÞP 0 for every S 2 X and that the notion

of optimization is equivalent to the minimization of

the function. The SA algorithm generates a random

sequence Sn 2 X of feasible solutions which tends to

converge as n!1.



Table 4

General concept of the SA algorithm

Simulated annealing

Tmpr0: Starting condition value

R: Reduction Value ð0 < R < 1Þ
I : Number of Perturbations (if no improvement of Sbest occurs)
Sini  initial placement (randomly selected);

Tmpr ¼ Tmpr0; S ¼ Sini; Sbest ¼ Sini;
while STOP ¼ FALSE (Conditional Loop)

STOP ¼ TRUE; POINTER ¼ 1;

while POINTER6 I (Perturbation Loop)

Stry ¼ S;
cost ¼ costðSÞ;
Stry ¼ perturbðSÞ;
Dcost ¼ costðStryÞ � costðSÞ;
if ðDcost < 0Þ then
S ¼ Stry; (accept the improvement)

STOP ¼ False;
else

p ¼ e�
Dcost
Tmpr ;

u random number in Uð0; 1Þ;
if ðu < pÞ then
S ¼ Stry; (accept the worsening)

STOP ¼ False;
endif

endif

if (costðStryÞ < costðSbestÞ) then
POINTER ¼ 1;

Sbest ¼ Stry;
else

POINTERþþ;
endif

endwhile

if ðSTOP ¼¼ FALSEÞ
Tmpr ¼ Tmpr � R;
endif

endwhile
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• Searching: The search begins from an arbitrarily cho-

sen initial solution Sini 2 X and proceeds by generating

and testing a sequence of solutions, each obtained as a

random perturbation of the preceding one. The term

‘‘perturbation’’ means the move of the algorithm from

any current solution S to a neighbor Stry through pre-
defined legal operations. Obviously, the determination

of perturbation rules is strongly dependent on the def-

inition of ‘‘neighborhood’’ of any solution.

As search proceeds, any time a neighbor of the cur-

rent solution S that leads to an improvement of the cost

function (i.e. if CðStryÞ < CðSÞ) is accepted as the basis

for the next iteration. On the other hand, if the neighbor
leads to a worsening (i.e. if CðStryÞ > CðSÞ), then it is

accepted with probability

p ¼ exp

�
� DC
Tmpr

�

where DC ¼ CðStryÞ � CðSÞ and Tmpr is an algorithm
parameter called ‘‘temperature’’. Since the acceptance

probability is decreasing as DC increases, perturba-

tions leading to slightly worse solutions in a standard

temperature are more likely to be accepted than per-

turbations which worsen significantly the current solu-

tion.

• Towards the ‘‘best solution’’: The temperature is grad-
ually reduced during the process, following a cooling

schedule such that Tmprn ! 0. Thus, a certain wors-

ening of the objective function is more likely to be ac-

cepted in early stages of the search than later when

the temperature is ‘‘cooled’’. In this manner, the algo-

rithm manages to escape from solutions, which are

only locally optimal and tend to trap the search

around them. The algorithm continuously keeps re-
cord of the best solution the random walk passed

from and this is denoted by Sbest. After a predefined

number of perturbations in a standard temperature

without improvement of Sbest, the temperature is low-

ered according to a cooling schedule and the search

continues. The most common cooling schedule, the

so-called exponential, is defined by Tmprnþ1 ¼
Tmprn � R, where 0 < R < 1 is a reduction factor, usu-
ally close to 1. The algorithm needs also a stopping

criterion, so we usually agree to terminate the search

when after a predefined large number I of iterations

at a standard temperature no improvement of the

current solution occurs. On termination of the pro-

cess, the solution Sbest is reported as optimal.

4.1.2. The typical SA and multimedia data placement

Here, we use the SA idea to a tape topology described

in the previous section. Following the terminology of

Section 3, the solution space of our data placement

problem is the set of all possible permutations of the Ot
physical objects allocated in each of the T tapes

ð1P tP T Þ, fPObj1; PObj2; . . . ; PObjOtg. Notice that in

our implementation the assignment of physical objects

to the tapes is not part of the simulated annealing pro-

cess. The SA algorithm is implemented within each tape

of the tape library separately.
Therefore, for the problem of multimedia data place-

ment the simulated annealing placement commences with

an initial placement determined by a constructive place-

ment procedure and is repeatedly modified in search for

cost reduction. The main steps of the algorithm (as it is

implemented for the specific data placement problem) are

presented in Table 4 while Table 5 contains the main

notation of the algorithm. In fact, the algorithm consists
of the following main components:

• The initial placement: The initial placement of the

physical objects in the storage system can follow

either one of the constructive placement methods (ca-

mel, organ-pipe), or a random policy.

• Neighborhood search: For finding a neighbor of the

current solution the physical objects within each tape



Table 5

SA notation table

SA Simulated annealing

Sini Initial placement

S Current placement

Stry Alternative to current placement obtained by

a legal operation

Sbest The best finally accepted placement

Cð Þ Cost function

Tmpr0 Initial temperature value

Tmpr Current value of the temperature

R Reduction factor

Table 6

Most important parameters for the storage subsystem

Parameter Description

sj Number of bytes to search from current head

location towards requested location (j)
srate Search rate

tj Number of bytes to transfer

trate Transfer rate

T Number of tapes of the tape library

Z Number of zones of the tape
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are rearranged Three alternatives have been imple-

mented in our model (Fig. 3).

1. Circular shift––CS: Assume than Ot physical ob-

jects ðPObj1; PObj2; . . . PObjOtÞ are allocated to a

specific tape. The neighborhood explorations

moves PObjOt to the position of the tape currently
occupied by PObj1 while for every i 6¼ Ot PObji is
moved to the position of PObjiþ1.

2. Single random selection––SRS: A physical object is

selected randomly and moved to a random loca-

tion on the tape. The rest of the objects are moved

and placed after the chosen object. Assume a tape

on which Ot physical objects have been allocated.

If the current placement of the objects is

ðPObj1; . . . ; PObjk�1; PObjk; PObjkþ1; . . . ; PObjOtÞ
and we select object PObjk and move it to position 1,

we get the permutation

ðPObjk; PObj1; . . . ; PObjk�1; PObjkþ1; . . . ; POOtÞ
3. CS þ SRS which is a combination of Circular shift

and Single random selection perturbation proce-

dures: at each iteration either Circular Shift or

Random Selection perturbation is implemented.

The two perturbation procedures have equal

probability to be adopted at a specific iteration
of the inner repeat loop.

• The cost function: In the data placement problem we

considered, as the cost of each permutation S, the ex-
pected service time (EST) for retrieving all the Ot

physical Objects stored on tape t. This cost is defined
by the formula:
Fig. 3. Neighborhood se
ESTðSÞ ¼
XOt

i¼1

XOt

j¼1
pop½i�pop½j�ðsjsrate þ tjtrateÞ

where i, j refer to the current head location ðiÞ to-
wards the requested location ðjÞ. We also denote by sj
and tj the number of bytes to search and transfer

(respectively), while srate and trate are the search and

transfer rates (respectively). These parameters have

been identified in Table 6.

Again, it should be noted that the cost of the em-

ployed permutations involves the popularity measure

which in turn is related to the physical objects real-time
playback requirements (as explained in Section 3.1).

Notice that in the calculation of the expected service

time for a specific placement instance S, the above for-

mula exhaustively sums all the possible combinations of

requests and therefore, the more requests are serviced

the more representative the above cost function be-

comes. Thus for a given placement S as the number of

requests ReqNum !1 the EST(S) is equal to the real
cost of servicing ReqNum requests.

4.2. A self-improving version of the simulated annealing

algorithm

In our previous work Vakali et al. (2001) we have

proposed an improved version of the simulated

annealing algorithm (called ISA) for the multimedia
data placement problem. The key idea behind this

improvement was the repetitive execution of the simu-

lated annealing procedure (described in the previous

subsection) for a prefixed number of times Ntotal. The

total number of trials is distributed to blocks of equal
arch alternatives.
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length Nblock. When a block of trials is executed, the

process checks which is the minimum service cost up to

that point and calculates its relative frequency fbest in the

specific block. Then, fbest is compared with a predefined

(small) probability level 0 < flow < 1. If flow < fbest, the
search proceeds to the next block with the same
parameters. Every B blocks, i.e. every BNblock repetitions

of the SA algorithm, the process calculates the relative

frequency f �best of the best design up to that point and

makes a comparison with a (large) probability level

0 < fhigh < 1. In case f �best > fhigh, the procedure stops

and the best placement found is reported. Therefore, the

repetition was the key factor of the improved version of

the simulated annealing algorithm that we had previ-
ously proposed. Therefore, the ISA version of the sim-

ulated annealing algorithm implemented on the tertiary

storage placement problem was based on repetitive

execution of the algorithm. This procedure was expected

to un-trap the algorithm from any local minima that he

might be trapped at, by giving it the chance to recon-

sider its previous decisions.

The idea of Vakali et al. (2001) has proven to improve
the system’s performance under the implementation of

the ISA algorithm. In this paper, based on the work
Table 7

The self-improving process of the simulated annealing algorithm

SISA: self-improving approach based on SA 1

Determine the initial SA parameters I and R
Determine the parameters of the self-improving process:

Ntotal: Total number of repetitions

Nblock: The size of blocks (Ntotal=Nblock is the number of all blocks and it

flow and fhigh: The probability levels

Iupper and Rupper: The upper bounds for I and R respectively

B: Every B blocks the process checks whether the optimal placement a

ESTbest ¼ 109

repeat for m¼ 1 to Ntotal

Set Tmpr0
Execute the SA algorithm with Tmpr0; I;R and return EST ðSbestÞ
if ðEST ðSbestÞ < ESTbestÞ then
Vectð1 to m� 1Þ ¼ 0;

VectðmÞ ¼ 1;

ESTbest ¼ EST ðSbestÞ;
else if ðEST ðSbestÞ ¼ ESTbestÞ
VectðmÞ ¼ 1;

endif

if ðMODðm;NblockÞ ¼ 0Þ then
fbest ¼ SUMðVectðm� Nblock þ 1 to mÞÞ=Nblock

if ðfbest 6 flowÞ and ðI < IupperÞ then
Increase I and R
endif

endif

if ðMODðm;B � NblockÞ ¼ 0Þ then
fbest ¼ SUMðVectÞ=m
if ðfbest P fhighÞ then
stop

endif

endif

endrepeat
of Angelis et al. (2001), we propose a self-improving

process of the algorithm. The most critical part of

the SA algorithm is the report of the optimal or near-

optimal placement. In order to ‘‘secure’’ that the pro-

posed (by the algorithm) placement is the best one,

certain criteria need to be adopted. Of course, when
the optimal is unknown, it is impossible to know se-

curely the efficiency of the result. In this regard, it

seems reasonable not to rely on a single execution of

the SA algorithm, but to conduct a series of repeated

executions in the same way as previously, but addi-

tionally modify the initial values of the parameters I and
R. This gives to the process a self-improving feature that

aims to locate the unknown optimal design with high
probability.

Similarly to the previous case, the SA algorithm is

repeatedly executed for a prefixed number of times

Ntotal. The total number of trials is distributed to blocks

of equal length Nblock. When a block of trials is executed,

the process checks which is the minimum service cost up

to that point and calculates its relative frequency fbest in
the specific block. Then, fbest is compared with a pre-
defined (small) probability level 0 < flow < 1. If

fbest 6 flow, the values of the parameters I and R are
must be integer)

ppears with relative frequency greater that fhigh ðB < Ntotal=NblockÞ
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increased and the search continues with the next block.

If flow < fbest, the search proceeds to the next block with

the same parameters. Every B blocks, i.e. every BNblock

repetitions of the SA algorithm, the process calculates

the relative frequency f �best of the best statement up to

that point and makes a comparison with a (large)
probability level 0 < fhigh < 1. In case f �best P fhigh, the
procedure stops and the best placement found is re-

ported. Since the parameters I and R are continuously

increased, the process becomes gradually slower. It is

therefore necessary to fix reasonable upper bounds Iupper
and Rupper which restrict the duration of the process.

In our implementation we set the initial values rela-

tively small and they are gradually increased by the
formulae: INEW ¼ 1:1 � I and RNEW ¼ Rþ 1�R

8
. The

complete self-improving process is presented in pseudo-

code in Table 7.
5. The simulation model

A simulation model has been developed such that the
proposed data placement policies can be evaluated un-

der an appropriately supported tertiary storage topol-

ogy. The request process is also simulated by supporting

bursts of clients’ requests arriving in the system. Our

simulation model is depicted in Fig. 4 and it is mainly

based on the introduction of four modules:

• The Data Representation Module: This module
mainly represents the multimedia application envi-

ronment to which the users have access. Both the

external and the internal data representation models

are supported. Therefore this software component is

responsible for the following actions:

� Construction of the browsing graph and the mul-

timedia objects tree structure based on the users

access patterns and the imposed timing con-
straints.
Fig. 4. The modules of the simulation model.
� Evaluation of the access frequencies and the pop-

ularity values of the physical objects.

Notice that in the simulation studies only one copy of
any physical object (participated in the application) is

stored in the storage system, with no relevance to the

number of distinct nodes (it participates in) and the

number of its distinct presentations (within each node).

These two parameters play important role in the deter-

mination of its access frequency which is vital in the

presented placement approach.

• The Tertiary Storage System Module: The considered
tape library is modeled to include a number of tapes,

one robot arm and one tape drive. The storage sub-

system has been modeled in order to measure the

system’s performance under various data place-

ment algorithms. The estimation of the total service
time is based on the formulae presented in Section

3.2.

• The Data Placement Module: This module has the

appropriate routines for employing data physical

allocation on the tertiary storage subsystem accord-

ing to the proposed data placement algorithms. The

final location of the physical objects within the stor-

age subsystem depends on the placement scheme
and the adopted criteria to determine the physical ob-

ject’s popularity and synchronization constraints,

which in our case is the popularity of the physical ob-

jects.

• The Request Servicing Module: The request work-

loads refer to specific nodes of the external browsing

graph while the requests arrive based on the esti-

mated access patterns. Once a request for a specific
node of the multimedia application arrives, the phys-

ical objects that should be displayed are specified.

These physical objects are sorted with respect to the

time of their first display within the specified node,

and then they are brought to the cache memory.

The performance metrics are evaluated in order to

evaluate the impact of the data placement algorithms

on the system’s performance.
6. Experimentation––Results

Various experimentation under different workloads

and data placement policies have been applied. The

experimentation focuses on the performance evaluation

of the proposed placement algorithms, with respect to
certain performance objective functions (such as seek

and service times). Organ-pipe has been chosen as the

most indicative algorithm in the class of constructive

placements algorithms since it has been proven to out-

perform other algorithms. All of the SA-based algo-

rithms (i.e. SA, ISA and SISA) are also implemented

and comparative results are discussed. The requests were
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generated by a process which follows the access patterns

of the initial browsing graph such that the cost function

(which is chosen to be the expected service time) will be

more effective for the implementation of the algorithm.

More specifically, the artificial workload was generated

by considering the following issues:

• The total number of the physical objects of the pool

increases with the number of nodes of the browsing

graph.

• The number of physical objects (participating in the

same node) is uniformly distributed between 1 and

the total number of objects in the pool.

• Each physical object’s size varies from some hun-
dreds of KB to hundreds of MB. It is obvious that

the total size of multimedia objects is compliant with

the size of real multimedia data.

• The workload was generated such that a large per-

centage of the total tape space is occupied. More spe-

cifically, when the model contained small number of

tapes (4, 2 tapes) 75–90% of the total available stor-

age capacity is occupied. This percentage inevitably
decreases when the number of tapes increases, as

the workload is constant. This approach allowed

experimentation and performance evaluation for

cases when the stored objects are either scattered

among the available tapes or stored on a small num-

ber of them.

The results of the experimentation are shown in Figs.
5–7 where the graphs show the service and seek times as

resulted by the implementation of the five placement

policies for storage systems with a varying number of

tapes (2,. . .,10). In Fig. 5 the initial placement, under

which the SA-based algorithms were implemented, was

the organ-pipe placement while the initial placement for
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Fig. 5. Seek/service time
the experiments mapped in Figs. 6 and 7 were random
and camel respectively.

6.1. Experimentation remarks

In summary, the experimentation results are charac-
terized by the following:

• In all cases the SA-based algorithms performs better

than random and organ-pipe placement policies.

• The SISA algorithm outperforms all the other place-

ment policies and its performance is steady since

the performance metrics remain the same irrespec-

tive to the initial placement algorithm. More specifi-
cally, the service and seek time values for the

implementation of the SISA algorithm under differ-

ent initial placements do not differ for more than

2% or 2.5%.

• The initial placement has an impact on the perfor-

mance of both SA and ISA versions of the SA al-

gorithm. In most of the times a better initial

placement entails to better performance of the respec-
tive algorithm.

• There are cases where the SISA algorithm performs

almost the same as the ISA. This may happen when

the ISA algorithm manages to find the minimum of

the cost function which is also achieved by the SISA

algorithm as explained previously.

Concluding, we must notice that there is an obvious
gain in the considered performance metrics by the

implementation of the proposed SA-based data place-

ment algorithms. The improvement achieved in seek and

service time by the implementation of the SISA algo-

rithm is on average 40% and 30% respectively when

compared to the random placement, while the
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corresponding improvement rates achieved by the sim-

ple SA algorithm respectively are 32.5% and 14.1%.

It should be noted that all versions of SA are sto-

chastic optimization algorithms, aiming to (iteratively)

improve an initial placement, in terms of an objective

cost function. On the other hand, the constructive

placement (CP) algorithms, although they are based on

the notion of popularity, they do not take into account
the cost of the entire placement. The SA, ISA and SISA

algorithms are all iterative processes and thus are much

less efficient than the CP policies in terms of execution

times. It is obvious that (CP) placement algorithms take

the decision on the objects’ placements rather quickly,

after the necessary sorting step, while for the iterative

methods it takes a number of iterations to decide. Typ-

ically, the simple SA is slower than CP (depending on
the configuration), while ISA and SISA become even
more slower, due to the improving steps and the on-the

run changes in the cooling schedules. However, as it

has already been mentioned, the iterative methods are

employed in simulation studies when decisions for the

system’s design need to be made. Thus, they are executed

only once during the system’s initialization and (given

the presented experimentally verified improvements)

their choice is considered as a rather successful one.
7. Future perspectives

This paper proposes different multimedia data place-

ment algorithms based on the typical SA algorithm. The

multimedia data are represented by an effective two-level

model and the data placement algorithms are tailored for
a tertiary storage topology. A self-improving version of
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the SA algorithm is proposed in the context of the data

placement problem. The placement algorithms are gui-

ded by a popularity-based criterion evaluated on multi-

media application’s physical objects. Experimentation

was carried out under a developed simulation model.

Extensive experimentation runs have shown that the SA-
based placement algorithms outperform both the random
placement approach and the constructive placement

schemes in case of requests following the multimedia

application’s access patterns. Moreover, the proposed

SA-based scheme namely the SISA algorithm has been

proved to have the best performance for the considered

performance metrics.

A significant advantage of the SA algorithms is their
simple principles and structure, allowing either to set

restrictions in the search space or to make modifications

in the cost function very easily (with no significant

alterations in the algorithm’s structure). We can there-

fore use the same algorithms in order to investigate the

performance under various requirements and restric-

tions of the placements under consideration. For

example, an interesting issue for future research is the
implementation of synchronization requirements as

imposed to different multimedia objects by considering

the various constraints which define the objects rela-

tionships. This can be done either by redefining the cost

function (for example by adding a penalty for head

movements between objects not related in a standard

predefined way) or by considering the relationships (for

example by setting the appropriate constraints in the
perturbation procedure). In general, further research

could extend the proposed model to implement the SA

algorithms under different criteria for perturbations and/

or under a different cost function Cð Þ which could be

based on the specific workload. Moreover, the SA ap-

proach can be further extended so that the algorithm is

implemented not only at the tape, but also at a multi-

tape drive library level.
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